github.com/MerlinKodo/gvisor@v0.0.0-20231110090155-957f62ecf90e/pkg/tcpip/network/ipv4/ipv4.go (about)

     1  // Copyright 2021 The gVisor Authors.
     2  //
     3  // Licensed under the Apache License, Version 2.0 (the "License");
     4  // you may not use this file except in compliance with the License.
     5  // You may obtain a copy of the License at
     6  //
     7  //     http://www.apache.org/licenses/LICENSE-2.0
     8  //
     9  // Unless required by applicable law or agreed to in writing, software
    10  // distributed under the License is distributed on an "AS IS" BASIS,
    11  // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    12  // See the License for the specific language governing permissions and
    13  // limitations under the License.
    14  
    15  // Package ipv4 contains the implementation of the ipv4 network protocol.
    16  package ipv4
    17  
    18  import (
    19  	"fmt"
    20  	"math"
    21  	"reflect"
    22  	"time"
    23  
    24  	"github.com/MerlinKodo/gvisor/pkg/atomicbitops"
    25  	"github.com/MerlinKodo/gvisor/pkg/buffer"
    26  	"github.com/MerlinKodo/gvisor/pkg/sync"
    27  	"github.com/MerlinKodo/gvisor/pkg/tcpip"
    28  	"github.com/MerlinKodo/gvisor/pkg/tcpip/header"
    29  	"github.com/MerlinKodo/gvisor/pkg/tcpip/header/parse"
    30  	"github.com/MerlinKodo/gvisor/pkg/tcpip/network/hash"
    31  	"github.com/MerlinKodo/gvisor/pkg/tcpip/network/internal/fragmentation"
    32  	"github.com/MerlinKodo/gvisor/pkg/tcpip/network/internal/ip"
    33  	"github.com/MerlinKodo/gvisor/pkg/tcpip/network/internal/multicast"
    34  	"github.com/MerlinKodo/gvisor/pkg/tcpip/stack"
    35  )
    36  
    37  const (
    38  	// ReassembleTimeout is the time a packet stays in the reassembly
    39  	// system before being evicted.
    40  	// As per RFC 791 section 3.2:
    41  	//   The current recommendation for the initial timer setting is 15 seconds.
    42  	//   This may be changed as experience with this protocol accumulates.
    43  	//
    44  	// Considering that it is an old recommendation, we use the same reassembly
    45  	// timeout that linux defines, which is 30 seconds:
    46  	// https://github.com/torvalds/linux/blob/47ec5303d73ea344e84f46660fff693c57641386/include/net/ip.h#L138
    47  	ReassembleTimeout = 30 * time.Second
    48  
    49  	// ProtocolNumber is the ipv4 protocol number.
    50  	ProtocolNumber = header.IPv4ProtocolNumber
    51  
    52  	// MaxTotalSize is maximum size that can be encoded in the 16-bit
    53  	// TotalLength field of the ipv4 header.
    54  	MaxTotalSize = 0xffff
    55  
    56  	// DefaultTTL is the default time-to-live value for this endpoint.
    57  	DefaultTTL = 64
    58  
    59  	// buckets is the number of identifier buckets.
    60  	buckets = 2048
    61  
    62  	// The size of a fragment block, in bytes, as per RFC 791 section 3.1,
    63  	// page 14.
    64  	fragmentblockSize = 8
    65  )
    66  
    67  const (
    68  	forwardingDisabled = 0
    69  	forwardingEnabled  = 1
    70  )
    71  
    72  var ipv4BroadcastAddr = header.IPv4Broadcast.WithPrefix()
    73  
    74  var _ stack.LinkResolvableNetworkEndpoint = (*endpoint)(nil)
    75  var _ stack.ForwardingNetworkEndpoint = (*endpoint)(nil)
    76  var _ stack.MulticastForwardingNetworkEndpoint = (*endpoint)(nil)
    77  var _ stack.GroupAddressableEndpoint = (*endpoint)(nil)
    78  var _ stack.AddressableEndpoint = (*endpoint)(nil)
    79  var _ stack.NetworkEndpoint = (*endpoint)(nil)
    80  var _ IGMPEndpoint = (*endpoint)(nil)
    81  
    82  type endpoint struct {
    83  	nic        stack.NetworkInterface
    84  	dispatcher stack.TransportDispatcher
    85  	protocol   *protocol
    86  	stats      sharedStats
    87  
    88  	// enabled is set to 1 when the endpoint is enabled and 0 when it is
    89  	// disabled.
    90  	enabled atomicbitops.Uint32
    91  
    92  	// forwarding is set to forwardingEnabled when the endpoint has forwarding
    93  	// enabled and forwardingDisabled when it is disabled.
    94  	forwarding atomicbitops.Uint32
    95  
    96  	// multicastForwarding is set to forwardingEnabled when the endpoint has
    97  	// forwarding enabled and forwardingDisabled when it is disabled.
    98  	//
    99  	// TODO(https://gvisor.dev/issue/7338): Implement support for multicast
   100  	//forwarding. Currently, setting this value to true is a no-op.
   101  	multicastForwarding atomicbitops.Uint32
   102  
   103  	// mu protects below.
   104  	mu sync.RWMutex
   105  
   106  	// +checklocks:mu
   107  	addressableEndpointState stack.AddressableEndpointState
   108  
   109  	// +checklocks:mu
   110  	igmp igmpState
   111  }
   112  
   113  // SetIGMPVersion implements IGMPEndpoint.
   114  func (e *endpoint) SetIGMPVersion(v IGMPVersion) IGMPVersion {
   115  	e.mu.Lock()
   116  	defer e.mu.Unlock()
   117  	return e.setIGMPVersionLocked(v)
   118  }
   119  
   120  // GetIGMPVersion implements IGMPEndpoint.
   121  func (e *endpoint) GetIGMPVersion() IGMPVersion {
   122  	e.mu.RLock()
   123  	defer e.mu.RUnlock()
   124  	return e.getIGMPVersionLocked()
   125  }
   126  
   127  // +checklocks:e.mu
   128  // +checklocksalias:e.igmp.ep.mu=e.mu
   129  func (e *endpoint) setIGMPVersionLocked(v IGMPVersion) IGMPVersion {
   130  	return e.igmp.setVersion(v)
   131  }
   132  
   133  // +checklocksread:e.mu
   134  // +checklocksalias:e.igmp.ep.mu=e.mu
   135  func (e *endpoint) getIGMPVersionLocked() IGMPVersion {
   136  	return e.igmp.getVersion()
   137  }
   138  
   139  // HandleLinkResolutionFailure implements stack.LinkResolvableNetworkEndpoint.
   140  func (e *endpoint) HandleLinkResolutionFailure(pkt stack.PacketBufferPtr) {
   141  	// If we are operating as a router, return an ICMP error to the original
   142  	// packet's sender.
   143  	if pkt.NetworkPacketInfo.IsForwardedPacket {
   144  		// TODO(gvisor.dev/issue/6005): Propagate asynchronously generated ICMP
   145  		// errors to local endpoints.
   146  		e.protocol.returnError(&icmpReasonHostUnreachable{}, pkt, false /* deliveredLocally */)
   147  		e.stats.ip.Forwarding.Errors.Increment()
   148  		e.stats.ip.Forwarding.HostUnreachable.Increment()
   149  		return
   150  	}
   151  	// handleControl expects the entire offending packet to be in the packet
   152  	// buffer's data field.
   153  	pkt = stack.NewPacketBuffer(stack.PacketBufferOptions{
   154  		Payload: pkt.ToBuffer(),
   155  	})
   156  	defer pkt.DecRef()
   157  	pkt.NICID = e.nic.ID()
   158  	pkt.NetworkProtocolNumber = ProtocolNumber
   159  	// Use the same control type as an ICMPv4 destination host unreachable error
   160  	// since the host is considered unreachable if we cannot resolve the link
   161  	// address to the next hop.
   162  	e.handleControl(&icmpv4DestinationHostUnreachableSockError{}, pkt)
   163  }
   164  
   165  // NewEndpoint creates a new ipv4 endpoint.
   166  func (p *protocol) NewEndpoint(nic stack.NetworkInterface, dispatcher stack.TransportDispatcher) stack.NetworkEndpoint {
   167  	e := &endpoint{
   168  		nic:        nic,
   169  		dispatcher: dispatcher,
   170  		protocol:   p,
   171  	}
   172  	e.mu.Lock()
   173  	e.addressableEndpointState.Init(e, stack.AddressableEndpointStateOptions{HiddenWhileDisabled: false})
   174  	e.igmp.init(e)
   175  	e.mu.Unlock()
   176  
   177  	tcpip.InitStatCounters(reflect.ValueOf(&e.stats.localStats).Elem())
   178  
   179  	stackStats := p.stack.Stats()
   180  	e.stats.ip.Init(&e.stats.localStats.IP, &stackStats.IP)
   181  	e.stats.icmp.init(&e.stats.localStats.ICMP, &stackStats.ICMP.V4)
   182  	e.stats.igmp.init(&e.stats.localStats.IGMP, &stackStats.IGMP)
   183  
   184  	p.mu.Lock()
   185  	p.eps[nic.ID()] = e
   186  	p.mu.Unlock()
   187  
   188  	return e
   189  }
   190  
   191  func (p *protocol) findEndpointWithAddress(addr tcpip.Address) *endpoint {
   192  	p.mu.RLock()
   193  	defer p.mu.RUnlock()
   194  
   195  	for _, e := range p.eps {
   196  		if addressEndpoint := e.AcquireAssignedAddress(addr, false /* allowTemp */, stack.NeverPrimaryEndpoint); addressEndpoint != nil {
   197  			addressEndpoint.DecRef()
   198  			return e
   199  		}
   200  	}
   201  
   202  	return nil
   203  }
   204  
   205  func (p *protocol) getEndpointForNIC(id tcpip.NICID) (*endpoint, bool) {
   206  	p.mu.RLock()
   207  	defer p.mu.RUnlock()
   208  	ep, ok := p.eps[id]
   209  	return ep, ok
   210  }
   211  
   212  func (p *protocol) forgetEndpoint(nicID tcpip.NICID) {
   213  	p.mu.Lock()
   214  	defer p.mu.Unlock()
   215  	delete(p.eps, nicID)
   216  }
   217  
   218  // Forwarding implements stack.ForwardingNetworkEndpoint.
   219  func (e *endpoint) Forwarding() bool {
   220  	return e.forwarding.Load() == forwardingEnabled
   221  }
   222  
   223  // setForwarding sets the forwarding status for the endpoint.
   224  //
   225  // Returns the previous forwarding status.
   226  func (e *endpoint) setForwarding(v bool) bool {
   227  	forwarding := uint32(forwardingDisabled)
   228  	if v {
   229  		forwarding = forwardingEnabled
   230  	}
   231  
   232  	return e.forwarding.Swap(forwarding) != forwardingDisabled
   233  }
   234  
   235  // SetForwarding implements stack.ForwardingNetworkEndpoint.
   236  func (e *endpoint) SetForwarding(forwarding bool) bool {
   237  	e.mu.Lock()
   238  	defer e.mu.Unlock()
   239  
   240  	prevForwarding := e.setForwarding(forwarding)
   241  	if prevForwarding == forwarding {
   242  		return prevForwarding
   243  	}
   244  
   245  	if forwarding {
   246  		// There does not seem to be an RFC requirement for a node to join the all
   247  		// routers multicast address but
   248  		// https://www.iana.org/assignments/multicast-addresses/multicast-addresses.xhtml
   249  		// specifies the address as a group for all routers on a subnet so we join
   250  		// the group here.
   251  		if err := e.joinGroupLocked(header.IPv4AllRoutersGroup); err != nil {
   252  			// joinGroupLocked only returns an error if the group address is not a
   253  			// valid IPv4 multicast address.
   254  			panic(fmt.Sprintf("e.joinGroupLocked(%s): %s", header.IPv4AllRoutersGroup, err))
   255  		}
   256  
   257  		return prevForwarding
   258  	}
   259  
   260  	switch err := e.leaveGroupLocked(header.IPv4AllRoutersGroup).(type) {
   261  	case nil:
   262  	case *tcpip.ErrBadLocalAddress:
   263  		// The endpoint may have already left the multicast group.
   264  	default:
   265  		panic(fmt.Sprintf("e.leaveGroupLocked(%s): %s", header.IPv4AllRoutersGroup, err))
   266  	}
   267  
   268  	return prevForwarding
   269  }
   270  
   271  // MulticastForwarding implements stack.MulticastForwardingNetworkEndpoint.
   272  func (e *endpoint) MulticastForwarding() bool {
   273  	return e.multicastForwarding.Load() == forwardingEnabled
   274  }
   275  
   276  // SetMulticastForwarding implements stack.MulticastForwardingNetworkEndpoint.
   277  func (e *endpoint) SetMulticastForwarding(forwarding bool) bool {
   278  	updatedForwarding := uint32(forwardingDisabled)
   279  	if forwarding {
   280  		updatedForwarding = forwardingEnabled
   281  	}
   282  
   283  	return e.multicastForwarding.Swap(updatedForwarding) != forwardingDisabled
   284  }
   285  
   286  // Enable implements stack.NetworkEndpoint.
   287  func (e *endpoint) Enable() tcpip.Error {
   288  	e.mu.Lock()
   289  	defer e.mu.Unlock()
   290  	return e.enableLocked()
   291  }
   292  
   293  // +checklocks:e.mu
   294  // +checklocksalias:e.igmp.ep.mu=e.mu
   295  func (e *endpoint) enableLocked() tcpip.Error {
   296  	// If the NIC is not enabled, the endpoint can't do anything meaningful so
   297  	// don't enable the endpoint.
   298  	if !e.nic.Enabled() {
   299  		return &tcpip.ErrNotPermitted{}
   300  	}
   301  
   302  	// If the endpoint is already enabled, there is nothing for it to do.
   303  	if !e.setEnabled(true) {
   304  		return nil
   305  	}
   306  
   307  	// Must be called after Enabled has already been set.
   308  	e.addressableEndpointState.OnNetworkEndpointEnabledChanged()
   309  
   310  	// Create an endpoint to receive broadcast packets on this interface.
   311  	ep, err := e.addressableEndpointState.AddAndAcquirePermanentAddress(ipv4BroadcastAddr, stack.AddressProperties{PEB: stack.NeverPrimaryEndpoint})
   312  	if err != nil {
   313  		return err
   314  	}
   315  	// We have no need for the address endpoint.
   316  	ep.DecRef()
   317  
   318  	// Groups may have been joined while the endpoint was disabled, or the
   319  	// endpoint may have left groups from the perspective of IGMP when the
   320  	// endpoint was disabled. Either way, we need to let routers know to
   321  	// send us multicast traffic.
   322  	e.igmp.initializeAll()
   323  
   324  	// As per RFC 1122 section 3.3.7, all hosts should join the all-hosts
   325  	// multicast group. Note, the IANA calls the all-hosts multicast group the
   326  	// all-systems multicast group.
   327  	if err := e.joinGroupLocked(header.IPv4AllSystems); err != nil {
   328  		// joinGroupLocked only returns an error if the group address is not a valid
   329  		// IPv4 multicast address.
   330  		panic(fmt.Sprintf("e.joinGroupLocked(%s): %s", header.IPv4AllSystems, err))
   331  	}
   332  
   333  	return nil
   334  }
   335  
   336  // Enabled implements stack.NetworkEndpoint.
   337  func (e *endpoint) Enabled() bool {
   338  	return e.nic.Enabled() && e.isEnabled()
   339  }
   340  
   341  // isEnabled returns true if the endpoint is enabled, regardless of the
   342  // enabled status of the NIC.
   343  func (e *endpoint) isEnabled() bool {
   344  	return e.enabled.Load() == 1
   345  }
   346  
   347  // setEnabled sets the enabled status for the endpoint.
   348  //
   349  // Returns true if the enabled status was updated.
   350  func (e *endpoint) setEnabled(v bool) bool {
   351  	if v {
   352  		return e.enabled.Swap(1) == 0
   353  	}
   354  	return e.enabled.Swap(0) == 1
   355  }
   356  
   357  // Disable implements stack.NetworkEndpoint.
   358  func (e *endpoint) Disable() {
   359  	e.mu.Lock()
   360  	defer e.mu.Unlock()
   361  	e.disableLocked()
   362  }
   363  
   364  // +checklocks:e.mu
   365  // +checklocksalias:e.igmp.ep.mu=e.mu
   366  func (e *endpoint) disableLocked() {
   367  	if !e.isEnabled() {
   368  		return
   369  	}
   370  
   371  	// The endpoint may have already left the multicast group.
   372  	switch err := e.leaveGroupLocked(header.IPv4AllSystems).(type) {
   373  	case nil, *tcpip.ErrBadLocalAddress:
   374  	default:
   375  		panic(fmt.Sprintf("unexpected error when leaving group = %s: %s", header.IPv4AllSystems, err))
   376  	}
   377  
   378  	// Leave groups from the perspective of IGMP so that routers know that
   379  	// we are no longer interested in the group.
   380  	e.igmp.softLeaveAll()
   381  
   382  	// The address may have already been removed.
   383  	switch err := e.addressableEndpointState.RemovePermanentAddress(ipv4BroadcastAddr.Address); err.(type) {
   384  	case nil, *tcpip.ErrBadLocalAddress:
   385  	default:
   386  		panic(fmt.Sprintf("unexpected error when removing address = %s: %s", ipv4BroadcastAddr.Address, err))
   387  	}
   388  
   389  	// Reset the IGMP V1 present flag.
   390  	//
   391  	// If the node comes back up on the same network, it will re-learn that it
   392  	// needs to perform IGMPv1.
   393  	e.igmp.resetV1Present()
   394  
   395  	if !e.setEnabled(false) {
   396  		panic("should have only done work to disable the endpoint if it was enabled")
   397  	}
   398  
   399  	// Must be called after Enabled has been set.
   400  	e.addressableEndpointState.OnNetworkEndpointEnabledChanged()
   401  }
   402  
   403  // emitMulticastEvent emits a multicast forwarding event using the provided
   404  // generator if a valid event dispatcher exists.
   405  func (e *endpoint) emitMulticastEvent(eventGenerator func(stack.MulticastForwardingEventDispatcher)) {
   406  	e.protocol.mu.RLock()
   407  	defer e.protocol.mu.RUnlock()
   408  
   409  	if mcastDisp := e.protocol.multicastForwardingDisp; mcastDisp != nil {
   410  		eventGenerator(mcastDisp)
   411  	}
   412  }
   413  
   414  // DefaultTTL is the default time-to-live value for this endpoint.
   415  func (e *endpoint) DefaultTTL() uint8 {
   416  	return e.protocol.DefaultTTL()
   417  }
   418  
   419  // MTU implements stack.NetworkEndpoint. It returns the link-layer MTU minus the
   420  // network layer max header length.
   421  func (e *endpoint) MTU() uint32 {
   422  	networkMTU, err := calculateNetworkMTU(e.nic.MTU(), header.IPv4MinimumSize)
   423  	if err != nil {
   424  		return 0
   425  	}
   426  	return networkMTU
   427  }
   428  
   429  // MaxHeaderLength returns the maximum length needed by ipv4 headers (and
   430  // underlying protocols).
   431  func (e *endpoint) MaxHeaderLength() uint16 {
   432  	return e.nic.MaxHeaderLength() + header.IPv4MaximumHeaderSize
   433  }
   434  
   435  // NetworkProtocolNumber implements stack.NetworkEndpoint.
   436  func (e *endpoint) NetworkProtocolNumber() tcpip.NetworkProtocolNumber {
   437  	return e.protocol.Number()
   438  }
   439  
   440  func (e *endpoint) addIPHeader(srcAddr, dstAddr tcpip.Address, pkt stack.PacketBufferPtr, params stack.NetworkHeaderParams, options header.IPv4OptionsSerializer) tcpip.Error {
   441  	hdrLen := header.IPv4MinimumSize
   442  	var optLen int
   443  	if options != nil {
   444  		optLen = int(options.Length())
   445  	}
   446  	hdrLen += optLen
   447  	if hdrLen > header.IPv4MaximumHeaderSize {
   448  		return &tcpip.ErrMessageTooLong{}
   449  	}
   450  	ipH := header.IPv4(pkt.NetworkHeader().Push(hdrLen))
   451  	length := pkt.Size()
   452  	if length > math.MaxUint16 {
   453  		return &tcpip.ErrMessageTooLong{}
   454  	}
   455  	// RFC 6864 section 4.3 mandates uniqueness of ID values for non-atomic
   456  	// datagrams. Since the DF bit is never being set here, all datagrams
   457  	// are non-atomic and need an ID.
   458  	id := e.protocol.ids[hashRoute(srcAddr, dstAddr, params.Protocol, e.protocol.hashIV)%buckets].Add(1)
   459  	ipH.Encode(&header.IPv4Fields{
   460  		TotalLength: uint16(length),
   461  		ID:          uint16(id),
   462  		TTL:         params.TTL,
   463  		TOS:         params.TOS,
   464  		Protocol:    uint8(params.Protocol),
   465  		SrcAddr:     srcAddr,
   466  		DstAddr:     dstAddr,
   467  		Options:     options,
   468  	})
   469  	ipH.SetChecksum(^ipH.CalculateChecksum())
   470  	pkt.NetworkProtocolNumber = ProtocolNumber
   471  	return nil
   472  }
   473  
   474  // handleFragments fragments pkt and calls the handler function on each
   475  // fragment. It returns the number of fragments handled and the number of
   476  // fragments left to be processed. The IP header must already be present in the
   477  // original packet.
   478  func (e *endpoint) handleFragments(_ *stack.Route, networkMTU uint32, pkt stack.PacketBufferPtr, handler func(stack.PacketBufferPtr) tcpip.Error) (int, int, tcpip.Error) {
   479  	// Round the MTU down to align to 8 bytes.
   480  	fragmentPayloadSize := networkMTU &^ 7
   481  	networkHeader := header.IPv4(pkt.NetworkHeader().Slice())
   482  	pf := fragmentation.MakePacketFragmenter(pkt, fragmentPayloadSize, pkt.AvailableHeaderBytes()+len(networkHeader))
   483  	defer pf.Release()
   484  
   485  	var n int
   486  	for {
   487  		fragPkt, more := buildNextFragment(&pf, networkHeader)
   488  		err := handler(fragPkt)
   489  		fragPkt.DecRef()
   490  		if err != nil {
   491  			return n, pf.RemainingFragmentCount() + 1, err
   492  		}
   493  		n++
   494  		if !more {
   495  			return n, pf.RemainingFragmentCount(), nil
   496  		}
   497  	}
   498  }
   499  
   500  // WritePacket writes a packet to the given destination address and protocol.
   501  func (e *endpoint) WritePacket(r *stack.Route, params stack.NetworkHeaderParams, pkt stack.PacketBufferPtr) tcpip.Error {
   502  	if err := e.addIPHeader(r.LocalAddress(), r.RemoteAddress(), pkt, params, nil /* options */); err != nil {
   503  		return err
   504  	}
   505  
   506  	return e.writePacket(r, pkt)
   507  }
   508  
   509  func (e *endpoint) writePacket(r *stack.Route, pkt stack.PacketBufferPtr) tcpip.Error {
   510  	netHeader := header.IPv4(pkt.NetworkHeader().Slice())
   511  	dstAddr := netHeader.DestinationAddress()
   512  
   513  	// iptables filtering. All packets that reach here are locally
   514  	// generated.
   515  	outNicName := e.protocol.stack.FindNICNameFromID(e.nic.ID())
   516  	if ok := e.protocol.stack.IPTables().CheckOutput(pkt, r, outNicName); !ok {
   517  		// iptables is telling us to drop the packet.
   518  		e.stats.ip.IPTablesOutputDropped.Increment()
   519  		return nil
   520  	}
   521  
   522  	// If the packet is manipulated as per DNAT Output rules, handle packet
   523  	// based on destination address and do not send the packet to link
   524  	// layer.
   525  	//
   526  	// We should do this for every packet, rather than only DNATted packets, but
   527  	// removing this check short circuits broadcasts before they are sent out to
   528  	// other hosts.
   529  	if newDstAddr := netHeader.DestinationAddress(); dstAddr != newDstAddr {
   530  		if ep := e.protocol.findEndpointWithAddress(newDstAddr); ep != nil {
   531  			// Since we rewrote the packet but it is being routed back to us, we
   532  			// can safely assume the checksum is valid.
   533  			ep.handleLocalPacket(pkt, true /* canSkipRXChecksum */)
   534  			return nil
   535  		}
   536  	}
   537  
   538  	return e.writePacketPostRouting(r, pkt, false /* headerIncluded */)
   539  }
   540  
   541  func (e *endpoint) writePacketPostRouting(r *stack.Route, pkt stack.PacketBufferPtr, headerIncluded bool) tcpip.Error {
   542  	if r.Loop()&stack.PacketLoop != 0 {
   543  		// If the packet was generated by the stack (not a raw/packet endpoint
   544  		// where a packet may be written with the header included), then we can
   545  		// safely assume the checksum is valid.
   546  		e.handleLocalPacket(pkt, !headerIncluded /* canSkipRXChecksum */)
   547  	}
   548  	if r.Loop()&stack.PacketOut == 0 {
   549  		return nil
   550  	}
   551  
   552  	// Postrouting NAT can only change the source address, and does not alter the
   553  	// route or outgoing interface of the packet.
   554  	outNicName := e.protocol.stack.FindNICNameFromID(e.nic.ID())
   555  	if ok := e.protocol.stack.IPTables().CheckPostrouting(pkt, r, e, outNicName); !ok {
   556  		// iptables is telling us to drop the packet.
   557  		e.stats.ip.IPTablesPostroutingDropped.Increment()
   558  		return nil
   559  	}
   560  
   561  	stats := e.stats.ip
   562  
   563  	networkMTU, err := calculateNetworkMTU(e.nic.MTU(), uint32(len(pkt.NetworkHeader().Slice())))
   564  	if err != nil {
   565  		stats.OutgoingPacketErrors.Increment()
   566  		return err
   567  	}
   568  
   569  	if packetMustBeFragmented(pkt, networkMTU) {
   570  		h := header.IPv4(pkt.NetworkHeader().Slice())
   571  		if h.Flags()&header.IPv4FlagDontFragment != 0 && pkt.NetworkPacketInfo.IsForwardedPacket {
   572  			// TODO(gvisor.dev/issue/5919): Handle error condition in which DontFragment
   573  			// is set but the packet must be fragmented for the non-forwarding case.
   574  			return &tcpip.ErrMessageTooLong{}
   575  		}
   576  		sent, remain, err := e.handleFragments(r, networkMTU, pkt, func(fragPkt stack.PacketBufferPtr) tcpip.Error {
   577  			// TODO(gvisor.dev/issue/3884): Evaluate whether we want to send each
   578  			// fragment one by one using WritePacket() (current strategy) or if we
   579  			// want to create a PacketBufferList from the fragments and feed it to
   580  			// WritePackets(). It'll be faster but cost more memory.
   581  			return e.nic.WritePacket(r, fragPkt)
   582  		})
   583  		stats.PacketsSent.IncrementBy(uint64(sent))
   584  		stats.OutgoingPacketErrors.IncrementBy(uint64(remain))
   585  		return err
   586  	}
   587  
   588  	if err := e.nic.WritePacket(r, pkt); err != nil {
   589  		stats.OutgoingPacketErrors.Increment()
   590  		return err
   591  	}
   592  	stats.PacketsSent.Increment()
   593  	return nil
   594  }
   595  
   596  // WriteHeaderIncludedPacket implements stack.NetworkEndpoint.
   597  func (e *endpoint) WriteHeaderIncludedPacket(r *stack.Route, pkt stack.PacketBufferPtr) tcpip.Error {
   598  	// The packet already has an IP header, but there are a few required
   599  	// checks.
   600  	h, ok := pkt.Data().PullUp(header.IPv4MinimumSize)
   601  	if !ok {
   602  		return &tcpip.ErrMalformedHeader{}
   603  	}
   604  
   605  	hdrLen := header.IPv4(h).HeaderLength()
   606  	if hdrLen < header.IPv4MinimumSize {
   607  		return &tcpip.ErrMalformedHeader{}
   608  	}
   609  
   610  	h, ok = pkt.Data().PullUp(int(hdrLen))
   611  	if !ok {
   612  		return &tcpip.ErrMalformedHeader{}
   613  	}
   614  	ipH := header.IPv4(h)
   615  
   616  	// Always set the total length.
   617  	pktSize := pkt.Data().Size()
   618  	ipH.SetTotalLength(uint16(pktSize))
   619  
   620  	// Set the source address when zero.
   621  	if ipH.SourceAddress() == header.IPv4Any {
   622  		ipH.SetSourceAddress(r.LocalAddress())
   623  	}
   624  
   625  	// Set the packet ID when zero.
   626  	if ipH.ID() == 0 {
   627  		// RFC 6864 section 4.3 mandates uniqueness of ID values for
   628  		// non-atomic datagrams, so assign an ID to all such datagrams
   629  		// according to the definition given in RFC 6864 section 4.
   630  		if ipH.Flags()&header.IPv4FlagDontFragment == 0 || ipH.Flags()&header.IPv4FlagMoreFragments != 0 || ipH.FragmentOffset() > 0 {
   631  			ipH.SetID(uint16(e.protocol.ids[hashRoute(r.LocalAddress(), r.RemoteAddress(), 0 /* protocol */, e.protocol.hashIV)%buckets].Add(1)))
   632  		}
   633  	}
   634  
   635  	// Always set the checksum.
   636  	ipH.SetChecksum(0)
   637  	ipH.SetChecksum(^ipH.CalculateChecksum())
   638  
   639  	// Populate the packet buffer's network header and don't allow an invalid
   640  	// packet to be sent.
   641  	//
   642  	// Note that parsing only makes sure that the packet is well formed as per the
   643  	// wire format. We also want to check if the header's fields are valid before
   644  	// sending the packet.
   645  	if !parse.IPv4(pkt) || !header.IPv4(pkt.NetworkHeader().Slice()).IsValid(pktSize) {
   646  		return &tcpip.ErrMalformedHeader{}
   647  	}
   648  
   649  	return e.writePacketPostRouting(r, pkt, true /* headerIncluded */)
   650  }
   651  
   652  // forwardPacketWithRoute emits the pkt using the provided route.
   653  //
   654  // If updateOptions is true, then the IP options will be updated in the copied
   655  // pkt using the outgoing endpoint. Otherwise, the caller is responsible for
   656  // updating the options.
   657  //
   658  // This method should be invoked by the endpoint that received the pkt.
   659  func (e *endpoint) forwardPacketWithRoute(route *stack.Route, pkt stack.PacketBufferPtr, updateOptions bool) ip.ForwardingError {
   660  	h := header.IPv4(pkt.NetworkHeader().Slice())
   661  	stk := e.protocol.stack
   662  
   663  	inNicName := stk.FindNICNameFromID(e.nic.ID())
   664  	outNicName := stk.FindNICNameFromID(route.NICID())
   665  	if ok := stk.IPTables().CheckForward(pkt, inNicName, outNicName); !ok {
   666  		// iptables is telling us to drop the packet.
   667  		e.stats.ip.IPTablesForwardDropped.Increment()
   668  		return nil
   669  	}
   670  
   671  	// We need to do a deep copy of the IP packet because
   672  	// WriteHeaderIncludedPacket may modify the packet buffer, but we do
   673  	// not own it.
   674  	//
   675  	// TODO(https://gvisor.dev/issue/7473): For multicast, only create one deep
   676  	// copy and then clone.
   677  	newPkt := pkt.DeepCopyForForwarding(int(route.MaxHeaderLength()))
   678  	newHdr := header.IPv4(newPkt.NetworkHeader().Slice())
   679  	defer newPkt.DecRef()
   680  
   681  	forwardToEp, ok := e.protocol.getEndpointForNIC(route.NICID())
   682  	if !ok {
   683  		return &ip.ErrUnknownOutputEndpoint{}
   684  	}
   685  
   686  	if updateOptions {
   687  		if err := forwardToEp.updateOptionsForForwarding(newPkt); err != nil {
   688  			return err
   689  		}
   690  	}
   691  
   692  	ttl := h.TTL()
   693  	// As per RFC 791 page 30, Time to Live,
   694  	//
   695  	//   This field must be decreased at each point that the internet header
   696  	//   is processed to reflect the time spent processing the datagram.
   697  	//   Even if no local information is available on the time actually
   698  	//   spent, the field must be decremented by 1.
   699  	newHdr.SetTTL(ttl - 1)
   700  	// We perform a full checksum as we may have updated options above. The IP
   701  	// header is relatively small so this is not expected to be an expensive
   702  	// operation.
   703  	newHdr.SetChecksum(0)
   704  	newHdr.SetChecksum(^newHdr.CalculateChecksum())
   705  
   706  	switch err := forwardToEp.writePacketPostRouting(route, newPkt, true /* headerIncluded */); err.(type) {
   707  	case nil:
   708  		return nil
   709  	case *tcpip.ErrMessageTooLong:
   710  		// As per RFC 792, page 4, Destination Unreachable:
   711  		//
   712  		//   Another case is when a datagram must be fragmented to be forwarded by a
   713  		//   gateway yet the Don't Fragment flag is on. In this case the gateway must
   714  		//   discard the datagram and may return a destination unreachable message.
   715  		//
   716  		// WriteHeaderIncludedPacket checks for the presence of the Don't Fragment bit
   717  		// while sending the packet and returns this error iff fragmentation is
   718  		// necessary and the bit is also set.
   719  		_ = e.protocol.returnError(&icmpReasonFragmentationNeeded{}, pkt, false /* deliveredLocally */)
   720  		return &ip.ErrMessageTooLong{}
   721  	case *tcpip.ErrNoBufferSpace:
   722  		return &ip.ErrOutgoingDeviceNoBufferSpace{}
   723  	default:
   724  		return &ip.ErrOther{Err: err}
   725  	}
   726  }
   727  
   728  // forwardUnicastPacket attempts to forward a packet to its final destination.
   729  func (e *endpoint) forwardUnicastPacket(pkt stack.PacketBufferPtr) ip.ForwardingError {
   730  	hView := pkt.NetworkHeader().View()
   731  	defer hView.Release()
   732  	h := header.IPv4(hView.AsSlice())
   733  
   734  	dstAddr := h.DestinationAddress()
   735  
   736  	if err := validateAddressesForForwarding(h); err != nil {
   737  		return err
   738  	}
   739  
   740  	ttl := h.TTL()
   741  	if ttl == 0 {
   742  		// As per RFC 792 page 6, Time Exceeded Message,
   743  		//
   744  		//  If the gateway processing a datagram finds the time to live field
   745  		//  is zero it must discard the datagram.  The gateway may also notify
   746  		//  the source host via the time exceeded message.
   747  		//
   748  		// We return the original error rather than the result of returning
   749  		// the ICMP packet because the original error is more relevant to
   750  		// the caller.
   751  		_ = e.protocol.returnError(&icmpReasonTTLExceeded{}, pkt, false /* deliveredLocally */)
   752  		return &ip.ErrTTLExceeded{}
   753  	}
   754  
   755  	if err := e.updateOptionsForForwarding(pkt); err != nil {
   756  		return err
   757  	}
   758  
   759  	stk := e.protocol.stack
   760  
   761  	// Check if the destination is owned by the stack.
   762  	if ep := e.protocol.findEndpointWithAddress(dstAddr); ep != nil {
   763  		inNicName := stk.FindNICNameFromID(e.nic.ID())
   764  		outNicName := stk.FindNICNameFromID(ep.nic.ID())
   765  		if ok := stk.IPTables().CheckForward(pkt, inNicName, outNicName); !ok {
   766  			// iptables is telling us to drop the packet.
   767  			e.stats.ip.IPTablesForwardDropped.Increment()
   768  			return nil
   769  		}
   770  
   771  		// The packet originally arrived on e so provide its NIC as the input NIC.
   772  		ep.handleValidatedPacket(h, pkt, e.nic.Name() /* inNICName */)
   773  		return nil
   774  	}
   775  
   776  	r, err := stk.FindRoute(0, tcpip.Address{}, dstAddr, ProtocolNumber, false /* multicastLoop */)
   777  	switch err.(type) {
   778  	case nil:
   779  	// TODO(https://gvisor.dev/issues/8105): We should not observe ErrHostUnreachable from route
   780  	// lookups.
   781  	case *tcpip.ErrHostUnreachable, *tcpip.ErrNetworkUnreachable:
   782  		// We return the original error rather than the result of returning
   783  		// the ICMP packet because the original error is more relevant to
   784  		// the caller.
   785  		_ = e.protocol.returnError(&icmpReasonNetworkUnreachable{}, pkt, false /* deliveredLocally */)
   786  		return &ip.ErrHostUnreachable{}
   787  	default:
   788  		return &ip.ErrOther{Err: err}
   789  	}
   790  	defer r.Release()
   791  
   792  	// TODO(https://gvisor.dev/issue/7472): Unicast IP options should be updated
   793  	// using the output endpoint (instead of the input endpoint). In particular,
   794  	// RFC 1812 section 5.2.1 states the following:
   795  	//
   796  	//	 Processing of certain IP options requires that the router insert its IP
   797  	//	 address into the option. As noted in Section [5.2.4], the address
   798  	//	 inserted MUST be the address of the logical interface on which the
   799  	//	 packet is sent or the router's router-id if the packet is sent over an
   800  	//	 unnumbered interface. Thus, processing of these options cannot be
   801  	//	 completed until after the output interface is chosen.
   802  	return e.forwardPacketWithRoute(r, pkt, false /* updateOptions */)
   803  }
   804  
   805  // HandlePacket is called by the link layer when new ipv4 packets arrive for
   806  // this endpoint.
   807  func (e *endpoint) HandlePacket(pkt stack.PacketBufferPtr) {
   808  	stats := e.stats.ip
   809  
   810  	stats.PacketsReceived.Increment()
   811  
   812  	if !e.isEnabled() {
   813  		stats.DisabledPacketsReceived.Increment()
   814  		return
   815  	}
   816  
   817  	hView, ok := e.protocol.parseAndValidate(pkt)
   818  	if !ok {
   819  		stats.MalformedPacketsReceived.Increment()
   820  		return
   821  	}
   822  	h := header.IPv4(hView.AsSlice())
   823  	defer hView.Release()
   824  
   825  	if !e.nic.IsLoopback() {
   826  		if !e.protocol.options.AllowExternalLoopbackTraffic {
   827  			if header.IsV4LoopbackAddress(h.SourceAddress()) {
   828  				stats.InvalidSourceAddressesReceived.Increment()
   829  				return
   830  			}
   831  
   832  			if header.IsV4LoopbackAddress(h.DestinationAddress()) {
   833  				stats.InvalidDestinationAddressesReceived.Increment()
   834  				return
   835  			}
   836  		}
   837  
   838  		if e.protocol.stack.HandleLocal() {
   839  			addressEndpoint := e.AcquireAssignedAddress(header.IPv4(pkt.NetworkHeader().Slice()).SourceAddress(), e.nic.Promiscuous(), stack.CanBePrimaryEndpoint)
   840  			if addressEndpoint != nil {
   841  				addressEndpoint.DecRef()
   842  
   843  				// The source address is one of our own, so we never should have gotten
   844  				// a packet like this unless HandleLocal is false or our NIC is the
   845  				// loopback interface.
   846  				stats.InvalidSourceAddressesReceived.Increment()
   847  				return
   848  			}
   849  		}
   850  
   851  		// Loopback traffic skips the prerouting chain.
   852  		inNicName := e.protocol.stack.FindNICNameFromID(e.nic.ID())
   853  		if ok := e.protocol.stack.IPTables().CheckPrerouting(pkt, e, inNicName); !ok {
   854  			// iptables is telling us to drop the packet.
   855  			stats.IPTablesPreroutingDropped.Increment()
   856  			return
   857  		}
   858  	}
   859  
   860  	e.handleValidatedPacket(h, pkt, e.nic.Name() /* inNICName */)
   861  }
   862  
   863  // handleLocalPacket is like HandlePacket except it does not perform the
   864  // prerouting iptables hook or check for loopback traffic that originated from
   865  // outside of the netstack (i.e. martian loopback packets).
   866  func (e *endpoint) handleLocalPacket(pkt stack.PacketBufferPtr, canSkipRXChecksum bool) {
   867  	stats := e.stats.ip
   868  	stats.PacketsReceived.Increment()
   869  
   870  	pkt = pkt.CloneToInbound()
   871  	defer pkt.DecRef()
   872  	pkt.RXChecksumValidated = canSkipRXChecksum
   873  
   874  	hView, ok := e.protocol.parseAndValidate(pkt)
   875  	if !ok {
   876  		stats.MalformedPacketsReceived.Increment()
   877  		return
   878  	}
   879  	h := header.IPv4(hView.AsSlice())
   880  	defer hView.Release()
   881  
   882  	e.handleValidatedPacket(h, pkt, e.nic.Name() /* inNICName */)
   883  }
   884  
   885  func validateAddressesForForwarding(h header.IPv4) ip.ForwardingError {
   886  	srcAddr := h.SourceAddress()
   887  
   888  	// As per RFC 5735 section 3,
   889  	//
   890  	//   0.0.0.0/8 - Addresses in this block refer to source hosts on "this"
   891  	//   network.  Address 0.0.0.0/32 may be used as a source address for this
   892  	//   host on this network; other addresses within 0.0.0.0/8 may be used to
   893  	//   refer to specified hosts on this network ([RFC1122], Section 3.2.1.3).
   894  	//
   895  	// And RFC 6890 section 2.2.2,
   896  	//
   897  	//                +----------------------+----------------------------+
   898  	//                | Attribute            | Value                      |
   899  	//                +----------------------+----------------------------+
   900  	//                | Address Block        | 0.0.0.0/8                  |
   901  	//                | Name                 | "This host on this network"|
   902  	//                | RFC                  | [RFC1122], Section 3.2.1.3 |
   903  	//                | Allocation Date      | September 1981             |
   904  	//                | Termination Date     | N/A                        |
   905  	//                | Source               | True                       |
   906  	//                | Destination          | False                      |
   907  	//                | Forwardable          | False                      |
   908  	//                | Global               | False                      |
   909  	//                | Reserved-by-Protocol | True                       |
   910  	//                +----------------------+----------------------------+
   911  	if header.IPv4CurrentNetworkSubnet.Contains(srcAddr) {
   912  		return &ip.ErrInitializingSourceAddress{}
   913  	}
   914  
   915  	// As per RFC 3927 section 7,
   916  	//
   917  	//   A router MUST NOT forward a packet with an IPv4 Link-Local source or
   918  	//   destination address, irrespective of the router's default route
   919  	//   configuration or routes obtained from dynamic routing protocols.
   920  	//
   921  	//   A router which receives a packet with an IPv4 Link-Local source or
   922  	//   destination address MUST NOT forward the packet.  This prevents
   923  	//   forwarding of packets back onto the network segment from which they
   924  	//   originated, or to any other segment.
   925  	if header.IsV4LinkLocalUnicastAddress(srcAddr) {
   926  		return &ip.ErrLinkLocalSourceAddress{}
   927  	}
   928  	if dstAddr := h.DestinationAddress(); header.IsV4LinkLocalUnicastAddress(dstAddr) || header.IsV4LinkLocalMulticastAddress(dstAddr) {
   929  		return &ip.ErrLinkLocalDestinationAddress{}
   930  	}
   931  	return nil
   932  }
   933  
   934  // forwardMulticastPacket validates a multicast pkt and attempts to forward it.
   935  //
   936  // This method should be invoked for incoming multicast packets using the
   937  // endpoint that received the packet.
   938  func (e *endpoint) forwardMulticastPacket(h header.IPv4, pkt stack.PacketBufferPtr) ip.ForwardingError {
   939  	if err := validateAddressesForForwarding(h); err != nil {
   940  		return err
   941  	}
   942  
   943  	if opts := h.Options(); len(opts) != 0 {
   944  		// Check if the options are valid, but don't mutate them. This corresponds
   945  		// to step 3 of RFC 1812 section 5.2.1.1.
   946  		if _, _, optProblem := e.processIPOptions(pkt, opts, &optionUsageVerify{}); optProblem != nil {
   947  			// Per RFC 1812 section 4.3.2.7, an ICMP error message should not be
   948  			// sent for:
   949  			//
   950  			//	 A packet destined to an IP broadcast or IP multicast address.
   951  			//
   952  			// Note that protocol.returnError also enforces this requirement.
   953  			// However, we intentionally omit it here since this path is multicast
   954  			// only.
   955  			return &ip.ErrParameterProblem{}
   956  		}
   957  	}
   958  
   959  	routeKey := stack.UnicastSourceAndMulticastDestination{
   960  		Source:      h.SourceAddress(),
   961  		Destination: h.DestinationAddress(),
   962  	}
   963  
   964  	// The pkt has been validated. Consequently, if a route is not found, then
   965  	// the pkt can safely be queued.
   966  	result, hasBufferSpace := e.protocol.multicastRouteTable.GetRouteOrInsertPending(routeKey, pkt)
   967  
   968  	if !hasBufferSpace {
   969  		// Unable to queue the pkt. Silently drop it.
   970  		return &ip.ErrNoMulticastPendingQueueBufferSpace{}
   971  	}
   972  
   973  	switch result.GetRouteResultState {
   974  	case multicast.InstalledRouteFound:
   975  		// Attempt to forward the pkt using an existing route.
   976  		return e.forwardValidatedMulticastPacket(pkt, result.InstalledRoute)
   977  	case multicast.NoRouteFoundAndPendingInserted:
   978  		e.emitMulticastEvent(func(disp stack.MulticastForwardingEventDispatcher) {
   979  			disp.OnMissingRoute(stack.MulticastPacketContext{
   980  				stack.UnicastSourceAndMulticastDestination{h.SourceAddress(), h.DestinationAddress()},
   981  				e.nic.ID(),
   982  			})
   983  		})
   984  	case multicast.PacketQueuedInPendingRoute:
   985  	default:
   986  		panic(fmt.Sprintf("unexpected GetRouteResultState: %s", result.GetRouteResultState))
   987  	}
   988  	return &ip.ErrHostUnreachable{}
   989  }
   990  
   991  func (e *endpoint) updateOptionsForForwarding(pkt stack.PacketBufferPtr) ip.ForwardingError {
   992  	h := header.IPv4(pkt.NetworkHeader().Slice())
   993  	if opts := h.Options(); len(opts) != 0 {
   994  		newOpts, _, optProblem := e.processIPOptions(pkt, opts, &optionUsageForward{})
   995  		if optProblem != nil {
   996  			if optProblem.NeedICMP {
   997  				// Note that this will not emit an ICMP error if the destination is
   998  				// multicast.
   999  				_ = e.protocol.returnError(&icmpReasonParamProblem{
  1000  					pointer: optProblem.Pointer,
  1001  				}, pkt, false /* deliveredLocally */)
  1002  			}
  1003  			return &ip.ErrParameterProblem{}
  1004  		}
  1005  		copied := copy(opts, newOpts)
  1006  		if copied != len(newOpts) {
  1007  			panic(fmt.Sprintf("copied %d bytes of new options, expected %d bytes", copied, len(newOpts)))
  1008  		}
  1009  		// Since in forwarding we handle all options, including copying those we
  1010  		// do not recognise, the options region should remain the same size which
  1011  		// simplifies processing. As we MAY receive a packet with a lot of padded
  1012  		// bytes after the "end of options list" byte, make sure we copy
  1013  		// them as the legal padding value (0).
  1014  		for i := copied; i < len(opts); i++ {
  1015  			// Pad with 0 (EOL). RFC 791 page 23 says "The padding is zero".
  1016  			opts[i] = byte(header.IPv4OptionListEndType)
  1017  		}
  1018  	}
  1019  	return nil
  1020  }
  1021  
  1022  // forwardValidatedMulticastPacket attempts to forward the pkt using the
  1023  // provided installedRoute.
  1024  //
  1025  // This method should be invoked by the endpoint that received the pkt.
  1026  func (e *endpoint) forwardValidatedMulticastPacket(pkt stack.PacketBufferPtr, installedRoute *multicast.InstalledRoute) ip.ForwardingError {
  1027  	// Per RFC 1812 section 5.2.1.3,
  1028  	//
  1029  	//	 Based on the IP source and destination addresses found in the datagram
  1030  	//	 header, the router determines whether the datagram has been received
  1031  	//	 on the proper interface for forwarding.  If not, the datagram is
  1032  	//	 dropped silently.
  1033  	if e.nic.ID() != installedRoute.ExpectedInputInterface {
  1034  		h := header.IPv4(pkt.NetworkHeader().Slice())
  1035  		e.emitMulticastEvent(func(disp stack.MulticastForwardingEventDispatcher) {
  1036  			disp.OnUnexpectedInputInterface(stack.MulticastPacketContext{
  1037  				stack.UnicastSourceAndMulticastDestination{h.SourceAddress(), h.DestinationAddress()},
  1038  				e.nic.ID(),
  1039  			}, installedRoute.ExpectedInputInterface)
  1040  		})
  1041  		return &ip.ErrUnexpectedMulticastInputInterface{}
  1042  	}
  1043  
  1044  	for _, outgoingInterface := range installedRoute.OutgoingInterfaces {
  1045  		if err := e.forwardMulticastPacketForOutgoingInterface(pkt, outgoingInterface); err != nil {
  1046  			e.handleForwardingError(err)
  1047  			continue
  1048  		}
  1049  		// The pkt was successfully forwarded. Mark the route as used.
  1050  		installedRoute.SetLastUsedTimestamp(e.protocol.stack.Clock().NowMonotonic())
  1051  	}
  1052  	return nil
  1053  }
  1054  
  1055  // forwardMulticastPacketForOutgoingInterface attempts to forward the pkt out
  1056  // of the provided outgoingInterface.
  1057  //
  1058  // This method should be invoked by the endpoint that received the pkt.
  1059  func (e *endpoint) forwardMulticastPacketForOutgoingInterface(pkt stack.PacketBufferPtr, outgoingInterface stack.MulticastRouteOutgoingInterface) ip.ForwardingError {
  1060  	h := header.IPv4(pkt.NetworkHeader().Slice())
  1061  
  1062  	// Per RFC 1812 section 5.2.1.3,
  1063  	//
  1064  	//	 A copy of the multicast datagram is forwarded out each outgoing
  1065  	//	 interface whose minimum TTL value is less than or equal to the TTL
  1066  	//	 value in the datagram header.
  1067  	//
  1068  	// Copying of the packet is deferred to forwardPacketWithRoute since unicast
  1069  	// and multicast both require a copy.
  1070  	if outgoingInterface.MinTTL > h.TTL() {
  1071  		return &ip.ErrTTLExceeded{}
  1072  	}
  1073  
  1074  	route := e.protocol.stack.NewRouteForMulticast(outgoingInterface.ID, h.DestinationAddress(), e.NetworkProtocolNumber())
  1075  
  1076  	if route == nil {
  1077  		// Failed to convert to a stack.Route. This likely means that the outgoing
  1078  		// endpoint no longer exists.
  1079  		return &ip.ErrHostUnreachable{}
  1080  	}
  1081  	defer route.Release()
  1082  
  1083  	return e.forwardPacketWithRoute(route, pkt, true /* updateOptions */)
  1084  }
  1085  
  1086  func (e *endpoint) handleValidatedPacket(h header.IPv4, pkt stack.PacketBufferPtr, inNICName string) {
  1087  	pkt.NICID = e.nic.ID()
  1088  
  1089  	// Raw socket packets are delivered based solely on the transport protocol
  1090  	// number. We only require that the packet be valid IPv4, and that they not
  1091  	// be fragmented.
  1092  	if !h.More() && h.FragmentOffset() == 0 {
  1093  		e.dispatcher.DeliverRawPacket(h.TransportProtocol(), pkt)
  1094  	}
  1095  
  1096  	stats := e.stats
  1097  	stats.ip.ValidPacketsReceived.Increment()
  1098  
  1099  	srcAddr := h.SourceAddress()
  1100  	dstAddr := h.DestinationAddress()
  1101  
  1102  	// As per RFC 1122 section 3.2.1.3:
  1103  	//   When a host sends any datagram, the IP source address MUST
  1104  	//   be one of its own IP addresses (but not a broadcast or
  1105  	//   multicast address).
  1106  	if srcAddr == header.IPv4Broadcast || header.IsV4MulticastAddress(srcAddr) {
  1107  		stats.ip.InvalidSourceAddressesReceived.Increment()
  1108  		return
  1109  	}
  1110  	// Make sure the source address is not a subnet-local broadcast address.
  1111  	if addressEndpoint := e.AcquireAssignedAddress(srcAddr, false /* createTemp */, stack.NeverPrimaryEndpoint); addressEndpoint != nil {
  1112  		subnet := addressEndpoint.Subnet()
  1113  		addressEndpoint.DecRef()
  1114  		if subnet.IsBroadcast(srcAddr) {
  1115  			stats.ip.InvalidSourceAddressesReceived.Increment()
  1116  			return
  1117  		}
  1118  	}
  1119  
  1120  	if header.IsV4MulticastAddress(dstAddr) {
  1121  		// Handle all packets destined to a multicast address separately. Unlike
  1122  		// unicast, these packets can be both delivered locally and forwarded. See
  1123  		// RFC 1812 section 5.2.3 for details regarding the forwarding/local
  1124  		// delivery decision.
  1125  
  1126  		multicastForwarding := e.MulticastForwarding() && e.protocol.multicastForwarding()
  1127  
  1128  		if multicastForwarding {
  1129  			e.handleForwardingError(e.forwardMulticastPacket(h, pkt))
  1130  		}
  1131  
  1132  		if e.IsInGroup(dstAddr) {
  1133  			e.deliverPacketLocally(h, pkt, inNICName)
  1134  			return
  1135  		}
  1136  
  1137  		if !multicastForwarding {
  1138  			// Only consider the destination address invalid if we didn't attempt to
  1139  			// forward the pkt and it was not delivered locally.
  1140  			stats.ip.InvalidDestinationAddressesReceived.Increment()
  1141  		}
  1142  		return
  1143  	}
  1144  
  1145  	// Before we do any processing, check if the packet was received as some
  1146  	// sort of broadcast.
  1147  	//
  1148  	// If the packet is destined for this device, then it should be delivered
  1149  	// locally. Otherwise, if forwarding is enabled, it should be forwarded.
  1150  	if addressEndpoint := e.AcquireAssignedAddress(dstAddr, e.nic.Promiscuous(), stack.CanBePrimaryEndpoint); addressEndpoint != nil {
  1151  		subnet := addressEndpoint.AddressWithPrefix().Subnet()
  1152  		addressEndpoint.DecRef()
  1153  		pkt.NetworkPacketInfo.LocalAddressBroadcast = subnet.IsBroadcast(dstAddr) || dstAddr == header.IPv4Broadcast
  1154  		e.deliverPacketLocally(h, pkt, inNICName)
  1155  	} else if e.Forwarding() {
  1156  		e.handleForwardingError(e.forwardUnicastPacket(pkt))
  1157  	} else {
  1158  		stats.ip.InvalidDestinationAddressesReceived.Increment()
  1159  	}
  1160  }
  1161  
  1162  // handleForwardingError processes the provided err and increments any relevant
  1163  // counters.
  1164  func (e *endpoint) handleForwardingError(err ip.ForwardingError) {
  1165  	stats := e.stats.ip
  1166  	switch err := err.(type) {
  1167  	case nil:
  1168  		return
  1169  	case *ip.ErrInitializingSourceAddress:
  1170  		stats.Forwarding.InitializingSource.Increment()
  1171  	case *ip.ErrLinkLocalSourceAddress:
  1172  		stats.Forwarding.LinkLocalSource.Increment()
  1173  	case *ip.ErrLinkLocalDestinationAddress:
  1174  		stats.Forwarding.LinkLocalDestination.Increment()
  1175  	case *ip.ErrTTLExceeded:
  1176  		stats.Forwarding.ExhaustedTTL.Increment()
  1177  	case *ip.ErrHostUnreachable:
  1178  		stats.Forwarding.Unrouteable.Increment()
  1179  	case *ip.ErrParameterProblem:
  1180  		stats.MalformedPacketsReceived.Increment()
  1181  	case *ip.ErrMessageTooLong:
  1182  		stats.Forwarding.PacketTooBig.Increment()
  1183  	case *ip.ErrNoMulticastPendingQueueBufferSpace:
  1184  		stats.Forwarding.NoMulticastPendingQueueBufferSpace.Increment()
  1185  	case *ip.ErrUnexpectedMulticastInputInterface:
  1186  		stats.Forwarding.UnexpectedMulticastInputInterface.Increment()
  1187  	case *ip.ErrUnknownOutputEndpoint:
  1188  		stats.Forwarding.UnknownOutputEndpoint.Increment()
  1189  	case *ip.ErrOutgoingDeviceNoBufferSpace:
  1190  		stats.Forwarding.OutgoingDeviceNoBufferSpace.Increment()
  1191  	default:
  1192  		panic(fmt.Sprintf("unrecognized forwarding error: %s", err))
  1193  	}
  1194  	stats.Forwarding.Errors.Increment()
  1195  }
  1196  
  1197  func (e *endpoint) deliverPacketLocally(h header.IPv4, pkt stack.PacketBufferPtr, inNICName string) {
  1198  	stats := e.stats
  1199  	// iptables filtering. All packets that reach here are intended for
  1200  	// this machine and will not be forwarded.
  1201  	if ok := e.protocol.stack.IPTables().CheckInput(pkt, inNICName); !ok {
  1202  		// iptables is telling us to drop the packet.
  1203  		stats.ip.IPTablesInputDropped.Increment()
  1204  		return
  1205  	}
  1206  
  1207  	if h.More() || h.FragmentOffset() != 0 {
  1208  		if pkt.Data().Size()+len(pkt.TransportHeader().Slice()) == 0 {
  1209  			// Drop the packet as it's marked as a fragment but has
  1210  			// no payload.
  1211  			stats.ip.MalformedPacketsReceived.Increment()
  1212  			stats.ip.MalformedFragmentsReceived.Increment()
  1213  			return
  1214  		}
  1215  		if opts := h.Options(); len(opts) != 0 {
  1216  			// If there are options we need to check them before we do assembly
  1217  			// or we could be assembling errant packets. However we do not change the
  1218  			// options as that could lead to double processing later.
  1219  			if _, _, optProblem := e.processIPOptions(pkt, opts, &optionUsageVerify{}); optProblem != nil {
  1220  				if optProblem.NeedICMP {
  1221  					_ = e.protocol.returnError(&icmpReasonParamProblem{
  1222  						pointer: optProblem.Pointer,
  1223  					}, pkt, true /* deliveredLocally */)
  1224  					e.stats.ip.MalformedPacketsReceived.Increment()
  1225  				}
  1226  				return
  1227  			}
  1228  		}
  1229  		// The packet is a fragment, let's try to reassemble it.
  1230  		start := h.FragmentOffset()
  1231  		// Drop the fragment if the size of the reassembled payload would exceed the
  1232  		// maximum payload size.
  1233  		//
  1234  		// Note that this addition doesn't overflow even on 32bit architecture
  1235  		// because pkt.Data().Size() should not exceed 65535 (the max IP datagram
  1236  		// size). Otherwise the packet would've been rejected as invalid before
  1237  		// reaching here.
  1238  		if int(start)+pkt.Data().Size() > header.IPv4MaximumPayloadSize {
  1239  			stats.ip.MalformedPacketsReceived.Increment()
  1240  			stats.ip.MalformedFragmentsReceived.Increment()
  1241  			return
  1242  		}
  1243  
  1244  		proto := h.Protocol()
  1245  		resPkt, transProtoNum, ready, err := e.protocol.fragmentation.Process(
  1246  			// As per RFC 791 section 2.3, the identification value is unique
  1247  			// for a source-destination pair and protocol.
  1248  			fragmentation.FragmentID{
  1249  				Source:      h.SourceAddress(),
  1250  				Destination: h.DestinationAddress(),
  1251  				ID:          uint32(h.ID()),
  1252  				Protocol:    proto,
  1253  			},
  1254  			start,
  1255  			start+uint16(pkt.Data().Size())-1,
  1256  			h.More(),
  1257  			proto,
  1258  			pkt,
  1259  		)
  1260  		if err != nil {
  1261  			stats.ip.MalformedPacketsReceived.Increment()
  1262  			stats.ip.MalformedFragmentsReceived.Increment()
  1263  			return
  1264  		}
  1265  		if !ready {
  1266  			return
  1267  		}
  1268  		defer resPkt.DecRef()
  1269  		pkt = resPkt
  1270  		h = header.IPv4(pkt.NetworkHeader().Slice())
  1271  
  1272  		// The reassembler doesn't take care of fixing up the header, so we need
  1273  		// to do it here.
  1274  		h.SetTotalLength(uint16(pkt.Data().Size() + len(h)))
  1275  		h.SetFlagsFragmentOffset(0, 0)
  1276  
  1277  		e.protocol.parseTransport(pkt, tcpip.TransportProtocolNumber(transProtoNum))
  1278  
  1279  		// Now that the packet is reassembled, it can be sent to raw sockets.
  1280  		e.dispatcher.DeliverRawPacket(h.TransportProtocol(), pkt)
  1281  	}
  1282  	stats.ip.PacketsDelivered.Increment()
  1283  
  1284  	p := h.TransportProtocol()
  1285  	if p == header.ICMPv4ProtocolNumber {
  1286  		// TODO(gvisor.dev/issues/3810): when we sort out ICMP and transport
  1287  		// headers, the setting of the transport number here should be
  1288  		// unnecessary and removed.
  1289  		pkt.TransportProtocolNumber = p
  1290  		e.handleICMP(pkt)
  1291  		return
  1292  	}
  1293  	// ICMP handles options itself but do it here for all remaining destinations.
  1294  	var hasRouterAlertOption bool
  1295  	if opts := h.Options(); len(opts) != 0 {
  1296  		newOpts, processedOpts, optProblem := e.processIPOptions(pkt, opts, &optionUsageReceive{})
  1297  		if optProblem != nil {
  1298  			if optProblem.NeedICMP {
  1299  				_ = e.protocol.returnError(&icmpReasonParamProblem{
  1300  					pointer: optProblem.Pointer,
  1301  				}, pkt, true /* deliveredLocally */)
  1302  				stats.ip.MalformedPacketsReceived.Increment()
  1303  			}
  1304  			return
  1305  		}
  1306  		hasRouterAlertOption = processedOpts.routerAlert
  1307  		copied := copy(opts, newOpts)
  1308  		if copied != len(newOpts) {
  1309  			panic(fmt.Sprintf("copied %d bytes of new options, expected %d bytes", copied, len(newOpts)))
  1310  		}
  1311  		for i := copied; i < len(opts); i++ {
  1312  			// Pad with 0 (EOL). RFC 791 page 23 says "The padding is zero".
  1313  			opts[i] = byte(header.IPv4OptionListEndType)
  1314  		}
  1315  	}
  1316  	if p == header.IGMPProtocolNumber {
  1317  		e.mu.Lock()
  1318  		e.igmp.handleIGMP(pkt, hasRouterAlertOption) // +checklocksforce: e == e.igmp.ep.
  1319  		e.mu.Unlock()
  1320  		return
  1321  	}
  1322  
  1323  	switch res := e.dispatcher.DeliverTransportPacket(p, pkt); res {
  1324  	case stack.TransportPacketHandled:
  1325  	case stack.TransportPacketDestinationPortUnreachable:
  1326  		// As per RFC: 1122 Section 3.2.2.1 A host SHOULD generate Destination
  1327  		//   Unreachable messages with code:
  1328  		//     3 (Port Unreachable), when the designated transport protocol
  1329  		//     (e.g., UDP) is unable to demultiplex the datagram but has no
  1330  		//     protocol mechanism to inform the sender.
  1331  		_ = e.protocol.returnError(&icmpReasonPortUnreachable{}, pkt, true /* deliveredLocally */)
  1332  	case stack.TransportPacketProtocolUnreachable:
  1333  		// As per RFC: 1122 Section 3.2.2.1
  1334  		//   A host SHOULD generate Destination Unreachable messages with code:
  1335  		//     2 (Protocol Unreachable), when the designated transport protocol
  1336  		//     is not supported
  1337  		_ = e.protocol.returnError(&icmpReasonProtoUnreachable{}, pkt, true /* deliveredLocally */)
  1338  	default:
  1339  		panic(fmt.Sprintf("unrecognized result from DeliverTransportPacket = %d", res))
  1340  	}
  1341  }
  1342  
  1343  // Close cleans up resources associated with the endpoint.
  1344  func (e *endpoint) Close() {
  1345  	e.mu.Lock()
  1346  	e.disableLocked()
  1347  	e.addressableEndpointState.Cleanup()
  1348  	e.mu.Unlock()
  1349  
  1350  	e.protocol.forgetEndpoint(e.nic.ID())
  1351  }
  1352  
  1353  // AddAndAcquirePermanentAddress implements stack.AddressableEndpoint.
  1354  func (e *endpoint) AddAndAcquirePermanentAddress(addr tcpip.AddressWithPrefix, properties stack.AddressProperties) (stack.AddressEndpoint, tcpip.Error) {
  1355  	e.mu.RLock()
  1356  	defer e.mu.RUnlock()
  1357  
  1358  	ep, err := e.addressableEndpointState.AddAndAcquireAddress(addr, properties, stack.Permanent)
  1359  	if err == nil {
  1360  		e.sendQueuedReports()
  1361  	}
  1362  	return ep, err
  1363  }
  1364  
  1365  // sendQueuedReports sends queued igmp reports.
  1366  //
  1367  // +checklocksread:e.mu
  1368  // +checklocksalias:e.igmp.ep.mu=e.mu
  1369  func (e *endpoint) sendQueuedReports() {
  1370  	e.igmp.sendQueuedReports()
  1371  }
  1372  
  1373  // RemovePermanentAddress implements stack.AddressableEndpoint.
  1374  func (e *endpoint) RemovePermanentAddress(addr tcpip.Address) tcpip.Error {
  1375  	e.mu.RLock()
  1376  	defer e.mu.RUnlock()
  1377  	return e.addressableEndpointState.RemovePermanentAddress(addr)
  1378  }
  1379  
  1380  // SetDeprecated implements stack.AddressableEndpoint.
  1381  func (e *endpoint) SetDeprecated(addr tcpip.Address, deprecated bool) tcpip.Error {
  1382  	e.mu.RLock()
  1383  	defer e.mu.RUnlock()
  1384  	return e.addressableEndpointState.SetDeprecated(addr, deprecated)
  1385  }
  1386  
  1387  // SetLifetimes implements stack.AddressableEndpoint.
  1388  func (e *endpoint) SetLifetimes(addr tcpip.Address, lifetimes stack.AddressLifetimes) tcpip.Error {
  1389  	e.mu.RLock()
  1390  	defer e.mu.RUnlock()
  1391  	return e.addressableEndpointState.SetLifetimes(addr, lifetimes)
  1392  }
  1393  
  1394  // MainAddress implements stack.AddressableEndpoint.
  1395  func (e *endpoint) MainAddress() tcpip.AddressWithPrefix {
  1396  	e.mu.RLock()
  1397  	defer e.mu.RUnlock()
  1398  	return e.addressableEndpointState.MainAddress()
  1399  }
  1400  
  1401  // AcquireAssignedAddress implements stack.AddressableEndpoint.
  1402  func (e *endpoint) AcquireAssignedAddress(localAddr tcpip.Address, allowTemp bool, tempPEB stack.PrimaryEndpointBehavior) stack.AddressEndpoint {
  1403  	e.mu.RLock()
  1404  	defer e.mu.RUnlock()
  1405  
  1406  	loopback := e.nic.IsLoopback()
  1407  	return e.addressableEndpointState.AcquireAssignedAddressOrMatching(localAddr, func(addressEndpoint stack.AddressEndpoint) bool {
  1408  		subnet := addressEndpoint.Subnet()
  1409  		// IPv4 has a notion of a subnet broadcast address and considers the
  1410  		// loopback interface bound to an address's whole subnet (on linux).
  1411  		return subnet.IsBroadcast(localAddr) || (loopback && subnet.Contains(localAddr))
  1412  	}, allowTemp, tempPEB)
  1413  }
  1414  
  1415  // AcquireOutgoingPrimaryAddress implements stack.AddressableEndpoint.
  1416  func (e *endpoint) AcquireOutgoingPrimaryAddress(remoteAddr tcpip.Address, allowExpired bool) stack.AddressEndpoint {
  1417  	e.mu.RLock()
  1418  	defer e.mu.RUnlock()
  1419  	return e.acquireOutgoingPrimaryAddressRLocked(remoteAddr, allowExpired)
  1420  }
  1421  
  1422  // acquireOutgoingPrimaryAddressRLocked is like AcquireOutgoingPrimaryAddress
  1423  // but with locking requirements
  1424  //
  1425  // +checklocksread:e.mu
  1426  func (e *endpoint) acquireOutgoingPrimaryAddressRLocked(remoteAddr tcpip.Address, allowExpired bool) stack.AddressEndpoint {
  1427  	return e.addressableEndpointState.AcquireOutgoingPrimaryAddress(remoteAddr, allowExpired)
  1428  }
  1429  
  1430  // PrimaryAddresses implements stack.AddressableEndpoint.
  1431  func (e *endpoint) PrimaryAddresses() []tcpip.AddressWithPrefix {
  1432  	e.mu.RLock()
  1433  	defer e.mu.RUnlock()
  1434  	return e.addressableEndpointState.PrimaryAddresses()
  1435  }
  1436  
  1437  // PermanentAddresses implements stack.AddressableEndpoint.
  1438  func (e *endpoint) PermanentAddresses() []tcpip.AddressWithPrefix {
  1439  	e.mu.RLock()
  1440  	defer e.mu.RUnlock()
  1441  	return e.addressableEndpointState.PermanentAddresses()
  1442  }
  1443  
  1444  // JoinGroup implements stack.GroupAddressableEndpoint.
  1445  func (e *endpoint) JoinGroup(addr tcpip.Address) tcpip.Error {
  1446  	e.mu.Lock()
  1447  	defer e.mu.Unlock()
  1448  	return e.joinGroupLocked(addr)
  1449  }
  1450  
  1451  // joinGroupLocked is like JoinGroup but with locking requirements.
  1452  //
  1453  // +checklocks:e.mu
  1454  // +checklocksalias:e.igmp.ep.mu=e.mu
  1455  func (e *endpoint) joinGroupLocked(addr tcpip.Address) tcpip.Error {
  1456  	if !header.IsV4MulticastAddress(addr) {
  1457  		return &tcpip.ErrBadAddress{}
  1458  	}
  1459  
  1460  	e.igmp.joinGroup(addr)
  1461  	return nil
  1462  }
  1463  
  1464  // LeaveGroup implements stack.GroupAddressableEndpoint.
  1465  func (e *endpoint) LeaveGroup(addr tcpip.Address) tcpip.Error {
  1466  	e.mu.Lock()
  1467  	defer e.mu.Unlock()
  1468  	return e.leaveGroupLocked(addr)
  1469  }
  1470  
  1471  // leaveGroupLocked is like LeaveGroup but with locking requirements.
  1472  //
  1473  // +checklocks:e.mu
  1474  // +checklocksalias:e.igmp.ep.mu=e.mu
  1475  func (e *endpoint) leaveGroupLocked(addr tcpip.Address) tcpip.Error {
  1476  	return e.igmp.leaveGroup(addr)
  1477  }
  1478  
  1479  // IsInGroup implements stack.GroupAddressableEndpoint.
  1480  func (e *endpoint) IsInGroup(addr tcpip.Address) bool {
  1481  	e.mu.RLock()
  1482  	defer e.mu.RUnlock()
  1483  	return e.igmp.isInGroup(addr) // +checklocksforce: e.mu==e.igmp.ep.mu.
  1484  }
  1485  
  1486  // Stats implements stack.NetworkEndpoint.
  1487  func (e *endpoint) Stats() stack.NetworkEndpointStats {
  1488  	return &e.stats.localStats
  1489  }
  1490  
  1491  var _ stack.NetworkProtocol = (*protocol)(nil)
  1492  var _ stack.MulticastForwardingNetworkProtocol = (*protocol)(nil)
  1493  var _ stack.RejectIPv4WithHandler = (*protocol)(nil)
  1494  var _ fragmentation.TimeoutHandler = (*protocol)(nil)
  1495  
  1496  type protocol struct {
  1497  	stack *stack.Stack
  1498  
  1499  	// mu protects annotated fields below.
  1500  	mu sync.RWMutex
  1501  
  1502  	// eps is keyed by NICID to allow protocol methods to retrieve an endpoint
  1503  	// when handling a packet, by looking at which NIC handled the packet.
  1504  	// +checklocks:mu
  1505  	eps map[tcpip.NICID]*endpoint
  1506  
  1507  	// ICMP types for which the stack's global rate limiting must apply.
  1508  	// +checklocks:mu
  1509  	icmpRateLimitedTypes map[header.ICMPv4Type]struct{}
  1510  
  1511  	// defaultTTL is the current default TTL for the protocol. Only the
  1512  	// uint8 portion of it is meaningful.
  1513  	defaultTTL atomicbitops.Uint32
  1514  
  1515  	ids    []atomicbitops.Uint32
  1516  	hashIV uint32
  1517  
  1518  	fragmentation *fragmentation.Fragmentation
  1519  
  1520  	options Options
  1521  
  1522  	multicastRouteTable multicast.RouteTable
  1523  	// multicastForwardingDisp is the multicast forwarding event dispatcher that
  1524  	// an integrator can provide to receive multicast forwarding events. Note
  1525  	// that multicast packets will only be forwarded if this is non-nil.
  1526  	// +checklocks:mu
  1527  	multicastForwardingDisp stack.MulticastForwardingEventDispatcher
  1528  }
  1529  
  1530  // Number returns the ipv4 protocol number.
  1531  func (p *protocol) Number() tcpip.NetworkProtocolNumber {
  1532  	return ProtocolNumber
  1533  }
  1534  
  1535  // MinimumPacketSize returns the minimum valid ipv4 packet size.
  1536  func (p *protocol) MinimumPacketSize() int {
  1537  	return header.IPv4MinimumSize
  1538  }
  1539  
  1540  // ParseAddresses implements stack.NetworkProtocol.
  1541  func (*protocol) ParseAddresses(v []byte) (src, dst tcpip.Address) {
  1542  	h := header.IPv4(v)
  1543  	return h.SourceAddress(), h.DestinationAddress()
  1544  }
  1545  
  1546  // SetOption implements stack.NetworkProtocol.
  1547  func (p *protocol) SetOption(option tcpip.SettableNetworkProtocolOption) tcpip.Error {
  1548  	switch v := option.(type) {
  1549  	case *tcpip.DefaultTTLOption:
  1550  		p.SetDefaultTTL(uint8(*v))
  1551  		return nil
  1552  	default:
  1553  		return &tcpip.ErrUnknownProtocolOption{}
  1554  	}
  1555  }
  1556  
  1557  // Option implements stack.NetworkProtocol.
  1558  func (p *protocol) Option(option tcpip.GettableNetworkProtocolOption) tcpip.Error {
  1559  	switch v := option.(type) {
  1560  	case *tcpip.DefaultTTLOption:
  1561  		*v = tcpip.DefaultTTLOption(p.DefaultTTL())
  1562  		return nil
  1563  	default:
  1564  		return &tcpip.ErrUnknownProtocolOption{}
  1565  	}
  1566  }
  1567  
  1568  // SetDefaultTTL sets the default TTL for endpoints created with this protocol.
  1569  func (p *protocol) SetDefaultTTL(ttl uint8) {
  1570  	p.defaultTTL.Store(uint32(ttl))
  1571  }
  1572  
  1573  // DefaultTTL returns the default TTL for endpoints created with this protocol.
  1574  func (p *protocol) DefaultTTL() uint8 {
  1575  	return uint8(p.defaultTTL.Load())
  1576  }
  1577  
  1578  // Close implements stack.TransportProtocol.
  1579  func (p *protocol) Close() {
  1580  	p.fragmentation.Release()
  1581  	p.multicastRouteTable.Close()
  1582  }
  1583  
  1584  // Wait implements stack.TransportProtocol.
  1585  func (*protocol) Wait() {}
  1586  
  1587  func (p *protocol) validateUnicastSourceAndMulticastDestination(addresses stack.UnicastSourceAndMulticastDestination) tcpip.Error {
  1588  	if !p.isUnicastAddress(addresses.Source) || header.IsV4LinkLocalUnicastAddress(addresses.Source) {
  1589  		return &tcpip.ErrBadAddress{}
  1590  	}
  1591  
  1592  	if !header.IsV4MulticastAddress(addresses.Destination) || header.IsV4LinkLocalMulticastAddress(addresses.Destination) {
  1593  		return &tcpip.ErrBadAddress{}
  1594  	}
  1595  
  1596  	return nil
  1597  }
  1598  
  1599  func (p *protocol) multicastForwarding() bool {
  1600  	p.mu.RLock()
  1601  	defer p.mu.RUnlock()
  1602  	return p.multicastForwardingDisp != nil
  1603  }
  1604  
  1605  func (p *protocol) newInstalledRoute(route stack.MulticastRoute) (*multicast.InstalledRoute, tcpip.Error) {
  1606  	if len(route.OutgoingInterfaces) == 0 {
  1607  		return nil, &tcpip.ErrMissingRequiredFields{}
  1608  	}
  1609  
  1610  	if !p.stack.HasNIC(route.ExpectedInputInterface) {
  1611  		return nil, &tcpip.ErrUnknownNICID{}
  1612  	}
  1613  
  1614  	for _, outgoingInterface := range route.OutgoingInterfaces {
  1615  		if route.ExpectedInputInterface == outgoingInterface.ID {
  1616  			return nil, &tcpip.ErrMulticastInputCannotBeOutput{}
  1617  		}
  1618  
  1619  		if !p.stack.HasNIC(outgoingInterface.ID) {
  1620  			return nil, &tcpip.ErrUnknownNICID{}
  1621  		}
  1622  	}
  1623  	return p.multicastRouteTable.NewInstalledRoute(route), nil
  1624  }
  1625  
  1626  // AddMulticastRoute implements stack.MulticastForwardingNetworkProtocol.
  1627  func (p *protocol) AddMulticastRoute(addresses stack.UnicastSourceAndMulticastDestination, route stack.MulticastRoute) tcpip.Error {
  1628  	if !p.multicastForwarding() {
  1629  		return &tcpip.ErrNotPermitted{}
  1630  	}
  1631  
  1632  	if err := p.validateUnicastSourceAndMulticastDestination(addresses); err != nil {
  1633  		return err
  1634  	}
  1635  
  1636  	installedRoute, err := p.newInstalledRoute(route)
  1637  	if err != nil {
  1638  		return err
  1639  	}
  1640  
  1641  	pendingPackets := p.multicastRouteTable.AddInstalledRoute(addresses, installedRoute)
  1642  
  1643  	for _, pkt := range pendingPackets {
  1644  		p.forwardPendingMulticastPacket(pkt, installedRoute)
  1645  	}
  1646  	return nil
  1647  }
  1648  
  1649  // RemoveMulticastRoute implements
  1650  // stack.MulticastForwardingNetworkProtocol.RemoveMulticastRoute.
  1651  func (p *protocol) RemoveMulticastRoute(addresses stack.UnicastSourceAndMulticastDestination) tcpip.Error {
  1652  	if err := p.validateUnicastSourceAndMulticastDestination(addresses); err != nil {
  1653  		return err
  1654  	}
  1655  
  1656  	if removed := p.multicastRouteTable.RemoveInstalledRoute(addresses); !removed {
  1657  		return &tcpip.ErrHostUnreachable{}
  1658  	}
  1659  
  1660  	return nil
  1661  }
  1662  
  1663  // EnableMulticastForwarding implements
  1664  // stack.MulticastForwardingNetworkProtocol.EnableMulticastForwarding.
  1665  func (p *protocol) EnableMulticastForwarding(disp stack.MulticastForwardingEventDispatcher) (bool, tcpip.Error) {
  1666  	p.mu.Lock()
  1667  	defer p.mu.Unlock()
  1668  
  1669  	if p.multicastForwardingDisp != nil {
  1670  		return true, nil
  1671  	}
  1672  
  1673  	if disp == nil {
  1674  		return false, &tcpip.ErrInvalidOptionValue{}
  1675  	}
  1676  
  1677  	p.multicastForwardingDisp = disp
  1678  	return false, nil
  1679  }
  1680  
  1681  // DisableMulticastForwarding implements
  1682  // stack.MulticastForwardingNetworkProtocol.DisableMulticastForwarding.
  1683  func (p *protocol) DisableMulticastForwarding() {
  1684  	p.mu.Lock()
  1685  	defer p.mu.Unlock()
  1686  
  1687  	p.multicastForwardingDisp = nil
  1688  	p.multicastRouteTable.RemoveAllInstalledRoutes()
  1689  }
  1690  
  1691  // MulticastRouteLastUsedTime implements
  1692  // stack.MulticastForwardingNetworkProtocol.
  1693  func (p *protocol) MulticastRouteLastUsedTime(addresses stack.UnicastSourceAndMulticastDestination) (tcpip.MonotonicTime, tcpip.Error) {
  1694  	if err := p.validateUnicastSourceAndMulticastDestination(addresses); err != nil {
  1695  		return tcpip.MonotonicTime{}, err
  1696  	}
  1697  
  1698  	timestamp, found := p.multicastRouteTable.GetLastUsedTimestamp(addresses)
  1699  
  1700  	if !found {
  1701  		return tcpip.MonotonicTime{}, &tcpip.ErrHostUnreachable{}
  1702  	}
  1703  
  1704  	return timestamp, nil
  1705  }
  1706  
  1707  func (p *protocol) forwardPendingMulticastPacket(pkt stack.PacketBufferPtr, installedRoute *multicast.InstalledRoute) {
  1708  	defer pkt.DecRef()
  1709  
  1710  	// Attempt to forward the packet using the endpoint that it originally
  1711  	// arrived on. This ensures that the packet is only forwarded if it
  1712  	// matches the route's expected input interface (see 5a of RFC 1812 section
  1713  	// 5.2.1.3).
  1714  	ep, ok := p.getEndpointForNIC(pkt.NICID)
  1715  
  1716  	if !ok {
  1717  		// The endpoint that the packet arrived on no longer exists. Silently
  1718  		// drop the pkt.
  1719  		return
  1720  	}
  1721  
  1722  	if !ep.MulticastForwarding() {
  1723  		return
  1724  	}
  1725  
  1726  	ep.handleForwardingError(ep.forwardValidatedMulticastPacket(pkt, installedRoute))
  1727  }
  1728  
  1729  func (p *protocol) isUnicastAddress(addr tcpip.Address) bool {
  1730  	if addr.BitLen() != header.IPv4AddressSizeBits {
  1731  		return false
  1732  	}
  1733  
  1734  	if addr == header.IPv4Any || addr == header.IPv4Broadcast {
  1735  		return false
  1736  	}
  1737  
  1738  	if p.isSubnetLocalBroadcastAddress(addr) {
  1739  		return false
  1740  	}
  1741  	return !header.IsV4MulticastAddress(addr)
  1742  }
  1743  
  1744  func (p *protocol) isSubnetLocalBroadcastAddress(addr tcpip.Address) bool {
  1745  	p.mu.RLock()
  1746  	defer p.mu.RUnlock()
  1747  
  1748  	for _, e := range p.eps {
  1749  		if addressEndpoint := e.AcquireAssignedAddress(addr, false /* createTemp */, stack.NeverPrimaryEndpoint); addressEndpoint != nil {
  1750  			subnet := addressEndpoint.Subnet()
  1751  			addressEndpoint.DecRef()
  1752  			if subnet.IsBroadcast(addr) {
  1753  				return true
  1754  			}
  1755  		}
  1756  	}
  1757  	return false
  1758  }
  1759  
  1760  // parseAndValidate parses the packet (including its transport layer header) and
  1761  // returns the parsed IP header.
  1762  //
  1763  // Returns true if the IP header was successfully parsed.
  1764  func (p *protocol) parseAndValidate(pkt stack.PacketBufferPtr) (*buffer.View, bool) {
  1765  	transProtoNum, hasTransportHdr, ok := p.Parse(pkt)
  1766  	if !ok {
  1767  		return nil, false
  1768  	}
  1769  
  1770  	h := header.IPv4(pkt.NetworkHeader().Slice())
  1771  	// Do not include the link header's size when calculating the size of the IP
  1772  	// packet.
  1773  	if !h.IsValid(pkt.Size() - len(pkt.LinkHeader().Slice())) {
  1774  		return nil, false
  1775  	}
  1776  
  1777  	if !pkt.RXChecksumValidated && !h.IsChecksumValid() {
  1778  		return nil, false
  1779  	}
  1780  
  1781  	if hasTransportHdr {
  1782  		p.parseTransport(pkt, transProtoNum)
  1783  	}
  1784  
  1785  	return pkt.NetworkHeader().View(), true
  1786  }
  1787  
  1788  func (p *protocol) parseTransport(pkt stack.PacketBufferPtr, transProtoNum tcpip.TransportProtocolNumber) {
  1789  	if transProtoNum == header.ICMPv4ProtocolNumber {
  1790  		// The transport layer will handle transport layer parsing errors.
  1791  		_ = parse.ICMPv4(pkt)
  1792  		return
  1793  	}
  1794  
  1795  	switch err := p.stack.ParsePacketBufferTransport(transProtoNum, pkt); err {
  1796  	case stack.ParsedOK:
  1797  	case stack.UnknownTransportProtocol, stack.TransportLayerParseError:
  1798  		// The transport layer will handle unknown protocols and transport layer
  1799  		// parsing errors.
  1800  	default:
  1801  		panic(fmt.Sprintf("unexpected error parsing transport header = %d", err))
  1802  	}
  1803  }
  1804  
  1805  // Parse implements stack.NetworkProtocol.
  1806  func (*protocol) Parse(pkt stack.PacketBufferPtr) (proto tcpip.TransportProtocolNumber, hasTransportHdr bool, ok bool) {
  1807  	if ok := parse.IPv4(pkt); !ok {
  1808  		return 0, false, false
  1809  	}
  1810  
  1811  	ipHdr := header.IPv4(pkt.NetworkHeader().Slice())
  1812  	return ipHdr.TransportProtocol(), !ipHdr.More() && ipHdr.FragmentOffset() == 0, true
  1813  }
  1814  
  1815  // allowICMPReply reports whether an ICMP reply with provided type and code may
  1816  // be sent following the rate mask options and global ICMP rate limiter.
  1817  func (p *protocol) allowICMPReply(icmpType header.ICMPv4Type, code header.ICMPv4Code) bool {
  1818  	// Mimic linux and never rate limit for PMTU discovery.
  1819  	// https://github.com/torvalds/linux/blob/9e9fb7655ed585da8f468e29221f0ba194a5f613/net/ipv4/icmp.c#L288
  1820  	if icmpType == header.ICMPv4DstUnreachable && code == header.ICMPv4FragmentationNeeded {
  1821  		return true
  1822  	}
  1823  	p.mu.RLock()
  1824  	defer p.mu.RUnlock()
  1825  
  1826  	if _, ok := p.icmpRateLimitedTypes[icmpType]; ok {
  1827  		return p.stack.AllowICMPMessage()
  1828  	}
  1829  	return true
  1830  }
  1831  
  1832  // SendRejectionError implements stack.RejectIPv4WithHandler.
  1833  func (p *protocol) SendRejectionError(pkt stack.PacketBufferPtr, rejectWith stack.RejectIPv4WithICMPType, inputHook bool) tcpip.Error {
  1834  	switch rejectWith {
  1835  	case stack.RejectIPv4WithICMPNetUnreachable:
  1836  		return p.returnError(&icmpReasonNetworkUnreachable{}, pkt, inputHook)
  1837  	case stack.RejectIPv4WithICMPHostUnreachable:
  1838  		return p.returnError(&icmpReasonHostUnreachable{}, pkt, inputHook)
  1839  	case stack.RejectIPv4WithICMPPortUnreachable:
  1840  		return p.returnError(&icmpReasonPortUnreachable{}, pkt, inputHook)
  1841  	case stack.RejectIPv4WithICMPNetProhibited:
  1842  		return p.returnError(&icmpReasonNetworkProhibited{}, pkt, inputHook)
  1843  	case stack.RejectIPv4WithICMPHostProhibited:
  1844  		return p.returnError(&icmpReasonHostProhibited{}, pkt, inputHook)
  1845  	case stack.RejectIPv4WithICMPAdminProhibited:
  1846  		return p.returnError(&icmpReasonAdministrativelyProhibited{}, pkt, inputHook)
  1847  	default:
  1848  		panic(fmt.Sprintf("unhandled %[1]T = %[1]d", rejectWith))
  1849  	}
  1850  }
  1851  
  1852  // calculateNetworkMTU calculates the network-layer payload MTU based on the
  1853  // link-layer payload mtu.
  1854  func calculateNetworkMTU(linkMTU, networkHeaderSize uint32) (uint32, tcpip.Error) {
  1855  	if linkMTU < header.IPv4MinimumMTU {
  1856  		return 0, &tcpip.ErrInvalidEndpointState{}
  1857  	}
  1858  
  1859  	// As per RFC 791 section 3.1, an IPv4 header cannot exceed 60 bytes in
  1860  	// length:
  1861  	//   The maximal internet header is 60 octets, and a typical internet header
  1862  	//   is 20 octets, allowing a margin for headers of higher level protocols.
  1863  	if networkHeaderSize > header.IPv4MaximumHeaderSize {
  1864  		return 0, &tcpip.ErrMalformedHeader{}
  1865  	}
  1866  
  1867  	networkMTU := linkMTU
  1868  	if networkMTU > MaxTotalSize {
  1869  		networkMTU = MaxTotalSize
  1870  	}
  1871  
  1872  	return networkMTU - networkHeaderSize, nil
  1873  }
  1874  
  1875  func packetMustBeFragmented(pkt stack.PacketBufferPtr, networkMTU uint32) bool {
  1876  	payload := len(pkt.TransportHeader().Slice()) + pkt.Data().Size()
  1877  	return pkt.GSOOptions.Type == stack.GSONone && uint32(payload) > networkMTU
  1878  }
  1879  
  1880  // addressToUint32 translates an IPv4 address into its little endian uint32
  1881  // representation.
  1882  //
  1883  // This function does the same thing as binary.LittleEndian.Uint32 but operates
  1884  // on a tcpip.Address (a string) without the need to convert it to a byte slice,
  1885  // which would cause an allocation.
  1886  func addressToUint32(addr tcpip.Address) uint32 {
  1887  	addrBytes := addr.As4()
  1888  	_ = addrBytes[3] // bounds check hint to compiler
  1889  	return uint32(addrBytes[0]) | uint32(addrBytes[1])<<8 | uint32(addrBytes[2])<<16 | uint32(addrBytes[3])<<24
  1890  }
  1891  
  1892  // hashRoute calculates a hash value for the given source/destination pair using
  1893  // the addresses, transport protocol number and a 32-bit number to generate the
  1894  // hash.
  1895  func hashRoute(srcAddr, dstAddr tcpip.Address, protocol tcpip.TransportProtocolNumber, hashIV uint32) uint32 {
  1896  	a := addressToUint32(srcAddr)
  1897  	b := addressToUint32(dstAddr)
  1898  	return hash.Hash3Words(a, b, uint32(protocol), hashIV)
  1899  }
  1900  
  1901  // Options holds options to configure a new protocol.
  1902  type Options struct {
  1903  	// IGMP holds options for IGMP.
  1904  	IGMP IGMPOptions
  1905  
  1906  	// AllowExternalLoopbackTraffic indicates that inbound loopback packets (i.e.
  1907  	// martian loopback packets) should be accepted.
  1908  	AllowExternalLoopbackTraffic bool
  1909  }
  1910  
  1911  // NewProtocolWithOptions returns an IPv4 network protocol.
  1912  func NewProtocolWithOptions(opts Options) stack.NetworkProtocolFactory {
  1913  	ids := make([]atomicbitops.Uint32, buckets)
  1914  
  1915  	// Randomly initialize hashIV and the ids.
  1916  	r := hash.RandN32(1 + buckets)
  1917  	for i := range ids {
  1918  		ids[i] = atomicbitops.FromUint32(r[i])
  1919  	}
  1920  	hashIV := r[buckets]
  1921  
  1922  	return func(s *stack.Stack) stack.NetworkProtocol {
  1923  		p := &protocol{
  1924  			stack:      s,
  1925  			ids:        ids,
  1926  			hashIV:     hashIV,
  1927  			defaultTTL: atomicbitops.FromUint32(DefaultTTL),
  1928  			options:    opts,
  1929  		}
  1930  		p.fragmentation = fragmentation.NewFragmentation(fragmentblockSize, fragmentation.HighFragThreshold, fragmentation.LowFragThreshold, ReassembleTimeout, s.Clock(), p)
  1931  		p.eps = make(map[tcpip.NICID]*endpoint)
  1932  		// Set ICMP rate limiting to Linux defaults.
  1933  		// See https://man7.org/linux/man-pages/man7/icmp.7.html.
  1934  		p.icmpRateLimitedTypes = map[header.ICMPv4Type]struct{}{
  1935  			header.ICMPv4DstUnreachable: {},
  1936  			header.ICMPv4SrcQuench:      {},
  1937  			header.ICMPv4TimeExceeded:   {},
  1938  			header.ICMPv4ParamProblem:   {},
  1939  		}
  1940  		if err := p.multicastRouteTable.Init(multicast.DefaultConfig(s.Clock())); err != nil {
  1941  			panic(fmt.Sprintf("p.multicastRouteTable.Init(_): %s", err))
  1942  		}
  1943  		return p
  1944  	}
  1945  }
  1946  
  1947  // NewProtocol is equivalent to NewProtocolWithOptions with an empty Options.
  1948  func NewProtocol(s *stack.Stack) stack.NetworkProtocol {
  1949  	return NewProtocolWithOptions(Options{})(s)
  1950  }
  1951  
  1952  func buildNextFragment(pf *fragmentation.PacketFragmenter, originalIPHeader header.IPv4) (stack.PacketBufferPtr, bool) {
  1953  	fragPkt, offset, copied, more := pf.BuildNextFragment()
  1954  	fragPkt.NetworkProtocolNumber = ProtocolNumber
  1955  
  1956  	originalIPHeaderLength := len(originalIPHeader)
  1957  	nextFragIPHeader := header.IPv4(fragPkt.NetworkHeader().Push(originalIPHeaderLength))
  1958  	fragPkt.NetworkProtocolNumber = ProtocolNumber
  1959  
  1960  	if copied := copy(nextFragIPHeader, originalIPHeader); copied != len(originalIPHeader) {
  1961  		panic(fmt.Sprintf("wrong number of bytes copied into fragmentIPHeaders: got = %d, want = %d", copied, originalIPHeaderLength))
  1962  	}
  1963  
  1964  	flags := originalIPHeader.Flags()
  1965  	if more {
  1966  		flags |= header.IPv4FlagMoreFragments
  1967  	}
  1968  	nextFragIPHeader.SetFlagsFragmentOffset(flags, uint16(offset))
  1969  	nextFragIPHeader.SetTotalLength(uint16(nextFragIPHeader.HeaderLength()) + uint16(copied))
  1970  	nextFragIPHeader.SetChecksum(0)
  1971  	nextFragIPHeader.SetChecksum(^nextFragIPHeader.CalculateChecksum())
  1972  
  1973  	return fragPkt, more
  1974  }
  1975  
  1976  // optionAction describes possible actions that may be taken on an option
  1977  // while processing it.
  1978  type optionAction uint8
  1979  
  1980  const (
  1981  	// optionRemove says that the option should not be in the output option set.
  1982  	optionRemove optionAction = iota
  1983  
  1984  	// optionProcess says that the option should be fully processed.
  1985  	optionProcess
  1986  
  1987  	// optionVerify says the option should be checked and passed unchanged.
  1988  	optionVerify
  1989  
  1990  	// optionPass says to pass the output set without checking.
  1991  	optionPass
  1992  )
  1993  
  1994  // optionActions list what to do for each option in a given scenario.
  1995  type optionActions struct {
  1996  	// timestamp controls what to do with a Timestamp option.
  1997  	timestamp optionAction
  1998  
  1999  	// recordRoute controls what to do with a Record Route option.
  2000  	recordRoute optionAction
  2001  
  2002  	// routerAlert controls what to do with a Router Alert option.
  2003  	routerAlert optionAction
  2004  
  2005  	// unknown controls what to do with an unknown option.
  2006  	unknown optionAction
  2007  }
  2008  
  2009  // optionsUsage specifies the ways options may be operated upon for a given
  2010  // scenario during packet processing.
  2011  type optionsUsage interface {
  2012  	actions() optionActions
  2013  }
  2014  
  2015  // optionUsageVerify implements optionsUsage for when we just want to check
  2016  // fragments. Don't change anything, just check and reject if bad. No
  2017  // replacement options are generated.
  2018  type optionUsageVerify struct{}
  2019  
  2020  // actions implements optionsUsage.
  2021  func (*optionUsageVerify) actions() optionActions {
  2022  	return optionActions{
  2023  		timestamp:   optionVerify,
  2024  		recordRoute: optionVerify,
  2025  		routerAlert: optionVerify,
  2026  		unknown:     optionRemove,
  2027  	}
  2028  }
  2029  
  2030  // optionUsageReceive implements optionsUsage for packets we will pass
  2031  // to the transport layer (with the exception of Echo requests).
  2032  type optionUsageReceive struct{}
  2033  
  2034  // actions implements optionsUsage.
  2035  func (*optionUsageReceive) actions() optionActions {
  2036  	return optionActions{
  2037  		timestamp:   optionProcess,
  2038  		recordRoute: optionProcess,
  2039  		routerAlert: optionVerify,
  2040  		unknown:     optionPass,
  2041  	}
  2042  }
  2043  
  2044  // optionUsageForward implements optionsUsage for packets about to be forwarded.
  2045  // All options are passed on regardless of whether we recognise them, however
  2046  // we do process the Timestamp and Record Route options.
  2047  type optionUsageForward struct{}
  2048  
  2049  // actions implements optionsUsage.
  2050  func (*optionUsageForward) actions() optionActions {
  2051  	return optionActions{
  2052  		timestamp:   optionProcess,
  2053  		recordRoute: optionProcess,
  2054  		routerAlert: optionVerify,
  2055  		unknown:     optionPass,
  2056  	}
  2057  }
  2058  
  2059  // optionUsageEcho implements optionsUsage for echo packet processing.
  2060  // Only Timestamp and RecordRoute are processed and sent back.
  2061  type optionUsageEcho struct{}
  2062  
  2063  // actions implements optionsUsage.
  2064  func (*optionUsageEcho) actions() optionActions {
  2065  	return optionActions{
  2066  		timestamp:   optionProcess,
  2067  		recordRoute: optionProcess,
  2068  		routerAlert: optionVerify,
  2069  		unknown:     optionRemove,
  2070  	}
  2071  }
  2072  
  2073  // handleTimestamp does any required processing on a Timestamp option
  2074  // in place.
  2075  func handleTimestamp(tsOpt header.IPv4OptionTimestamp, localAddress tcpip.Address, clock tcpip.Clock, usage optionsUsage) *header.IPv4OptParameterProblem {
  2076  	flags := tsOpt.Flags()
  2077  	var entrySize uint8
  2078  	switch flags {
  2079  	case header.IPv4OptionTimestampOnlyFlag:
  2080  		entrySize = header.IPv4OptionTimestampSize
  2081  	case
  2082  		header.IPv4OptionTimestampWithIPFlag,
  2083  		header.IPv4OptionTimestampWithPredefinedIPFlag:
  2084  		entrySize = header.IPv4OptionTimestampWithAddrSize
  2085  	default:
  2086  		return &header.IPv4OptParameterProblem{
  2087  			Pointer:  header.IPv4OptTSOFLWAndFLGOffset,
  2088  			NeedICMP: true,
  2089  		}
  2090  	}
  2091  
  2092  	pointer := tsOpt.Pointer()
  2093  	// RFC 791 page 22 states: "The smallest legal value is 5."
  2094  	// Since the pointer is 1 based, and the header is 4 bytes long the
  2095  	// pointer must point beyond the header therefore 4 or less is bad.
  2096  	if pointer <= header.IPv4OptionTimestampHdrLength {
  2097  		return &header.IPv4OptParameterProblem{
  2098  			Pointer:  header.IPv4OptTSPointerOffset,
  2099  			NeedICMP: true,
  2100  		}
  2101  	}
  2102  	// To simplify processing below, base further work on the array of timestamps
  2103  	// beyond the header, rather than on the whole option. Also to aid
  2104  	// calculations set 'nextSlot' to be 0 based as in the packet it is 1 based.
  2105  	nextSlot := pointer - (header.IPv4OptionTimestampHdrLength + 1)
  2106  	optLen := tsOpt.Size()
  2107  	dataLength := optLen - header.IPv4OptionTimestampHdrLength
  2108  
  2109  	// In the section below, we verify the pointer, length and overflow counter
  2110  	// fields of the option. The distinction is in which byte you return as being
  2111  	// in error in the ICMP packet. Offsets 1 (length), 2 pointer)
  2112  	// or 3 (overflowed counter).
  2113  	//
  2114  	// The following RFC sections cover this section:
  2115  	//
  2116  	// RFC 791 (page 22):
  2117  	//    If there is some room but not enough room for a full timestamp
  2118  	//    to be inserted, or the overflow count itself overflows, the
  2119  	//    original datagram is considered to be in error and is discarded.
  2120  	//    In either case an ICMP parameter problem message may be sent to
  2121  	//    the source host [3].
  2122  	//
  2123  	// You can get this situation in two ways. Firstly if the data area is not
  2124  	// a multiple of the entry size or secondly, if the pointer is not at a
  2125  	// multiple of the entry size. The wording of the RFC suggests that
  2126  	// this is not an error until you actually run out of space.
  2127  	if pointer > optLen {
  2128  		// RFC 791 (page 22) says we should switch to using the overflow count.
  2129  		//    If the timestamp data area is already full (the pointer exceeds
  2130  		//    the length) the datagram is forwarded without inserting the
  2131  		//    timestamp, but the overflow count is incremented by one.
  2132  		if flags == header.IPv4OptionTimestampWithPredefinedIPFlag {
  2133  			// By definition we have nothing to do.
  2134  			return nil
  2135  		}
  2136  
  2137  		if tsOpt.IncOverflow() != 0 {
  2138  			return nil
  2139  		}
  2140  		// The overflow count is also full.
  2141  		return &header.IPv4OptParameterProblem{
  2142  			Pointer:  header.IPv4OptTSOFLWAndFLGOffset,
  2143  			NeedICMP: true,
  2144  		}
  2145  	}
  2146  	if nextSlot+entrySize > dataLength {
  2147  		// The data area isn't full but there isn't room for a new entry.
  2148  		// Either Length or Pointer could be bad.
  2149  		if false {
  2150  			// We must select Pointer for Linux compatibility, even if
  2151  			// only the length is bad.
  2152  			// The Linux code is at (in October 2020)
  2153  			// https://github.com/torvalds/linux/blob/bbf5c979011a099af5dc76498918ed7df445635b/net/ipv4/ip_options.c#L367-L370
  2154  			//		if (optptr[2]+3 > optlen) {
  2155  			//			pp_ptr = optptr + 2;
  2156  			//			goto error;
  2157  			//		}
  2158  			// which doesn't distinguish between which of optptr[2] or optlen
  2159  			// is wrong, but just arbitrarily decides on optptr+2.
  2160  			if dataLength%entrySize != 0 {
  2161  				// The Data section size should be a multiple of the expected
  2162  				// timestamp entry size.
  2163  				return &header.IPv4OptParameterProblem{
  2164  					Pointer:  header.IPv4OptionLengthOffset,
  2165  					NeedICMP: false,
  2166  				}
  2167  			}
  2168  			// If the size is OK, the pointer must be corrupted.
  2169  		}
  2170  		return &header.IPv4OptParameterProblem{
  2171  			Pointer:  header.IPv4OptTSPointerOffset,
  2172  			NeedICMP: true,
  2173  		}
  2174  	}
  2175  
  2176  	if usage.actions().timestamp == optionProcess {
  2177  		tsOpt.UpdateTimestamp(localAddress, clock)
  2178  	}
  2179  	return nil
  2180  }
  2181  
  2182  // handleRecordRoute checks and processes a Record route option. It is much
  2183  // like the timestamp type 1 option, but without timestamps. The passed in
  2184  // address is stored in the option in the correct spot if possible.
  2185  func handleRecordRoute(rrOpt header.IPv4OptionRecordRoute, localAddress tcpip.Address, usage optionsUsage) *header.IPv4OptParameterProblem {
  2186  	optlen := rrOpt.Size()
  2187  
  2188  	if optlen < header.IPv4AddressSize+header.IPv4OptionRecordRouteHdrLength {
  2189  		return &header.IPv4OptParameterProblem{
  2190  			Pointer:  header.IPv4OptionLengthOffset,
  2191  			NeedICMP: true,
  2192  		}
  2193  	}
  2194  
  2195  	pointer := rrOpt.Pointer()
  2196  	// RFC 791 page 20 states:
  2197  	//      The pointer is relative to this option, and the
  2198  	//      smallest legal value for the pointer is 4.
  2199  	// Since the pointer is 1 based, and the header is 3 bytes long the
  2200  	// pointer must point beyond the header therefore 3 or less is bad.
  2201  	if pointer <= header.IPv4OptionRecordRouteHdrLength {
  2202  		return &header.IPv4OptParameterProblem{
  2203  			Pointer:  header.IPv4OptRRPointerOffset,
  2204  			NeedICMP: true,
  2205  		}
  2206  	}
  2207  
  2208  	// RFC 791 page 21 says
  2209  	//       If the route data area is already full (the pointer exceeds the
  2210  	//       length) the datagram is forwarded without inserting the address
  2211  	//       into the recorded route. If there is some room but not enough
  2212  	//       room for a full address to be inserted, the original datagram is
  2213  	//       considered to be in error and is discarded.  In either case an
  2214  	//       ICMP parameter problem message may be sent to the source
  2215  	//       host.
  2216  	// The use of the words "In either case" suggests that a 'full' RR option
  2217  	// could generate an ICMP at every hop after it fills up. We chose to not
  2218  	// do this (as do most implementations). It is probable that the inclusion
  2219  	// of these words is a copy/paste error from the timestamp option where
  2220  	// there are two failure reasons given.
  2221  	if pointer > optlen {
  2222  		return nil
  2223  	}
  2224  
  2225  	// The data area isn't full but there isn't room for a new entry.
  2226  	// Either Length or Pointer could be bad. We must select Pointer for Linux
  2227  	// compatibility, even if only the length is bad. NB. pointer is 1 based.
  2228  	if pointer+header.IPv4AddressSize > optlen+1 {
  2229  		if false {
  2230  			// This is what we would do if we were not being Linux compatible.
  2231  			// Check for bad pointer or length value. Must be a multiple of 4 after
  2232  			// accounting for the 3 byte header and not within that header.
  2233  			// RFC 791, page 20 says:
  2234  			//       The pointer is relative to this option, and the
  2235  			//       smallest legal value for the pointer is 4.
  2236  			//
  2237  			//       A recorded route is composed of a series of internet addresses.
  2238  			//       Each internet address is 32 bits or 4 octets.
  2239  			// Linux skips this test so we must too.  See Linux code at:
  2240  			// https://github.com/torvalds/linux/blob/bbf5c979011a099af5dc76498918ed7df445635b/net/ipv4/ip_options.c#L338-L341
  2241  			//    if (optptr[2]+3 > optlen) {
  2242  			//      pp_ptr = optptr + 2;
  2243  			//      goto error;
  2244  			//    }
  2245  			if (optlen-header.IPv4OptionRecordRouteHdrLength)%header.IPv4AddressSize != 0 {
  2246  				// Length is bad, not on integral number of slots.
  2247  				return &header.IPv4OptParameterProblem{
  2248  					Pointer:  header.IPv4OptionLengthOffset,
  2249  					NeedICMP: true,
  2250  				}
  2251  			}
  2252  			// If not length, the fault must be with the pointer.
  2253  		}
  2254  		return &header.IPv4OptParameterProblem{
  2255  			Pointer:  header.IPv4OptRRPointerOffset,
  2256  			NeedICMP: true,
  2257  		}
  2258  	}
  2259  	if usage.actions().recordRoute == optionVerify {
  2260  		return nil
  2261  	}
  2262  	rrOpt.StoreAddress(localAddress)
  2263  	return nil
  2264  }
  2265  
  2266  // handleRouterAlert performs sanity checks on a Router Alert option.
  2267  func handleRouterAlert(raOpt header.IPv4OptionRouterAlert) *header.IPv4OptParameterProblem {
  2268  	// Only the zero value is acceptable, as per RFC 2113, section 2.1:
  2269  	//   Value:  A two octet code with the following values:
  2270  	//     0 - Router shall examine packet
  2271  	//     1-65535 - Reserved
  2272  	if raOpt.Value() != header.IPv4OptionRouterAlertValue {
  2273  		return &header.IPv4OptParameterProblem{
  2274  			Pointer:  header.IPv4OptionRouterAlertValueOffset,
  2275  			NeedICMP: true,
  2276  		}
  2277  	}
  2278  	return nil
  2279  }
  2280  
  2281  type optionTracker struct {
  2282  	timestamp   bool
  2283  	recordRoute bool
  2284  	routerAlert bool
  2285  }
  2286  
  2287  // processIPOptions parses the IPv4 options and produces a new set of options
  2288  // suitable for use in the next step of packet processing as informed by usage.
  2289  // The original will not be touched.
  2290  //
  2291  // If there were no errors during parsing, the new set of options is returned as
  2292  // a new buffer.
  2293  func (e *endpoint) processIPOptions(pkt stack.PacketBufferPtr, opts header.IPv4Options, usage optionsUsage) (header.IPv4Options, optionTracker, *header.IPv4OptParameterProblem) {
  2294  	stats := e.stats.ip
  2295  	optIter := opts.MakeIterator()
  2296  
  2297  	// Except NOP, each option must only appear at most once (RFC 791 section 3.1,
  2298  	// at the definition of every type).
  2299  	// Keep track of each option we find to enable duplicate option detection.
  2300  	var seenOptions [math.MaxUint8 + 1]bool
  2301  
  2302  	// TODO(https://gvisor.dev/issue/4586): This will need tweaking when we start
  2303  	// really forwarding packets as we may need to get two addresses, for rx and
  2304  	// tx interfaces. We will also have to take usage into account.
  2305  	localAddress := e.MainAddress().Address
  2306  	if localAddress.BitLen() == 0 {
  2307  		h := header.IPv4(pkt.NetworkHeader().Slice())
  2308  		dstAddr := h.DestinationAddress()
  2309  		if pkt.NetworkPacketInfo.LocalAddressBroadcast || header.IsV4MulticastAddress(dstAddr) {
  2310  			return nil, optionTracker{}, &header.IPv4OptParameterProblem{
  2311  				NeedICMP: false,
  2312  			}
  2313  		}
  2314  		localAddress = dstAddr
  2315  	}
  2316  
  2317  	var optionsProcessed optionTracker
  2318  	for {
  2319  		option, done, optProblem := optIter.Next()
  2320  		if done || optProblem != nil {
  2321  			return optIter.Finalize(), optionsProcessed, optProblem
  2322  		}
  2323  		optType := option.Type()
  2324  		if optType == header.IPv4OptionNOPType {
  2325  			optIter.PushNOPOrEnd(optType)
  2326  			continue
  2327  		}
  2328  		if optType == header.IPv4OptionListEndType {
  2329  			optIter.PushNOPOrEnd(optType)
  2330  			return optIter.Finalize(), optionsProcessed, nil
  2331  		}
  2332  
  2333  		// check for repeating options (multiple NOPs are OK)
  2334  		if seenOptions[optType] {
  2335  			return nil, optionTracker{}, &header.IPv4OptParameterProblem{
  2336  				Pointer:  optIter.ErrCursor,
  2337  				NeedICMP: true,
  2338  			}
  2339  		}
  2340  		seenOptions[optType] = true
  2341  
  2342  		optLen, optProblem := func() (int, *header.IPv4OptParameterProblem) {
  2343  			switch option := option.(type) {
  2344  			case *header.IPv4OptionTimestamp:
  2345  				stats.OptionTimestampReceived.Increment()
  2346  				optionsProcessed.timestamp = true
  2347  				if usage.actions().timestamp != optionRemove {
  2348  					clock := e.protocol.stack.Clock()
  2349  					newBuffer := optIter.InitReplacement(option)
  2350  					optProblem := handleTimestamp(header.IPv4OptionTimestamp(newBuffer), localAddress, clock, usage)
  2351  					return len(newBuffer), optProblem
  2352  				}
  2353  
  2354  			case *header.IPv4OptionRecordRoute:
  2355  				stats.OptionRecordRouteReceived.Increment()
  2356  				optionsProcessed.recordRoute = true
  2357  				if usage.actions().recordRoute != optionRemove {
  2358  					newBuffer := optIter.InitReplacement(option)
  2359  					optProblem := handleRecordRoute(header.IPv4OptionRecordRoute(newBuffer), localAddress, usage)
  2360  					return len(newBuffer), optProblem
  2361  				}
  2362  
  2363  			case *header.IPv4OptionRouterAlert:
  2364  				stats.OptionRouterAlertReceived.Increment()
  2365  				optionsProcessed.routerAlert = true
  2366  				if usage.actions().routerAlert != optionRemove {
  2367  					newBuffer := optIter.InitReplacement(option)
  2368  					optProblem := handleRouterAlert(header.IPv4OptionRouterAlert(newBuffer))
  2369  					return len(newBuffer), optProblem
  2370  				}
  2371  
  2372  			default:
  2373  				stats.OptionUnknownReceived.Increment()
  2374  				if usage.actions().unknown == optionPass {
  2375  					return len(optIter.InitReplacement(option)), nil
  2376  				}
  2377  			}
  2378  			return 0, nil
  2379  		}()
  2380  
  2381  		if optProblem != nil {
  2382  			optProblem.Pointer += optIter.ErrCursor
  2383  			return nil, optionTracker{}, optProblem
  2384  		}
  2385  		optIter.ConsumeBuffer(optLen)
  2386  	}
  2387  }