github.com/MerlinKodo/gvisor@v0.0.0-20231110090155-957f62ecf90e/pkg/tcpip/tcpip.go (about)

     1  // Copyright 2018 The gVisor Authors.
     2  //
     3  // Licensed under the Apache License, Version 2.0 (the "License");
     4  // you may not use this file except in compliance with the License.
     5  // You may obtain a copy of the License at
     6  //
     7  //     http://www.apache.org/licenses/LICENSE-2.0
     8  //
     9  // Unless required by applicable law or agreed to in writing, software
    10  // distributed under the License is distributed on an "AS IS" BASIS,
    11  // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    12  // See the License for the specific language governing permissions and
    13  // limitations under the License.
    14  
    15  // Package tcpip provides the interfaces and related types that users of the
    16  // tcpip stack will use in order to create endpoints used to send and receive
    17  // data over the network stack.
    18  //
    19  // The starting point is the creation and configuration of a stack. A stack can
    20  // be created by calling the New() function of the tcpip/stack/stack package;
    21  // configuring a stack involves creating NICs (via calls to Stack.CreateNIC()),
    22  // adding network addresses (via calls to Stack.AddProtocolAddress()), and
    23  // setting a route table (via a call to Stack.SetRouteTable()).
    24  //
    25  // Once a stack is configured, endpoints can be created by calling
    26  // Stack.NewEndpoint(). Such endpoints can be used to send/receive data, connect
    27  // to peers, listen for connections, accept connections, etc., depending on the
    28  // transport protocol selected.
    29  package tcpip
    30  
    31  import (
    32  	"bytes"
    33  	"errors"
    34  	"fmt"
    35  	"io"
    36  	"math"
    37  	"math/bits"
    38  	"reflect"
    39  	"strconv"
    40  	"strings"
    41  	"time"
    42  	"unsafe"
    43  
    44  	"github.com/MerlinKodo/gvisor/pkg/atomicbitops"
    45  	"github.com/MerlinKodo/gvisor/pkg/sync"
    46  	"github.com/MerlinKodo/gvisor/pkg/waiter"
    47  )
    48  
    49  // Using the header package here would cause an import cycle.
    50  const (
    51  	ipv4AddressSize    = 4
    52  	ipv4ProtocolNumber = 0x0800
    53  	ipv6AddressSize    = 16
    54  	ipv6ProtocolNumber = 0x86dd
    55  )
    56  
    57  // Errors related to Subnet
    58  var (
    59  	errSubnetLengthMismatch = errors.New("subnet length of address and mask differ")
    60  	errSubnetAddressMasked  = errors.New("subnet address has bits set outside the mask")
    61  )
    62  
    63  // ErrSaveRejection indicates a failed save due to unsupported networking state.
    64  // This type of errors is only used for save logic.
    65  type ErrSaveRejection struct {
    66  	Err error
    67  }
    68  
    69  // Error returns a sensible description of the save rejection error.
    70  func (e *ErrSaveRejection) Error() string {
    71  	return "save rejected due to unsupported networking state: " + e.Err.Error()
    72  }
    73  
    74  // MonotonicTime is a monotonic clock reading.
    75  //
    76  // +stateify savable
    77  type MonotonicTime struct {
    78  	nanoseconds int64
    79  }
    80  
    81  // String implements Stringer.
    82  func (mt MonotonicTime) String() string {
    83  	return strconv.FormatInt(mt.nanoseconds, 10)
    84  }
    85  
    86  // MonotonicTimeInfinite returns the monotonic timestamp as far away in the
    87  // future as possible.
    88  func MonotonicTimeInfinite() MonotonicTime {
    89  	return MonotonicTime{nanoseconds: math.MaxInt64}
    90  }
    91  
    92  // Before reports whether the monotonic clock reading mt is before u.
    93  func (mt MonotonicTime) Before(u MonotonicTime) bool {
    94  	return mt.nanoseconds < u.nanoseconds
    95  }
    96  
    97  // After reports whether the monotonic clock reading mt is after u.
    98  func (mt MonotonicTime) After(u MonotonicTime) bool {
    99  	return mt.nanoseconds > u.nanoseconds
   100  }
   101  
   102  // Add returns the monotonic clock reading mt+d.
   103  func (mt MonotonicTime) Add(d time.Duration) MonotonicTime {
   104  	return MonotonicTime{
   105  		nanoseconds: time.Unix(0, mt.nanoseconds).Add(d).Sub(time.Unix(0, 0)).Nanoseconds(),
   106  	}
   107  }
   108  
   109  // Sub returns the duration mt-u. If the result exceeds the maximum (or minimum)
   110  // value that can be stored in a Duration, the maximum (or minimum) duration
   111  // will be returned. To compute t-d for a duration d, use t.Add(-d).
   112  func (mt MonotonicTime) Sub(u MonotonicTime) time.Duration {
   113  	return time.Unix(0, mt.nanoseconds).Sub(time.Unix(0, u.nanoseconds))
   114  }
   115  
   116  // A Clock provides the current time and schedules work for execution.
   117  //
   118  // Times returned by a Clock should always be used for application-visible
   119  // time. Only monotonic times should be used for netstack internal timekeeping.
   120  type Clock interface {
   121  	// Now returns the current local time.
   122  	Now() time.Time
   123  
   124  	// NowMonotonic returns the current monotonic clock reading.
   125  	NowMonotonic() MonotonicTime
   126  
   127  	// AfterFunc waits for the duration to elapse and then calls f in its own
   128  	// goroutine. It returns a Timer that can be used to cancel the call using
   129  	// its Stop method.
   130  	AfterFunc(d time.Duration, f func()) Timer
   131  }
   132  
   133  // Timer represents a single event. A Timer must be created with
   134  // Clock.AfterFunc.
   135  type Timer interface {
   136  	// Stop prevents the Timer from firing. It returns true if the call stops the
   137  	// timer, false if the timer has already expired or been stopped.
   138  	//
   139  	// If Stop returns false, then the timer has already expired and the function
   140  	// f of Clock.AfterFunc(d, f) has been started in its own goroutine; Stop
   141  	// does not wait for f to complete before returning. If the caller needs to
   142  	// know whether f is completed, it must coordinate with f explicitly.
   143  	Stop() bool
   144  
   145  	// Reset changes the timer to expire after duration d.
   146  	//
   147  	// Reset should be invoked only on stopped or expired timers. If the timer is
   148  	// known to have expired, Reset can be used directly. Otherwise, the caller
   149  	// must coordinate with the function f of Clock.AfterFunc(d, f).
   150  	Reset(d time.Duration)
   151  }
   152  
   153  // Address is a byte slice cast as a string that represents the address of a
   154  // network node. Or, in the case of unix endpoints, it may represent a path.
   155  //
   156  // +stateify savable
   157  type Address struct {
   158  	addr   [16]byte
   159  	length int
   160  }
   161  
   162  // AddrFrom4 converts addr to an Address.
   163  func AddrFrom4(addr [4]byte) Address {
   164  	ret := Address{
   165  		length: 4,
   166  	}
   167  	// It's guaranteed that copy will return 4.
   168  	copy(ret.addr[:], addr[:])
   169  	return ret
   170  }
   171  
   172  // AddrFrom4Slice converts addr to an Address. It panics if len(addr) != 4.
   173  func AddrFrom4Slice(addr []byte) Address {
   174  	if len(addr) != 4 {
   175  		panic(fmt.Sprintf("bad address length for address %v", addr))
   176  	}
   177  	ret := Address{
   178  		length: 4,
   179  	}
   180  	// It's guaranteed that copy will return 4.
   181  	copy(ret.addr[:], addr)
   182  	return ret
   183  }
   184  
   185  // AddrFrom16 converts addr to an Address.
   186  func AddrFrom16(addr [16]byte) Address {
   187  	ret := Address{
   188  		length: 16,
   189  	}
   190  	// It's guaranteed that copy will return 16.
   191  	copy(ret.addr[:], addr[:])
   192  	return ret
   193  }
   194  
   195  // AddrFrom16Slice converts addr to an Address. It panics if len(addr) != 16.
   196  func AddrFrom16Slice(addr []byte) Address {
   197  	if len(addr) != 16 {
   198  		panic(fmt.Sprintf("bad address length for address %v", addr))
   199  	}
   200  	ret := Address{
   201  		length: 16,
   202  	}
   203  	// It's guaranteed that copy will return 16.
   204  	copy(ret.addr[:], addr)
   205  	return ret
   206  }
   207  
   208  // AddrFromSlice converts addr to an Address. It returns the Address zero value
   209  // if len(addr) != 4 or 16.
   210  func AddrFromSlice(addr []byte) Address {
   211  	switch len(addr) {
   212  	case ipv4AddressSize:
   213  		return AddrFrom4Slice(addr)
   214  	case ipv6AddressSize:
   215  		return AddrFrom16Slice(addr)
   216  	}
   217  	return Address{}
   218  }
   219  
   220  // As4 returns a as a 4 byte array. It panics if the address length is not 4.
   221  func (a Address) As4() [4]byte {
   222  	if a.Len() != 4 {
   223  		panic(fmt.Sprintf("bad address length for address %v", a.addr))
   224  	}
   225  	return *(*[4]byte)((unsafe.Pointer)(&a.addr[0]))
   226  }
   227  
   228  // As16 returns a as a 16 byte array. It panics if the address length is not 16.
   229  func (a Address) As16() [16]byte {
   230  	if a.Len() != 16 {
   231  		panic(fmt.Sprintf("bad address length for address %v", a.addr))
   232  	}
   233  	return a.addr
   234  }
   235  
   236  // AsSlice returns a as a byte slice. Callers should be careful as it can
   237  // return a window into existing memory.
   238  //
   239  // +checkescape
   240  func (a *Address) AsSlice() []byte {
   241  	return a.addr[:a.length]
   242  }
   243  
   244  // BitLen returns the length in bits of a.
   245  func (a Address) BitLen() int {
   246  	return a.Len() * 8
   247  }
   248  
   249  // Len returns the length in bytes of a.
   250  func (a Address) Len() int {
   251  	return a.length
   252  }
   253  
   254  // WithPrefix returns the address with a prefix that represents a point subnet.
   255  func (a Address) WithPrefix() AddressWithPrefix {
   256  	return AddressWithPrefix{
   257  		Address:   a,
   258  		PrefixLen: a.BitLen(),
   259  	}
   260  }
   261  
   262  // Unspecified returns true if the address is unspecified.
   263  func (a Address) Unspecified() bool {
   264  	for _, b := range a.addr {
   265  		if b != 0 {
   266  			return false
   267  		}
   268  	}
   269  	return true
   270  }
   271  
   272  // Equal returns whether a and other are equal. It exists for use by the cmp
   273  // library.
   274  func (a Address) Equal(other Address) bool {
   275  	return a == other
   276  }
   277  
   278  // MatchingPrefix returns the matching prefix length in bits.
   279  //
   280  // Panics if b and a have different lengths.
   281  func (a Address) MatchingPrefix(b Address) uint8 {
   282  	const bitsInAByte = 8
   283  
   284  	if a.Len() != b.Len() {
   285  		panic(fmt.Sprintf("addresses %s and %s do not have the same length", a, b))
   286  	}
   287  
   288  	var prefix uint8
   289  	for i := 0; i < a.length; i++ {
   290  		aByte := a.addr[i]
   291  		bByte := b.addr[i]
   292  
   293  		if aByte == bByte {
   294  			prefix += bitsInAByte
   295  			continue
   296  		}
   297  
   298  		// Count the remaining matching bits in the byte from MSbit to LSBbit.
   299  		mask := uint8(1) << (bitsInAByte - 1)
   300  		for {
   301  			if aByte&mask == bByte&mask {
   302  				prefix++
   303  				mask >>= 1
   304  				continue
   305  			}
   306  
   307  			break
   308  		}
   309  
   310  		break
   311  	}
   312  
   313  	return prefix
   314  }
   315  
   316  // AddressMask is a bitmask for an address.
   317  //
   318  // +stateify savable
   319  type AddressMask struct {
   320  	mask string
   321  }
   322  
   323  // MaskFrom returns a Mask based on str.
   324  func MaskFrom(str string) AddressMask {
   325  	return AddressMask{mask: str}
   326  }
   327  
   328  // MaskFromBytes returns a Mask based on bs.
   329  func MaskFromBytes(bs []byte) AddressMask {
   330  	return AddressMask{mask: string(bs)}
   331  }
   332  
   333  // String implements Stringer.
   334  func (m AddressMask) String() string {
   335  	return fmt.Sprintf("%x", m.mask)
   336  }
   337  
   338  // AsSlice returns a as a byte slice. Callers should be careful as it can
   339  // return a window into existing memory.
   340  func (m *AddressMask) AsSlice() []byte {
   341  	return []byte(m.mask)
   342  }
   343  
   344  // BitLen returns the length of the mask in bits.
   345  func (m AddressMask) BitLen() int {
   346  	return len(m.mask) * 8
   347  }
   348  
   349  // Len returns the length of the mask in bytes.
   350  func (m AddressMask) Len() int {
   351  	return len(m.mask)
   352  }
   353  
   354  // Prefix returns the number of bits before the first host bit.
   355  func (m AddressMask) Prefix() int {
   356  	p := 0
   357  	for _, b := range []byte(m.mask) {
   358  		p += bits.LeadingZeros8(^b)
   359  	}
   360  	return p
   361  }
   362  
   363  // Equal returns whether m and other are equal. It exists for use by the cmp
   364  // library.
   365  func (m AddressMask) Equal(other AddressMask) bool {
   366  	return m == other
   367  }
   368  
   369  // Subnet is a subnet defined by its address and mask.
   370  type Subnet struct {
   371  	address Address
   372  	mask    AddressMask
   373  }
   374  
   375  // NewSubnet creates a new Subnet, checking that the address and mask are the same length.
   376  func NewSubnet(a Address, m AddressMask) (Subnet, error) {
   377  	if a.Len() != m.Len() {
   378  		return Subnet{}, errSubnetLengthMismatch
   379  	}
   380  	for i := 0; i < a.Len(); i++ {
   381  		if a.addr[i]&^m.mask[i] != 0 {
   382  			return Subnet{}, errSubnetAddressMasked
   383  		}
   384  	}
   385  	return Subnet{a, m}, nil
   386  }
   387  
   388  // String implements Stringer.
   389  func (s Subnet) String() string {
   390  	return fmt.Sprintf("%s/%d", s.ID(), s.Prefix())
   391  }
   392  
   393  // Contains returns true iff the address is of the same length and matches the
   394  // subnet address and mask.
   395  func (s *Subnet) Contains(a Address) bool {
   396  	if a.Len() != s.address.Len() {
   397  		return false
   398  	}
   399  	for i := 0; i < a.Len(); i++ {
   400  		if a.addr[i]&s.mask.mask[i] != s.address.addr[i] {
   401  			return false
   402  		}
   403  	}
   404  	return true
   405  }
   406  
   407  // ID returns the subnet ID.
   408  func (s *Subnet) ID() Address {
   409  	return s.address
   410  }
   411  
   412  // Bits returns the number of ones (network bits) and zeros (host bits) in the
   413  // subnet mask.
   414  func (s *Subnet) Bits() (ones int, zeros int) {
   415  	ones = s.mask.Prefix()
   416  	return ones, s.mask.BitLen() - ones
   417  }
   418  
   419  // Prefix returns the number of bits before the first host bit.
   420  func (s *Subnet) Prefix() int {
   421  	return s.mask.Prefix()
   422  }
   423  
   424  // Mask returns the subnet mask.
   425  func (s *Subnet) Mask() AddressMask {
   426  	return s.mask
   427  }
   428  
   429  // Broadcast returns the subnet's broadcast address.
   430  func (s *Subnet) Broadcast() Address {
   431  	addrCopy := s.address
   432  	for i := 0; i < addrCopy.Len(); i++ {
   433  		addrCopy.addr[i] |= ^s.mask.mask[i]
   434  	}
   435  	return addrCopy
   436  }
   437  
   438  // IsBroadcast returns true if the address is considered a broadcast address.
   439  func (s *Subnet) IsBroadcast(address Address) bool {
   440  	// Only IPv4 supports the notion of a broadcast address.
   441  	if address.Len() != ipv4AddressSize {
   442  		return false
   443  	}
   444  
   445  	// Normally, we would just compare address with the subnet's broadcast
   446  	// address but there is an exception where a simple comparison is not
   447  	// correct. This exception is for /31 and /32 IPv4 subnets where all
   448  	// addresses are considered valid host addresses.
   449  	//
   450  	// For /31 subnets, the case is easy. RFC 3021 Section 2.1 states that
   451  	// both addresses in a /31 subnet "MUST be interpreted as host addresses."
   452  	//
   453  	// For /32, the case is a bit more vague. RFC 3021 makes no mention of /32
   454  	// subnets. However, the same reasoning applies - if an exception is not
   455  	// made, then there do not exist any host addresses in a /32 subnet. RFC
   456  	// 4632 Section 3.1 also vaguely implies this interpretation by referring
   457  	// to addresses in /32 subnets as "host routes."
   458  	return s.Prefix() <= 30 && s.Broadcast() == address
   459  }
   460  
   461  // Equal returns true if this Subnet is equal to the given Subnet.
   462  func (s Subnet) Equal(o Subnet) bool {
   463  	// If this changes, update Route.Equal accordingly.
   464  	return s == o
   465  }
   466  
   467  // NICID is a number that uniquely identifies a NIC.
   468  type NICID int32
   469  
   470  // ShutdownFlags represents flags that can be passed to the Shutdown() method
   471  // of the Endpoint interface.
   472  type ShutdownFlags int
   473  
   474  // Values of the flags that can be passed to the Shutdown() method. They can
   475  // be OR'ed together.
   476  const (
   477  	ShutdownRead ShutdownFlags = 1 << iota
   478  	ShutdownWrite
   479  )
   480  
   481  // PacketType is used to indicate the destination of the packet.
   482  type PacketType uint8
   483  
   484  const (
   485  	// PacketHost indicates a packet addressed to the local host.
   486  	PacketHost PacketType = iota
   487  
   488  	// PacketOtherHost indicates an outgoing packet addressed to
   489  	// another host caught by a NIC in promiscuous mode.
   490  	PacketOtherHost
   491  
   492  	// PacketOutgoing for a packet originating from the local host
   493  	// that is looped back to a packet socket.
   494  	PacketOutgoing
   495  
   496  	// PacketBroadcast indicates a link layer broadcast packet.
   497  	PacketBroadcast
   498  
   499  	// PacketMulticast indicates a link layer multicast packet.
   500  	PacketMulticast
   501  )
   502  
   503  // FullAddress represents a full transport node address, as required by the
   504  // Connect() and Bind() methods.
   505  //
   506  // +stateify savable
   507  type FullAddress struct {
   508  	// NIC is the ID of the NIC this address refers to.
   509  	//
   510  	// This may not be used by all endpoint types.
   511  	NIC NICID
   512  
   513  	// Addr is the network address.
   514  	Addr Address
   515  
   516  	// Port is the transport port.
   517  	//
   518  	// This may not be used by all endpoint types.
   519  	Port uint16
   520  
   521  	// LinkAddr is the link layer address.
   522  	LinkAddr LinkAddress
   523  }
   524  
   525  // Payloader is an interface that provides data.
   526  //
   527  // This interface allows the endpoint to request the amount of data it needs
   528  // based on internal buffers without exposing them.
   529  type Payloader interface {
   530  	io.Reader
   531  
   532  	// Len returns the number of bytes of the unread portion of the
   533  	// Reader.
   534  	Len() int
   535  }
   536  
   537  var _ Payloader = (*bytes.Buffer)(nil)
   538  var _ Payloader = (*bytes.Reader)(nil)
   539  
   540  var _ io.Writer = (*SliceWriter)(nil)
   541  
   542  // SliceWriter implements io.Writer for slices.
   543  type SliceWriter []byte
   544  
   545  // Write implements io.Writer.Write.
   546  func (s *SliceWriter) Write(b []byte) (int, error) {
   547  	n := copy(*s, b)
   548  	*s = (*s)[n:]
   549  	var err error
   550  	if n != len(b) {
   551  		err = io.ErrShortWrite
   552  	}
   553  	return n, err
   554  }
   555  
   556  var _ io.Writer = (*LimitedWriter)(nil)
   557  
   558  // A LimitedWriter writes to W but limits the amount of data copied to just N
   559  // bytes. Each call to Write updates N to reflect the new amount remaining.
   560  type LimitedWriter struct {
   561  	W io.Writer
   562  	N int64
   563  }
   564  
   565  func (l *LimitedWriter) Write(p []byte) (int, error) {
   566  	pLen := int64(len(p))
   567  	if pLen > l.N {
   568  		p = p[:l.N]
   569  	}
   570  	n, err := l.W.Write(p)
   571  	n64 := int64(n)
   572  	if err == nil && n64 != pLen {
   573  		err = io.ErrShortWrite
   574  	}
   575  	l.N -= n64
   576  	return n, err
   577  }
   578  
   579  // SendableControlMessages contains socket control messages that can be written.
   580  //
   581  // +stateify savable
   582  type SendableControlMessages struct {
   583  	// HasTTL indicates whether TTL is valid/set.
   584  	HasTTL bool
   585  
   586  	// TTL is the IPv4 Time To Live of the associated packet.
   587  	TTL uint8
   588  
   589  	// HasHopLimit indicates whether HopLimit is valid/set.
   590  	HasHopLimit bool
   591  
   592  	// HopLimit is the IPv6 Hop Limit of the associated packet.
   593  	HopLimit uint8
   594  
   595  	// HasIPv6PacketInfo indicates whether IPv6PacketInfo is set.
   596  	HasIPv6PacketInfo bool
   597  
   598  	// IPv6PacketInfo holds interface and address data on an incoming packet.
   599  	IPv6PacketInfo IPv6PacketInfo
   600  }
   601  
   602  // ReceivableControlMessages contains socket control messages that can be
   603  // received.
   604  //
   605  // +stateify savable
   606  type ReceivableControlMessages struct {
   607  	// Timestamp is the time that the last packet used to create the read data
   608  	// was received.
   609  	Timestamp time.Time `state:".(int64)"`
   610  
   611  	// HasInq indicates whether Inq is valid/set.
   612  	HasInq bool
   613  
   614  	// Inq is the number of bytes ready to be received.
   615  	Inq int32
   616  
   617  	// HasTOS indicates whether TOS is valid/set.
   618  	HasTOS bool
   619  
   620  	// TOS is the IPv4 type of service of the associated packet.
   621  	TOS uint8
   622  
   623  	// HasTTL indicates whether TTL is valid/set.
   624  	HasTTL bool
   625  
   626  	// TTL is the IPv4 Time To Live of the associated packet.
   627  	TTL uint8
   628  
   629  	// HasHopLimit indicates whether HopLimit is valid/set.
   630  	HasHopLimit bool
   631  
   632  	// HopLimit is the IPv6 Hop Limit of the associated packet.
   633  	HopLimit uint8
   634  
   635  	// HasTimestamp indicates whether Timestamp is valid/set.
   636  	HasTimestamp bool
   637  
   638  	// HasTClass indicates whether TClass is valid/set.
   639  	HasTClass bool
   640  
   641  	// TClass is the IPv6 traffic class of the associated packet.
   642  	TClass uint32
   643  
   644  	// HasIPPacketInfo indicates whether PacketInfo is set.
   645  	HasIPPacketInfo bool
   646  
   647  	// PacketInfo holds interface and address data on an incoming packet.
   648  	PacketInfo IPPacketInfo
   649  
   650  	// HasIPv6PacketInfo indicates whether IPv6PacketInfo is set.
   651  	HasIPv6PacketInfo bool
   652  
   653  	// IPv6PacketInfo holds interface and address data on an incoming packet.
   654  	IPv6PacketInfo IPv6PacketInfo
   655  
   656  	// HasOriginalDestinationAddress indicates whether OriginalDstAddress is
   657  	// set.
   658  	HasOriginalDstAddress bool
   659  
   660  	// OriginalDestinationAddress holds the original destination address
   661  	// and port of the incoming packet.
   662  	OriginalDstAddress FullAddress
   663  
   664  	// SockErr is the dequeued socket error on recvmsg(MSG_ERRQUEUE).
   665  	SockErr *SockError
   666  }
   667  
   668  // PacketOwner is used to get UID and GID of the packet.
   669  type PacketOwner interface {
   670  	// KUID returns KUID of the packet.
   671  	KUID() uint32
   672  
   673  	// KGID returns KGID of the packet.
   674  	KGID() uint32
   675  }
   676  
   677  // ReadOptions contains options for Endpoint.Read.
   678  type ReadOptions struct {
   679  	// Peek indicates whether this read is a peek.
   680  	Peek bool
   681  
   682  	// NeedRemoteAddr indicates whether to return the remote address, if
   683  	// supported.
   684  	NeedRemoteAddr bool
   685  
   686  	// NeedLinkPacketInfo indicates whether to return the link-layer information,
   687  	// if supported.
   688  	NeedLinkPacketInfo bool
   689  }
   690  
   691  // ReadResult represents result for a successful Endpoint.Read.
   692  type ReadResult struct {
   693  	// Count is the number of bytes received and written to the buffer.
   694  	Count int
   695  
   696  	// Total is the number of bytes of the received packet. This can be used to
   697  	// determine whether the read is truncated.
   698  	Total int
   699  
   700  	// ControlMessages is the control messages received.
   701  	ControlMessages ReceivableControlMessages
   702  
   703  	// RemoteAddr is the remote address if ReadOptions.NeedAddr is true.
   704  	RemoteAddr FullAddress
   705  
   706  	// LinkPacketInfo is the link-layer information of the received packet if
   707  	// ReadOptions.NeedLinkPacketInfo is true.
   708  	LinkPacketInfo LinkPacketInfo
   709  }
   710  
   711  // Endpoint is the interface implemented by transport protocols (e.g., tcp, udp)
   712  // that exposes functionality like read, write, connect, etc. to users of the
   713  // networking stack.
   714  type Endpoint interface {
   715  	// Close puts the endpoint in a closed state and frees all resources
   716  	// associated with it. Close initiates the teardown process, the
   717  	// Endpoint may not be fully closed when Close returns.
   718  	Close()
   719  
   720  	// Abort initiates an expedited endpoint teardown. As compared to
   721  	// Close, Abort prioritizes closing the Endpoint quickly over cleanly.
   722  	// Abort is best effort; implementing Abort with Close is acceptable.
   723  	Abort()
   724  
   725  	// Read reads data from the endpoint and optionally writes to dst.
   726  	//
   727  	// This method does not block if there is no data pending; in this case,
   728  	// ErrWouldBlock is returned.
   729  	//
   730  	// If non-zero number of bytes are successfully read and written to dst, err
   731  	// must be nil. Otherwise, if dst failed to write anything, ErrBadBuffer
   732  	// should be returned.
   733  	Read(io.Writer, ReadOptions) (ReadResult, Error)
   734  
   735  	// Write writes data to the endpoint's peer. This method does not block if
   736  	// the data cannot be written.
   737  	//
   738  	// Unlike io.Writer.Write, Endpoint.Write transfers ownership of any bytes
   739  	// successfully written to the Endpoint. That is, if a call to
   740  	// Write(SlicePayload{data}) returns (n, err), it may retain data[:n], and
   741  	// the caller should not use data[:n] after Write returns.
   742  	//
   743  	// Note that unlike io.Writer.Write, it is not an error for Write to
   744  	// perform a partial write (if n > 0, no error may be returned). Only
   745  	// stream (TCP) Endpoints may return partial writes, and even then only
   746  	// in the case where writing additional data would block. Other Endpoints
   747  	// will either write the entire message or return an error.
   748  	Write(Payloader, WriteOptions) (int64, Error)
   749  
   750  	// Connect connects the endpoint to its peer. Specifying a NIC is
   751  	// optional.
   752  	//
   753  	// There are three classes of return values:
   754  	//	nil -- the attempt to connect succeeded.
   755  	//	ErrConnectStarted/ErrAlreadyConnecting -- the connect attempt started
   756  	//		but hasn't completed yet. In this case, the caller must call Connect
   757  	//		or GetSockOpt(ErrorOption) when the endpoint becomes writable to
   758  	//		get the actual result. The first call to Connect after the socket has
   759  	//		connected returns nil. Calling connect again results in ErrAlreadyConnected.
   760  	//	Anything else -- the attempt to connect failed.
   761  	//
   762  	// If address.Addr is empty, this means that Endpoint has to be
   763  	// disconnected if this is supported, otherwise
   764  	// ErrAddressFamilyNotSupported must be returned.
   765  	Connect(address FullAddress) Error
   766  
   767  	// Disconnect disconnects the endpoint from its peer.
   768  	Disconnect() Error
   769  
   770  	// Shutdown closes the read and/or write end of the endpoint connection
   771  	// to its peer.
   772  	Shutdown(flags ShutdownFlags) Error
   773  
   774  	// Listen puts the endpoint in "listen" mode, which allows it to accept
   775  	// new connections.
   776  	Listen(backlog int) Error
   777  
   778  	// Accept returns a new endpoint if a peer has established a connection
   779  	// to an endpoint previously set to listen mode. This method does not
   780  	// block if no new connections are available.
   781  	//
   782  	// The returned Queue is the wait queue for the newly created endpoint.
   783  	//
   784  	// If peerAddr is not nil then it is populated with the peer address of the
   785  	// returned endpoint.
   786  	Accept(peerAddr *FullAddress) (Endpoint, *waiter.Queue, Error)
   787  
   788  	// Bind binds the endpoint to a specific local address and port.
   789  	// Specifying a NIC is optional.
   790  	Bind(address FullAddress) Error
   791  
   792  	// GetLocalAddress returns the address to which the endpoint is bound.
   793  	GetLocalAddress() (FullAddress, Error)
   794  
   795  	// GetRemoteAddress returns the address to which the endpoint is
   796  	// connected.
   797  	GetRemoteAddress() (FullAddress, Error)
   798  
   799  	// Readiness returns the current readiness of the endpoint. For example,
   800  	// if waiter.EventIn is set, the endpoint is immediately readable.
   801  	Readiness(mask waiter.EventMask) waiter.EventMask
   802  
   803  	// SetSockOpt sets a socket option.
   804  	SetSockOpt(opt SettableSocketOption) Error
   805  
   806  	// SetSockOptInt sets a socket option, for simple cases where a value
   807  	// has the int type.
   808  	SetSockOptInt(opt SockOptInt, v int) Error
   809  
   810  	// GetSockOpt gets a socket option.
   811  	GetSockOpt(opt GettableSocketOption) Error
   812  
   813  	// GetSockOptInt gets a socket option for simple cases where a return
   814  	// value has the int type.
   815  	GetSockOptInt(SockOptInt) (int, Error)
   816  
   817  	// State returns a socket's lifecycle state. The returned value is
   818  	// protocol-specific and is primarily used for diagnostics.
   819  	State() uint32
   820  
   821  	// ModerateRecvBuf should be called everytime data is copied to the user
   822  	// space. This allows for dynamic tuning of recv buffer space for a
   823  	// given socket.
   824  	//
   825  	// NOTE: This method is a no-op for sockets other than TCP.
   826  	ModerateRecvBuf(copied int)
   827  
   828  	// Info returns a copy to the transport endpoint info.
   829  	Info() EndpointInfo
   830  
   831  	// Stats returns a reference to the endpoint stats.
   832  	Stats() EndpointStats
   833  
   834  	// SetOwner sets the task owner to the endpoint owner.
   835  	SetOwner(owner PacketOwner)
   836  
   837  	// LastError clears and returns the last error reported by the endpoint.
   838  	LastError() Error
   839  
   840  	// SocketOptions returns the structure which contains all the socket
   841  	// level options.
   842  	SocketOptions() *SocketOptions
   843  }
   844  
   845  // EndpointWithPreflight is the interface implemented by endpoints that need
   846  // to expose the `Preflight` method for preparing the endpoint prior to
   847  // calling `Write`.
   848  type EndpointWithPreflight interface {
   849  	// Prepares the endpoint for writes using the provided WriteOptions,
   850  	// returning an error if the options were incompatible with the endpoint's
   851  	// current state.
   852  	Preflight(WriteOptions) Error
   853  }
   854  
   855  // LinkPacketInfo holds Link layer information for a received packet.
   856  //
   857  // +stateify savable
   858  type LinkPacketInfo struct {
   859  	// Protocol is the NetworkProtocolNumber for the packet.
   860  	Protocol NetworkProtocolNumber
   861  
   862  	// PktType is used to indicate the destination of the packet.
   863  	PktType PacketType
   864  }
   865  
   866  // EndpointInfo is the interface implemented by each endpoint info struct.
   867  type EndpointInfo interface {
   868  	// IsEndpointInfo is an empty method to implement the tcpip.EndpointInfo
   869  	// marker interface.
   870  	IsEndpointInfo()
   871  }
   872  
   873  // EndpointStats is the interface implemented by each endpoint stats struct.
   874  type EndpointStats interface {
   875  	// IsEndpointStats is an empty method to implement the tcpip.EndpointStats
   876  	// marker interface.
   877  	IsEndpointStats()
   878  }
   879  
   880  // WriteOptions contains options for Endpoint.Write.
   881  type WriteOptions struct {
   882  	// If To is not nil, write to the given address instead of the endpoint's
   883  	// peer.
   884  	To *FullAddress
   885  
   886  	// More has the same semantics as Linux's MSG_MORE.
   887  	More bool
   888  
   889  	// EndOfRecord has the same semantics as Linux's MSG_EOR.
   890  	EndOfRecord bool
   891  
   892  	// Atomic means that all data fetched from Payloader must be written to the
   893  	// endpoint. If Atomic is false, then data fetched from the Payloader may be
   894  	// discarded if available endpoint buffer space is unsufficient.
   895  	Atomic bool
   896  
   897  	// ControlMessages contains optional overrides used when writing a packet.
   898  	ControlMessages SendableControlMessages
   899  }
   900  
   901  // SockOptInt represents socket options which values have the int type.
   902  type SockOptInt int
   903  
   904  const (
   905  	// KeepaliveCountOption is used by SetSockOptInt/GetSockOptInt to
   906  	// specify the number of un-ACKed TCP keepalives that will be sent
   907  	// before the connection is closed.
   908  	KeepaliveCountOption SockOptInt = iota
   909  
   910  	// IPv4TOSOption is used by SetSockOptInt/GetSockOptInt to specify TOS
   911  	// for all subsequent outgoing IPv4 packets from the endpoint.
   912  	IPv4TOSOption
   913  
   914  	// IPv6TrafficClassOption is used by SetSockOptInt/GetSockOptInt to
   915  	// specify TOS for all subsequent outgoing IPv6 packets from the
   916  	// endpoint.
   917  	IPv6TrafficClassOption
   918  
   919  	// MaxSegOption is used by SetSockOptInt/GetSockOptInt to set/get the
   920  	// current Maximum Segment Size(MSS) value as specified using the
   921  	// TCP_MAXSEG option.
   922  	MaxSegOption
   923  
   924  	// MTUDiscoverOption is used to set/get the path MTU discovery setting.
   925  	//
   926  	// NOTE: Setting this option to any other value than PMTUDiscoveryDont
   927  	// is not supported and will fail as such, and getting this option will
   928  	// always return PMTUDiscoveryDont.
   929  	MTUDiscoverOption
   930  
   931  	// MulticastTTLOption is used by SetSockOptInt/GetSockOptInt to control
   932  	// the default TTL value for multicast messages. The default is 1.
   933  	MulticastTTLOption
   934  
   935  	// ReceiveQueueSizeOption is used in GetSockOptInt to specify that the
   936  	// number of unread bytes in the input buffer should be returned.
   937  	ReceiveQueueSizeOption
   938  
   939  	// SendQueueSizeOption is used in GetSockOptInt to specify that the
   940  	// number of unread bytes in the output buffer should be returned.
   941  	SendQueueSizeOption
   942  
   943  	// IPv4TTLOption is used by SetSockOptInt/GetSockOptInt to control the default
   944  	// TTL value for unicast messages.
   945  	//
   946  	// The default is configured by DefaultTTLOption. A UseDefaultIPv4TTL value
   947  	// configures the endpoint to use the default.
   948  	IPv4TTLOption
   949  
   950  	// IPv6HopLimitOption is used by SetSockOptInt/GetSockOptInt to control the
   951  	// default hop limit value for unicast messages.
   952  	//
   953  	// The default is configured by DefaultTTLOption. A UseDefaultIPv6HopLimit
   954  	// value configures the endpoint to use the default.
   955  	IPv6HopLimitOption
   956  
   957  	// TCPSynCountOption is used by SetSockOptInt/GetSockOptInt to specify
   958  	// the number of SYN retransmits that TCP should send before aborting
   959  	// the attempt to connect. It cannot exceed 255.
   960  	//
   961  	// NOTE: This option is currently only stubbed out and is no-op.
   962  	TCPSynCountOption
   963  
   964  	// TCPWindowClampOption is used by SetSockOptInt/GetSockOptInt to bound
   965  	// the size of the advertised window to this value.
   966  	//
   967  	// NOTE: This option is currently only stubed out and is a no-op
   968  	TCPWindowClampOption
   969  
   970  	// IPv6Checksum is used to request the stack to populate and validate the IPv6
   971  	// checksum for transport level headers.
   972  	IPv6Checksum
   973  )
   974  
   975  const (
   976  	// UseDefaultIPv4TTL is the IPv4TTLOption value that configures an endpoint to
   977  	// use the default ttl currently configured by the IPv4 protocol (see
   978  	// DefaultTTLOption).
   979  	UseDefaultIPv4TTL = 0
   980  
   981  	// UseDefaultIPv6HopLimit is the IPv6HopLimitOption value that configures an
   982  	// endpoint to use the default hop limit currently configured by the IPv6
   983  	// protocol (see DefaultTTLOption).
   984  	UseDefaultIPv6HopLimit = -1
   985  )
   986  
   987  const (
   988  	// PMTUDiscoveryWant is a setting of the MTUDiscoverOption to use
   989  	// per-route settings.
   990  	PMTUDiscoveryWant int = iota
   991  
   992  	// PMTUDiscoveryDont is a setting of the MTUDiscoverOption to disable
   993  	// path MTU discovery.
   994  	PMTUDiscoveryDont
   995  
   996  	// PMTUDiscoveryDo is a setting of the MTUDiscoverOption to always do
   997  	// path MTU discovery.
   998  	PMTUDiscoveryDo
   999  
  1000  	// PMTUDiscoveryProbe is a setting of the MTUDiscoverOption to set DF
  1001  	// but ignore path MTU.
  1002  	PMTUDiscoveryProbe
  1003  )
  1004  
  1005  // GettableNetworkProtocolOption is a marker interface for network protocol
  1006  // options that may be queried.
  1007  type GettableNetworkProtocolOption interface {
  1008  	isGettableNetworkProtocolOption()
  1009  }
  1010  
  1011  // SettableNetworkProtocolOption is a marker interface for network protocol
  1012  // options that may be set.
  1013  type SettableNetworkProtocolOption interface {
  1014  	isSettableNetworkProtocolOption()
  1015  }
  1016  
  1017  // DefaultTTLOption is used by stack.(*Stack).NetworkProtocolOption to specify
  1018  // a default TTL.
  1019  type DefaultTTLOption uint8
  1020  
  1021  func (*DefaultTTLOption) isGettableNetworkProtocolOption() {}
  1022  
  1023  func (*DefaultTTLOption) isSettableNetworkProtocolOption() {}
  1024  
  1025  // GettableTransportProtocolOption is a marker interface for transport protocol
  1026  // options that may be queried.
  1027  type GettableTransportProtocolOption interface {
  1028  	isGettableTransportProtocolOption()
  1029  }
  1030  
  1031  // SettableTransportProtocolOption is a marker interface for transport protocol
  1032  // options that may be set.
  1033  type SettableTransportProtocolOption interface {
  1034  	isSettableTransportProtocolOption()
  1035  }
  1036  
  1037  // TCPSACKEnabled the SACK option for TCP.
  1038  //
  1039  // See: https://tools.ietf.org/html/rfc2018.
  1040  type TCPSACKEnabled bool
  1041  
  1042  func (*TCPSACKEnabled) isGettableTransportProtocolOption() {}
  1043  
  1044  func (*TCPSACKEnabled) isSettableTransportProtocolOption() {}
  1045  
  1046  // TCPRecovery is the loss deteoction algorithm used by TCP.
  1047  type TCPRecovery int32
  1048  
  1049  func (*TCPRecovery) isGettableTransportProtocolOption() {}
  1050  
  1051  func (*TCPRecovery) isSettableTransportProtocolOption() {}
  1052  
  1053  // TCPAlwaysUseSynCookies indicates unconditional usage of syncookies.
  1054  type TCPAlwaysUseSynCookies bool
  1055  
  1056  func (*TCPAlwaysUseSynCookies) isGettableTransportProtocolOption() {}
  1057  
  1058  func (*TCPAlwaysUseSynCookies) isSettableTransportProtocolOption() {}
  1059  
  1060  const (
  1061  	// TCPRACKLossDetection indicates RACK is used for loss detection and
  1062  	// recovery.
  1063  	TCPRACKLossDetection TCPRecovery = 1 << iota
  1064  
  1065  	// TCPRACKStaticReoWnd indicates the reordering window should not be
  1066  	// adjusted when DSACK is received.
  1067  	TCPRACKStaticReoWnd
  1068  
  1069  	// TCPRACKNoDupTh indicates RACK should not consider the classic three
  1070  	// duplicate acknowledgements rule to mark the segments as lost. This
  1071  	// is used when reordering is not detected.
  1072  	TCPRACKNoDupTh
  1073  )
  1074  
  1075  // TCPDelayEnabled enables/disables Nagle's algorithm in TCP.
  1076  type TCPDelayEnabled bool
  1077  
  1078  func (*TCPDelayEnabled) isGettableTransportProtocolOption() {}
  1079  
  1080  func (*TCPDelayEnabled) isSettableTransportProtocolOption() {}
  1081  
  1082  // TCPSendBufferSizeRangeOption is the send buffer size range for TCP.
  1083  type TCPSendBufferSizeRangeOption struct {
  1084  	Min     int
  1085  	Default int
  1086  	Max     int
  1087  }
  1088  
  1089  func (*TCPSendBufferSizeRangeOption) isGettableTransportProtocolOption() {}
  1090  
  1091  func (*TCPSendBufferSizeRangeOption) isSettableTransportProtocolOption() {}
  1092  
  1093  // TCPReceiveBufferSizeRangeOption is the receive buffer size range for TCP.
  1094  type TCPReceiveBufferSizeRangeOption struct {
  1095  	Min     int
  1096  	Default int
  1097  	Max     int
  1098  }
  1099  
  1100  func (*TCPReceiveBufferSizeRangeOption) isGettableTransportProtocolOption() {}
  1101  
  1102  func (*TCPReceiveBufferSizeRangeOption) isSettableTransportProtocolOption() {}
  1103  
  1104  // TCPAvailableCongestionControlOption is the supported congestion control
  1105  // algorithms for TCP
  1106  type TCPAvailableCongestionControlOption string
  1107  
  1108  func (*TCPAvailableCongestionControlOption) isGettableTransportProtocolOption() {}
  1109  
  1110  func (*TCPAvailableCongestionControlOption) isSettableTransportProtocolOption() {}
  1111  
  1112  // TCPModerateReceiveBufferOption enables/disables receive buffer moderation
  1113  // for TCP.
  1114  type TCPModerateReceiveBufferOption bool
  1115  
  1116  func (*TCPModerateReceiveBufferOption) isGettableTransportProtocolOption() {}
  1117  
  1118  func (*TCPModerateReceiveBufferOption) isSettableTransportProtocolOption() {}
  1119  
  1120  // GettableSocketOption is a marker interface for socket options that may be
  1121  // queried.
  1122  type GettableSocketOption interface {
  1123  	isGettableSocketOption()
  1124  }
  1125  
  1126  // SettableSocketOption is a marker interface for socket options that may be
  1127  // configured.
  1128  type SettableSocketOption interface {
  1129  	isSettableSocketOption()
  1130  }
  1131  
  1132  // ICMPv6Filter specifes a filter for ICMPv6 types.
  1133  //
  1134  // +stateify savable
  1135  type ICMPv6Filter struct {
  1136  	// DenyType indicates if an ICMP type should be blocked.
  1137  	//
  1138  	// The ICMPv6 type field is 8 bits so there are up to 256 different ICMPv6
  1139  	// types.
  1140  	DenyType [8]uint32
  1141  }
  1142  
  1143  // ShouldDeny returns true iff the ICMPv6 Type should be denied.
  1144  func (f *ICMPv6Filter) ShouldDeny(icmpType uint8) bool {
  1145  	const bitsInUint32 = 32
  1146  	i := icmpType / bitsInUint32
  1147  	b := icmpType % bitsInUint32
  1148  	return f.DenyType[i]&(1<<b) != 0
  1149  }
  1150  
  1151  func (*ICMPv6Filter) isGettableSocketOption() {}
  1152  
  1153  func (*ICMPv6Filter) isSettableSocketOption() {}
  1154  
  1155  // EndpointState represents the state of an endpoint.
  1156  type EndpointState uint8
  1157  
  1158  // CongestionControlState indicates the current congestion control state for
  1159  // TCP sender.
  1160  type CongestionControlState int
  1161  
  1162  const (
  1163  	// Open indicates that the sender is receiving acks in order and
  1164  	// no loss or dupACK's etc have been detected.
  1165  	Open CongestionControlState = iota
  1166  	// RTORecovery indicates that an RTO has occurred and the sender
  1167  	// has entered an RTO based recovery phase.
  1168  	RTORecovery
  1169  	// FastRecovery indicates that the sender has entered FastRecovery
  1170  	// based on receiving nDupAck's. This state is entered only when
  1171  	// SACK is not in use.
  1172  	FastRecovery
  1173  	// SACKRecovery indicates that the sender has entered SACK based
  1174  	// recovery.
  1175  	SACKRecovery
  1176  	// Disorder indicates the sender either received some SACK blocks
  1177  	// or dupACK's.
  1178  	Disorder
  1179  )
  1180  
  1181  // TCPInfoOption is used by GetSockOpt to expose TCP statistics.
  1182  //
  1183  // TODO(b/64800844): Add and populate stat fields.
  1184  type TCPInfoOption struct {
  1185  	// RTT is the smoothed round trip time.
  1186  	RTT time.Duration
  1187  
  1188  	// RTTVar is the round trip time variation.
  1189  	RTTVar time.Duration
  1190  
  1191  	// RTO is the retransmission timeout for the endpoint.
  1192  	RTO time.Duration
  1193  
  1194  	// State is the current endpoint protocol state.
  1195  	State EndpointState
  1196  
  1197  	// CcState is the congestion control state.
  1198  	CcState CongestionControlState
  1199  
  1200  	// SndCwnd is the congestion window, in packets.
  1201  	SndCwnd uint32
  1202  
  1203  	// SndSsthresh is the threshold between slow start and congestion
  1204  	// avoidance.
  1205  	SndSsthresh uint32
  1206  
  1207  	// ReorderSeen indicates if reordering is seen in the endpoint.
  1208  	ReorderSeen bool
  1209  }
  1210  
  1211  func (*TCPInfoOption) isGettableSocketOption() {}
  1212  
  1213  // KeepaliveIdleOption is used by SetSockOpt/GetSockOpt to specify the time a
  1214  // connection must remain idle before the first TCP keepalive packet is sent.
  1215  // Once this time is reached, KeepaliveIntervalOption is used instead.
  1216  type KeepaliveIdleOption time.Duration
  1217  
  1218  func (*KeepaliveIdleOption) isGettableSocketOption() {}
  1219  
  1220  func (*KeepaliveIdleOption) isSettableSocketOption() {}
  1221  
  1222  // KeepaliveIntervalOption is used by SetSockOpt/GetSockOpt to specify the
  1223  // interval between sending TCP keepalive packets.
  1224  type KeepaliveIntervalOption time.Duration
  1225  
  1226  func (*KeepaliveIntervalOption) isGettableSocketOption() {}
  1227  
  1228  func (*KeepaliveIntervalOption) isSettableSocketOption() {}
  1229  
  1230  // TCPUserTimeoutOption is used by SetSockOpt/GetSockOpt to specify a user
  1231  // specified timeout for a given TCP connection.
  1232  // See: RFC5482 for details.
  1233  type TCPUserTimeoutOption time.Duration
  1234  
  1235  func (*TCPUserTimeoutOption) isGettableSocketOption() {}
  1236  
  1237  func (*TCPUserTimeoutOption) isSettableSocketOption() {}
  1238  
  1239  // CongestionControlOption is used by SetSockOpt/GetSockOpt to set/get
  1240  // the current congestion control algorithm.
  1241  type CongestionControlOption string
  1242  
  1243  func (*CongestionControlOption) isGettableSocketOption() {}
  1244  
  1245  func (*CongestionControlOption) isSettableSocketOption() {}
  1246  
  1247  func (*CongestionControlOption) isGettableTransportProtocolOption() {}
  1248  
  1249  func (*CongestionControlOption) isSettableTransportProtocolOption() {}
  1250  
  1251  // TCPLingerTimeoutOption is used by SetSockOpt/GetSockOpt to set/get the
  1252  // maximum duration for which a socket lingers in the TCP_FIN_WAIT_2 state
  1253  // before being marked closed.
  1254  type TCPLingerTimeoutOption time.Duration
  1255  
  1256  func (*TCPLingerTimeoutOption) isGettableSocketOption() {}
  1257  
  1258  func (*TCPLingerTimeoutOption) isSettableSocketOption() {}
  1259  
  1260  func (*TCPLingerTimeoutOption) isGettableTransportProtocolOption() {}
  1261  
  1262  func (*TCPLingerTimeoutOption) isSettableTransportProtocolOption() {}
  1263  
  1264  // TCPTimeWaitTimeoutOption is used by SetSockOpt/GetSockOpt to set/get the
  1265  // maximum duration for which a socket lingers in the TIME_WAIT state
  1266  // before being marked closed.
  1267  type TCPTimeWaitTimeoutOption time.Duration
  1268  
  1269  func (*TCPTimeWaitTimeoutOption) isGettableSocketOption() {}
  1270  
  1271  func (*TCPTimeWaitTimeoutOption) isSettableSocketOption() {}
  1272  
  1273  func (*TCPTimeWaitTimeoutOption) isGettableTransportProtocolOption() {}
  1274  
  1275  func (*TCPTimeWaitTimeoutOption) isSettableTransportProtocolOption() {}
  1276  
  1277  // TCPDeferAcceptOption is used by SetSockOpt/GetSockOpt to allow a
  1278  // accept to return a completed connection only when there is data to be
  1279  // read. This usually means the listening socket will drop the final ACK
  1280  // for a handshake till the specified timeout until a segment with data arrives.
  1281  type TCPDeferAcceptOption time.Duration
  1282  
  1283  func (*TCPDeferAcceptOption) isGettableSocketOption() {}
  1284  
  1285  func (*TCPDeferAcceptOption) isSettableSocketOption() {}
  1286  
  1287  // TCPMinRTOOption is use by SetSockOpt/GetSockOpt to allow overriding
  1288  // default MinRTO used by the Stack.
  1289  type TCPMinRTOOption time.Duration
  1290  
  1291  func (*TCPMinRTOOption) isGettableSocketOption() {}
  1292  
  1293  func (*TCPMinRTOOption) isSettableSocketOption() {}
  1294  
  1295  func (*TCPMinRTOOption) isGettableTransportProtocolOption() {}
  1296  
  1297  func (*TCPMinRTOOption) isSettableTransportProtocolOption() {}
  1298  
  1299  // TCPMaxRTOOption is use by SetSockOpt/GetSockOpt to allow overriding
  1300  // default MaxRTO used by the Stack.
  1301  type TCPMaxRTOOption time.Duration
  1302  
  1303  func (*TCPMaxRTOOption) isGettableSocketOption() {}
  1304  
  1305  func (*TCPMaxRTOOption) isSettableSocketOption() {}
  1306  
  1307  func (*TCPMaxRTOOption) isGettableTransportProtocolOption() {}
  1308  
  1309  func (*TCPMaxRTOOption) isSettableTransportProtocolOption() {}
  1310  
  1311  // TCPMaxRetriesOption is used by SetSockOpt/GetSockOpt to set/get the
  1312  // maximum number of retransmits after which we time out the connection.
  1313  type TCPMaxRetriesOption uint64
  1314  
  1315  func (*TCPMaxRetriesOption) isGettableSocketOption() {}
  1316  
  1317  func (*TCPMaxRetriesOption) isSettableSocketOption() {}
  1318  
  1319  func (*TCPMaxRetriesOption) isGettableTransportProtocolOption() {}
  1320  
  1321  func (*TCPMaxRetriesOption) isSettableTransportProtocolOption() {}
  1322  
  1323  // TCPSynRetriesOption is used by SetSockOpt/GetSockOpt to specify stack-wide
  1324  // default for number of times SYN is retransmitted before aborting a connect.
  1325  type TCPSynRetriesOption uint8
  1326  
  1327  func (*TCPSynRetriesOption) isGettableSocketOption() {}
  1328  
  1329  func (*TCPSynRetriesOption) isSettableSocketOption() {}
  1330  
  1331  func (*TCPSynRetriesOption) isGettableTransportProtocolOption() {}
  1332  
  1333  func (*TCPSynRetriesOption) isSettableTransportProtocolOption() {}
  1334  
  1335  // MulticastInterfaceOption is used by SetSockOpt/GetSockOpt to specify a
  1336  // default interface for multicast.
  1337  type MulticastInterfaceOption struct {
  1338  	NIC           NICID
  1339  	InterfaceAddr Address
  1340  }
  1341  
  1342  func (*MulticastInterfaceOption) isGettableSocketOption() {}
  1343  
  1344  func (*MulticastInterfaceOption) isSettableSocketOption() {}
  1345  
  1346  // MembershipOption is used to identify a multicast membership on an interface.
  1347  type MembershipOption struct {
  1348  	NIC           NICID
  1349  	InterfaceAddr Address
  1350  	MulticastAddr Address
  1351  }
  1352  
  1353  // AddMembershipOption identifies a multicast group to join on some interface.
  1354  type AddMembershipOption MembershipOption
  1355  
  1356  func (*AddMembershipOption) isSettableSocketOption() {}
  1357  
  1358  // RemoveMembershipOption identifies a multicast group to leave on some
  1359  // interface.
  1360  type RemoveMembershipOption MembershipOption
  1361  
  1362  func (*RemoveMembershipOption) isSettableSocketOption() {}
  1363  
  1364  // SocketDetachFilterOption is used by SetSockOpt to detach a previously attached
  1365  // classic BPF filter on a given endpoint.
  1366  type SocketDetachFilterOption int
  1367  
  1368  func (*SocketDetachFilterOption) isSettableSocketOption() {}
  1369  
  1370  // OriginalDestinationOption is used to get the original destination address
  1371  // and port of a redirected packet.
  1372  type OriginalDestinationOption FullAddress
  1373  
  1374  func (*OriginalDestinationOption) isGettableSocketOption() {}
  1375  
  1376  // TCPTimeWaitReuseOption is used stack.(*Stack).TransportProtocolOption to
  1377  // specify if the stack can reuse the port bound by an endpoint in TIME-WAIT for
  1378  // new connections when it is safe from protocol viewpoint.
  1379  type TCPTimeWaitReuseOption uint8
  1380  
  1381  func (*TCPTimeWaitReuseOption) isGettableSocketOption() {}
  1382  
  1383  func (*TCPTimeWaitReuseOption) isSettableSocketOption() {}
  1384  
  1385  func (*TCPTimeWaitReuseOption) isGettableTransportProtocolOption() {}
  1386  
  1387  func (*TCPTimeWaitReuseOption) isSettableTransportProtocolOption() {}
  1388  
  1389  const (
  1390  	// TCPTimeWaitReuseDisabled indicates reuse of port bound by endponts in TIME-WAIT cannot
  1391  	// be reused for new connections.
  1392  	TCPTimeWaitReuseDisabled TCPTimeWaitReuseOption = iota
  1393  
  1394  	// TCPTimeWaitReuseGlobal indicates reuse of port bound by endponts in TIME-WAIT can
  1395  	// be reused for new connections irrespective of the src/dest addresses.
  1396  	TCPTimeWaitReuseGlobal
  1397  
  1398  	// TCPTimeWaitReuseLoopbackOnly indicates reuse of port bound by endpoint in TIME-WAIT can
  1399  	// only be reused if the connection was a connection over loopback. i.e src/dest adddresses
  1400  	// are loopback addresses.
  1401  	TCPTimeWaitReuseLoopbackOnly
  1402  )
  1403  
  1404  // LingerOption is used by SetSockOpt/GetSockOpt to set/get the
  1405  // duration for which a socket lingers before returning from Close.
  1406  //
  1407  // +marshal
  1408  // +stateify savable
  1409  type LingerOption struct {
  1410  	Enabled bool
  1411  	Timeout time.Duration
  1412  }
  1413  
  1414  // IPPacketInfo is the message structure for IP_PKTINFO.
  1415  //
  1416  // +stateify savable
  1417  type IPPacketInfo struct {
  1418  	// NIC is the ID of the NIC to be used.
  1419  	NIC NICID
  1420  
  1421  	// LocalAddr is the local address.
  1422  	LocalAddr Address
  1423  
  1424  	// DestinationAddr is the destination address found in the IP header.
  1425  	DestinationAddr Address
  1426  }
  1427  
  1428  // IPv6PacketInfo is the message structure for IPV6_PKTINFO.
  1429  //
  1430  // +stateify savable
  1431  type IPv6PacketInfo struct {
  1432  	Addr Address
  1433  	NIC  NICID
  1434  }
  1435  
  1436  // SendBufferSizeOption is used by stack.(Stack*).Option/SetOption to
  1437  // get/set the default, min and max send buffer sizes.
  1438  type SendBufferSizeOption struct {
  1439  	// Min is the minimum size for send buffer.
  1440  	Min int
  1441  
  1442  	// Default is the default size for send buffer.
  1443  	Default int
  1444  
  1445  	// Max is the maximum size for send buffer.
  1446  	Max int
  1447  }
  1448  
  1449  // ReceiveBufferSizeOption is used by stack.(Stack*).Option/SetOption to
  1450  // get/set the default, min and max receive buffer sizes.
  1451  type ReceiveBufferSizeOption struct {
  1452  	// Min is the minimum size for send buffer.
  1453  	Min int
  1454  
  1455  	// Default is the default size for send buffer.
  1456  	Default int
  1457  
  1458  	// Max is the maximum size for send buffer.
  1459  	Max int
  1460  }
  1461  
  1462  // GetSendBufferLimits is used to get the send buffer size limits.
  1463  type GetSendBufferLimits func(StackHandler) SendBufferSizeOption
  1464  
  1465  // GetStackSendBufferLimits is used to get default, min and max send buffer size.
  1466  func GetStackSendBufferLimits(so StackHandler) SendBufferSizeOption {
  1467  	var ss SendBufferSizeOption
  1468  	if err := so.Option(&ss); err != nil {
  1469  		panic(fmt.Sprintf("s.Option(%#v) = %s", ss, err))
  1470  	}
  1471  	return ss
  1472  }
  1473  
  1474  // GetReceiveBufferLimits is used to get the send buffer size limits.
  1475  type GetReceiveBufferLimits func(StackHandler) ReceiveBufferSizeOption
  1476  
  1477  // GetStackReceiveBufferLimits is used to get default, min and max send buffer size.
  1478  func GetStackReceiveBufferLimits(so StackHandler) ReceiveBufferSizeOption {
  1479  	var ss ReceiveBufferSizeOption
  1480  	if err := so.Option(&ss); err != nil {
  1481  		panic(fmt.Sprintf("s.Option(%#v) = %s", ss, err))
  1482  	}
  1483  	return ss
  1484  }
  1485  
  1486  // Route is a row in the routing table. It specifies through which NIC (and
  1487  // gateway) sets of packets should be routed. A row is considered viable if the
  1488  // masked target address matches the destination address in the row.
  1489  type Route struct {
  1490  	// Destination must contain the target address for this row to be viable.
  1491  	Destination Subnet
  1492  
  1493  	// Gateway is the gateway to be used if this row is viable.
  1494  	Gateway Address
  1495  
  1496  	// NIC is the id of the nic to be used if this row is viable.
  1497  	NIC NICID
  1498  }
  1499  
  1500  // String implements the fmt.Stringer interface.
  1501  func (r Route) String() string {
  1502  	var out strings.Builder
  1503  	_, _ = fmt.Fprintf(&out, "%s", r.Destination)
  1504  	if r.Gateway.length > 0 {
  1505  		_, _ = fmt.Fprintf(&out, " via %s", r.Gateway)
  1506  	}
  1507  	_, _ = fmt.Fprintf(&out, " nic %d", r.NIC)
  1508  	return out.String()
  1509  }
  1510  
  1511  // Equal returns true if the given Route is equal to this Route.
  1512  func (r Route) Equal(to Route) bool {
  1513  	// NOTE: This relies on the fact that r.Destination == to.Destination
  1514  	return r.Destination.Equal(to.Destination) && r.Gateway == to.Gateway && r.NIC == to.NIC
  1515  }
  1516  
  1517  // TransportProtocolNumber is the number of a transport protocol.
  1518  type TransportProtocolNumber uint32
  1519  
  1520  // NetworkProtocolNumber is the EtherType of a network protocol in an Ethernet
  1521  // frame.
  1522  //
  1523  // See: https://www.iana.org/assignments/ieee-802-numbers/ieee-802-numbers.xhtml
  1524  type NetworkProtocolNumber uint32
  1525  
  1526  // A StatCounter keeps track of a statistic.
  1527  //
  1528  // +stateify savable
  1529  type StatCounter struct {
  1530  	count atomicbitops.Uint64
  1531  }
  1532  
  1533  // Increment adds one to the counter.
  1534  func (s *StatCounter) Increment() {
  1535  	s.IncrementBy(1)
  1536  }
  1537  
  1538  // Decrement minuses one to the counter.
  1539  func (s *StatCounter) Decrement() {
  1540  	s.IncrementBy(^uint64(0))
  1541  }
  1542  
  1543  // Value returns the current value of the counter.
  1544  func (s *StatCounter) Value() uint64 {
  1545  	return s.count.Load()
  1546  }
  1547  
  1548  // IncrementBy increments the counter by v.
  1549  func (s *StatCounter) IncrementBy(v uint64) {
  1550  	s.count.Add(v)
  1551  }
  1552  
  1553  func (s *StatCounter) String() string {
  1554  	return strconv.FormatUint(s.Value(), 10)
  1555  }
  1556  
  1557  // A MultiCounterStat keeps track of two counters at once.
  1558  type MultiCounterStat struct {
  1559  	a *StatCounter
  1560  	b *StatCounter
  1561  }
  1562  
  1563  // Init sets both internal counters to point to a and b.
  1564  func (m *MultiCounterStat) Init(a, b *StatCounter) {
  1565  	m.a = a
  1566  	m.b = b
  1567  }
  1568  
  1569  // Increment adds one to the counters.
  1570  func (m *MultiCounterStat) Increment() {
  1571  	m.a.Increment()
  1572  	m.b.Increment()
  1573  }
  1574  
  1575  // IncrementBy increments the counters by v.
  1576  func (m *MultiCounterStat) IncrementBy(v uint64) {
  1577  	m.a.IncrementBy(v)
  1578  	m.b.IncrementBy(v)
  1579  }
  1580  
  1581  // ICMPv4PacketStats enumerates counts for all ICMPv4 packet types.
  1582  type ICMPv4PacketStats struct {
  1583  	// LINT.IfChange(ICMPv4PacketStats)
  1584  
  1585  	// EchoRequest is the number of ICMPv4 echo packets counted.
  1586  	EchoRequest *StatCounter
  1587  
  1588  	// EchoReply is the number of ICMPv4 echo reply packets counted.
  1589  	EchoReply *StatCounter
  1590  
  1591  	// DstUnreachable is the number of ICMPv4 destination unreachable packets
  1592  	// counted.
  1593  	DstUnreachable *StatCounter
  1594  
  1595  	// SrcQuench is the number of ICMPv4 source quench packets counted.
  1596  	SrcQuench *StatCounter
  1597  
  1598  	// Redirect is the number of ICMPv4 redirect packets counted.
  1599  	Redirect *StatCounter
  1600  
  1601  	// TimeExceeded is the number of ICMPv4 time exceeded packets counted.
  1602  	TimeExceeded *StatCounter
  1603  
  1604  	// ParamProblem is the number of ICMPv4 parameter problem packets counted.
  1605  	ParamProblem *StatCounter
  1606  
  1607  	// Timestamp is the number of ICMPv4 timestamp packets counted.
  1608  	Timestamp *StatCounter
  1609  
  1610  	// TimestampReply is the number of ICMPv4 timestamp reply packets counted.
  1611  	TimestampReply *StatCounter
  1612  
  1613  	// InfoRequest is the number of ICMPv4 information request packets counted.
  1614  	InfoRequest *StatCounter
  1615  
  1616  	// InfoReply is the number of ICMPv4 information reply packets counted.
  1617  	InfoReply *StatCounter
  1618  
  1619  	// LINT.ThenChange(network/ipv4/stats.go:multiCounterICMPv4PacketStats)
  1620  }
  1621  
  1622  // ICMPv4SentPacketStats collects outbound ICMPv4-specific stats.
  1623  type ICMPv4SentPacketStats struct {
  1624  	// LINT.IfChange(ICMPv4SentPacketStats)
  1625  
  1626  	ICMPv4PacketStats
  1627  
  1628  	// Dropped is the number of ICMPv4 packets dropped due to link layer errors.
  1629  	Dropped *StatCounter
  1630  
  1631  	// RateLimited is the number of ICMPv4 packets dropped due to rate limit being
  1632  	// exceeded.
  1633  	RateLimited *StatCounter
  1634  
  1635  	// LINT.ThenChange(network/ipv4/stats.go:multiCounterICMPv4SentPacketStats)
  1636  }
  1637  
  1638  // ICMPv4ReceivedPacketStats collects inbound ICMPv4-specific stats.
  1639  type ICMPv4ReceivedPacketStats struct {
  1640  	// LINT.IfChange(ICMPv4ReceivedPacketStats)
  1641  
  1642  	ICMPv4PacketStats
  1643  
  1644  	// Invalid is the number of invalid ICMPv4 packets received.
  1645  	Invalid *StatCounter
  1646  
  1647  	// LINT.ThenChange(network/ipv4/stats.go:multiCounterICMPv4ReceivedPacketStats)
  1648  }
  1649  
  1650  // ICMPv4Stats collects ICMPv4-specific stats.
  1651  type ICMPv4Stats struct {
  1652  	// LINT.IfChange(ICMPv4Stats)
  1653  
  1654  	// PacketsSent contains statistics about sent packets.
  1655  	PacketsSent ICMPv4SentPacketStats
  1656  
  1657  	// PacketsReceived contains statistics about received packets.
  1658  	PacketsReceived ICMPv4ReceivedPacketStats
  1659  
  1660  	// LINT.ThenChange(network/ipv4/stats.go:multiCounterICMPv4Stats)
  1661  }
  1662  
  1663  // ICMPv6PacketStats enumerates counts for all ICMPv6 packet types.
  1664  type ICMPv6PacketStats struct {
  1665  	// LINT.IfChange(ICMPv6PacketStats)
  1666  
  1667  	// EchoRequest is the number of ICMPv6 echo request packets counted.
  1668  	EchoRequest *StatCounter
  1669  
  1670  	// EchoReply is the number of ICMPv6 echo reply packets counted.
  1671  	EchoReply *StatCounter
  1672  
  1673  	// DstUnreachable is the number of ICMPv6 destination unreachable packets
  1674  	// counted.
  1675  	DstUnreachable *StatCounter
  1676  
  1677  	// PacketTooBig is the number of ICMPv6 packet too big packets counted.
  1678  	PacketTooBig *StatCounter
  1679  
  1680  	// TimeExceeded is the number of ICMPv6 time exceeded packets counted.
  1681  	TimeExceeded *StatCounter
  1682  
  1683  	// ParamProblem is the number of ICMPv6 parameter problem packets counted.
  1684  	ParamProblem *StatCounter
  1685  
  1686  	// RouterSolicit is the number of ICMPv6 router solicit packets counted.
  1687  	RouterSolicit *StatCounter
  1688  
  1689  	// RouterAdvert is the number of ICMPv6 router advert packets counted.
  1690  	RouterAdvert *StatCounter
  1691  
  1692  	// NeighborSolicit is the number of ICMPv6 neighbor solicit packets counted.
  1693  	NeighborSolicit *StatCounter
  1694  
  1695  	// NeighborAdvert is the number of ICMPv6 neighbor advert packets counted.
  1696  	NeighborAdvert *StatCounter
  1697  
  1698  	// RedirectMsg is the number of ICMPv6 redirect message packets counted.
  1699  	RedirectMsg *StatCounter
  1700  
  1701  	// MulticastListenerQuery is the number of Multicast Listener Query messages
  1702  	// counted.
  1703  	MulticastListenerQuery *StatCounter
  1704  
  1705  	// MulticastListenerReport is the number of Multicast Listener Report messages
  1706  	// counted.
  1707  	MulticastListenerReport *StatCounter
  1708  
  1709  	// MulticastListenerReportV2 is the number of Multicast Listener Report
  1710  	// messages counted.
  1711  	MulticastListenerReportV2 *StatCounter
  1712  
  1713  	// MulticastListenerDone is the number of Multicast Listener Done messages
  1714  	// counted.
  1715  	MulticastListenerDone *StatCounter
  1716  
  1717  	// LINT.ThenChange(network/ipv6/stats.go:multiCounterICMPv6PacketStats)
  1718  }
  1719  
  1720  // ICMPv6SentPacketStats collects outbound ICMPv6-specific stats.
  1721  type ICMPv6SentPacketStats struct {
  1722  	// LINT.IfChange(ICMPv6SentPacketStats)
  1723  
  1724  	ICMPv6PacketStats
  1725  
  1726  	// Dropped is the number of ICMPv6 packets dropped due to link layer errors.
  1727  	Dropped *StatCounter
  1728  
  1729  	// RateLimited is the number of ICMPv6 packets dropped due to rate limit being
  1730  	// exceeded.
  1731  	RateLimited *StatCounter
  1732  
  1733  	// LINT.ThenChange(network/ipv6/stats.go:multiCounterICMPv6SentPacketStats)
  1734  }
  1735  
  1736  // ICMPv6ReceivedPacketStats collects inbound ICMPv6-specific stats.
  1737  type ICMPv6ReceivedPacketStats struct {
  1738  	// LINT.IfChange(ICMPv6ReceivedPacketStats)
  1739  
  1740  	ICMPv6PacketStats
  1741  
  1742  	// Unrecognized is the number of ICMPv6 packets received that the transport
  1743  	// layer does not know how to parse.
  1744  	Unrecognized *StatCounter
  1745  
  1746  	// Invalid is the number of invalid ICMPv6 packets received.
  1747  	Invalid *StatCounter
  1748  
  1749  	// RouterOnlyPacketsDroppedByHost is the number of ICMPv6 packets dropped due
  1750  	// to being router-specific packets.
  1751  	RouterOnlyPacketsDroppedByHost *StatCounter
  1752  
  1753  	// LINT.ThenChange(network/ipv6/stats.go:multiCounterICMPv6ReceivedPacketStats)
  1754  }
  1755  
  1756  // ICMPv6Stats collects ICMPv6-specific stats.
  1757  type ICMPv6Stats struct {
  1758  	// LINT.IfChange(ICMPv6Stats)
  1759  
  1760  	// PacketsSent contains statistics about sent packets.
  1761  	PacketsSent ICMPv6SentPacketStats
  1762  
  1763  	// PacketsReceived contains statistics about received packets.
  1764  	PacketsReceived ICMPv6ReceivedPacketStats
  1765  
  1766  	// LINT.ThenChange(network/ipv6/stats.go:multiCounterICMPv6Stats)
  1767  }
  1768  
  1769  // ICMPStats collects ICMP-specific stats (both v4 and v6).
  1770  type ICMPStats struct {
  1771  	// V4 contains the ICMPv4-specifics stats.
  1772  	V4 ICMPv4Stats
  1773  
  1774  	// V6 contains the ICMPv4-specifics stats.
  1775  	V6 ICMPv6Stats
  1776  }
  1777  
  1778  // IGMPPacketStats enumerates counts for all IGMP packet types.
  1779  type IGMPPacketStats struct {
  1780  	// LINT.IfChange(IGMPPacketStats)
  1781  
  1782  	// MembershipQuery is the number of Membership Query messages counted.
  1783  	MembershipQuery *StatCounter
  1784  
  1785  	// V1MembershipReport is the number of Version 1 Membership Report messages
  1786  	// counted.
  1787  	V1MembershipReport *StatCounter
  1788  
  1789  	// V2MembershipReport is the number of Version 2 Membership Report messages
  1790  	// counted.
  1791  	V2MembershipReport *StatCounter
  1792  
  1793  	// V3MembershipReport is the number of Version 3 Membership Report messages
  1794  	// counted.
  1795  	V3MembershipReport *StatCounter
  1796  
  1797  	// LeaveGroup is the number of Leave Group messages counted.
  1798  	LeaveGroup *StatCounter
  1799  
  1800  	// LINT.ThenChange(network/ipv4/stats.go:multiCounterIGMPPacketStats)
  1801  }
  1802  
  1803  // IGMPSentPacketStats collects outbound IGMP-specific stats.
  1804  type IGMPSentPacketStats struct {
  1805  	// LINT.IfChange(IGMPSentPacketStats)
  1806  
  1807  	IGMPPacketStats
  1808  
  1809  	// Dropped is the number of IGMP packets dropped.
  1810  	Dropped *StatCounter
  1811  
  1812  	// LINT.ThenChange(network/ipv4/stats.go:multiCounterIGMPSentPacketStats)
  1813  }
  1814  
  1815  // IGMPReceivedPacketStats collects inbound IGMP-specific stats.
  1816  type IGMPReceivedPacketStats struct {
  1817  	// LINT.IfChange(IGMPReceivedPacketStats)
  1818  
  1819  	IGMPPacketStats
  1820  
  1821  	// Invalid is the number of invalid IGMP packets received.
  1822  	Invalid *StatCounter
  1823  
  1824  	// ChecksumErrors is the number of IGMP packets dropped due to bad checksums.
  1825  	ChecksumErrors *StatCounter
  1826  
  1827  	// Unrecognized is the number of unrecognized messages counted, these are
  1828  	// silently ignored for forward-compatibilty.
  1829  	Unrecognized *StatCounter
  1830  
  1831  	// LINT.ThenChange(network/ipv4/stats.go:multiCounterIGMPReceivedPacketStats)
  1832  }
  1833  
  1834  // IGMPStats collects IGMP-specific stats.
  1835  type IGMPStats struct {
  1836  	// LINT.IfChange(IGMPStats)
  1837  
  1838  	// PacketsSent contains statistics about sent packets.
  1839  	PacketsSent IGMPSentPacketStats
  1840  
  1841  	// PacketsReceived contains statistics about received packets.
  1842  	PacketsReceived IGMPReceivedPacketStats
  1843  
  1844  	// LINT.ThenChange(network/ipv4/stats.go:multiCounterIGMPStats)
  1845  }
  1846  
  1847  // IPForwardingStats collects stats related to IP forwarding (both v4 and v6).
  1848  type IPForwardingStats struct {
  1849  	// LINT.IfChange(IPForwardingStats)
  1850  
  1851  	// Unrouteable is the number of IP packets received which were dropped
  1852  	// because a route to their destination could not be constructed.
  1853  	Unrouteable *StatCounter
  1854  
  1855  	// ExhaustedTTL is the number of IP packets received which were dropped
  1856  	// because their TTL was exhausted.
  1857  	ExhaustedTTL *StatCounter
  1858  
  1859  	// InitializingSource is the number of IP packets which were dropped
  1860  	// because they contained a source address that may only be used on the local
  1861  	// network as part of initialization work.
  1862  	InitializingSource *StatCounter
  1863  
  1864  	// LinkLocalSource is the number of IP packets which were dropped
  1865  	// because they contained a link-local source address.
  1866  	LinkLocalSource *StatCounter
  1867  
  1868  	// LinkLocalDestination is the number of IP packets which were dropped
  1869  	// because they contained a link-local destination address.
  1870  	LinkLocalDestination *StatCounter
  1871  
  1872  	// PacketTooBig is the number of IP packets which were dropped because they
  1873  	// were too big for the outgoing MTU.
  1874  	PacketTooBig *StatCounter
  1875  
  1876  	// HostUnreachable is the number of IP packets received which could not be
  1877  	// successfully forwarded due to an unresolvable next hop.
  1878  	HostUnreachable *StatCounter
  1879  
  1880  	// ExtensionHeaderProblem is the number of IP packets which were dropped
  1881  	// because of a problem encountered when processing an IPv6 extension
  1882  	// header.
  1883  	ExtensionHeaderProblem *StatCounter
  1884  
  1885  	// UnexpectedMulticastInputInterface is the number of multicast packets that
  1886  	// were received on an interface that did not match the corresponding route's
  1887  	// expected input interface.
  1888  	UnexpectedMulticastInputInterface *StatCounter
  1889  
  1890  	// UnknownOutputEndpoint is the number of packets that could not be forwarded
  1891  	// because the output endpoint could not be found.
  1892  	UnknownOutputEndpoint *StatCounter
  1893  
  1894  	// NoMulticastPendingQueueBufferSpace is the number of multicast packets that
  1895  	// were dropped due to insufficent buffer space in the pending packet queue.
  1896  	NoMulticastPendingQueueBufferSpace *StatCounter
  1897  
  1898  	// OutgoingDeviceNoBufferSpace is the number of packets that were dropped due
  1899  	// to insufficient space in the outgoing device.
  1900  	OutgoingDeviceNoBufferSpace *StatCounter
  1901  
  1902  	// Errors is the number of IP packets received which could not be
  1903  	// successfully forwarded.
  1904  	Errors *StatCounter
  1905  
  1906  	// LINT.ThenChange(network/internal/ip/stats.go:MultiCounterIPForwardingStats)
  1907  }
  1908  
  1909  // IPStats collects IP-specific stats (both v4 and v6).
  1910  type IPStats struct {
  1911  	// LINT.IfChange(IPStats)
  1912  
  1913  	// PacketsReceived is the number of IP packets received from the link layer.
  1914  	PacketsReceived *StatCounter
  1915  
  1916  	// ValidPacketsReceived is the number of valid IP packets that reached the IP
  1917  	// layer.
  1918  	ValidPacketsReceived *StatCounter
  1919  
  1920  	// DisabledPacketsReceived is the number of IP packets received from the link
  1921  	// layer when the IP layer is disabled.
  1922  	DisabledPacketsReceived *StatCounter
  1923  
  1924  	// InvalidDestinationAddressesReceived is the number of IP packets received
  1925  	// with an unknown or invalid destination address.
  1926  	InvalidDestinationAddressesReceived *StatCounter
  1927  
  1928  	// InvalidSourceAddressesReceived is the number of IP packets received with a
  1929  	// source address that should never have been received on the wire.
  1930  	InvalidSourceAddressesReceived *StatCounter
  1931  
  1932  	// PacketsDelivered is the number of incoming IP packets that are successfully
  1933  	// delivered to the transport layer.
  1934  	PacketsDelivered *StatCounter
  1935  
  1936  	// PacketsSent is the number of IP packets sent via WritePacket.
  1937  	PacketsSent *StatCounter
  1938  
  1939  	// OutgoingPacketErrors is the number of IP packets which failed to write to a
  1940  	// link-layer endpoint.
  1941  	OutgoingPacketErrors *StatCounter
  1942  
  1943  	// MalformedPacketsReceived is the number of IP Packets that were dropped due
  1944  	// to the IP packet header failing validation checks.
  1945  	MalformedPacketsReceived *StatCounter
  1946  
  1947  	// MalformedFragmentsReceived is the number of IP Fragments that were dropped
  1948  	// due to the fragment failing validation checks.
  1949  	MalformedFragmentsReceived *StatCounter
  1950  
  1951  	// IPTablesPreroutingDropped is the number of IP packets dropped in the
  1952  	// Prerouting chain.
  1953  	IPTablesPreroutingDropped *StatCounter
  1954  
  1955  	// IPTablesInputDropped is the number of IP packets dropped in the Input
  1956  	// chain.
  1957  	IPTablesInputDropped *StatCounter
  1958  
  1959  	// IPTablesForwardDropped is the number of IP packets dropped in the Forward
  1960  	// chain.
  1961  	IPTablesForwardDropped *StatCounter
  1962  
  1963  	// IPTablesOutputDropped is the number of IP packets dropped in the Output
  1964  	// chain.
  1965  	IPTablesOutputDropped *StatCounter
  1966  
  1967  	// IPTablesPostroutingDropped is the number of IP packets dropped in the
  1968  	// Postrouting chain.
  1969  	IPTablesPostroutingDropped *StatCounter
  1970  
  1971  	// TODO(https://gvisor.dev/issues/5529): Move the IPv4-only option stats out
  1972  	// of IPStats.
  1973  	// OptionTimestampReceived is the number of Timestamp options seen.
  1974  	OptionTimestampReceived *StatCounter
  1975  
  1976  	// OptionRecordRouteReceived is the number of Record Route options seen.
  1977  	OptionRecordRouteReceived *StatCounter
  1978  
  1979  	// OptionRouterAlertReceived is the number of Router Alert options seen.
  1980  	OptionRouterAlertReceived *StatCounter
  1981  
  1982  	// OptionUnknownReceived is the number of unknown IP options seen.
  1983  	OptionUnknownReceived *StatCounter
  1984  
  1985  	// Forwarding collects stats related to IP forwarding.
  1986  	Forwarding IPForwardingStats
  1987  
  1988  	// LINT.ThenChange(network/internal/ip/stats.go:MultiCounterIPStats)
  1989  }
  1990  
  1991  // ARPStats collects ARP-specific stats.
  1992  type ARPStats struct {
  1993  	// LINT.IfChange(ARPStats)
  1994  
  1995  	// PacketsReceived is the number of ARP packets received from the link layer.
  1996  	PacketsReceived *StatCounter
  1997  
  1998  	// DisabledPacketsReceived is the number of ARP packets received from the link
  1999  	// layer when the ARP layer is disabled.
  2000  	DisabledPacketsReceived *StatCounter
  2001  
  2002  	// MalformedPacketsReceived is the number of ARP packets that were dropped due
  2003  	// to being malformed.
  2004  	MalformedPacketsReceived *StatCounter
  2005  
  2006  	// RequestsReceived is the number of ARP requests received.
  2007  	RequestsReceived *StatCounter
  2008  
  2009  	// RequestsReceivedUnknownTargetAddress is the number of ARP requests that
  2010  	// were targeted to an interface different from the one it was received on.
  2011  	RequestsReceivedUnknownTargetAddress *StatCounter
  2012  
  2013  	// OutgoingRequestInterfaceHasNoLocalAddressErrors is the number of failures
  2014  	// to send an ARP request because the interface has no network address
  2015  	// assigned to it.
  2016  	OutgoingRequestInterfaceHasNoLocalAddressErrors *StatCounter
  2017  
  2018  	// OutgoingRequestBadLocalAddressErrors is the number of failures to send an
  2019  	// ARP request with a bad local address.
  2020  	OutgoingRequestBadLocalAddressErrors *StatCounter
  2021  
  2022  	// OutgoingRequestsDropped is the number of ARP requests which failed to write
  2023  	// to a link-layer endpoint.
  2024  	OutgoingRequestsDropped *StatCounter
  2025  
  2026  	// OutgoingRequestSent is the number of ARP requests successfully written to a
  2027  	// link-layer endpoint.
  2028  	OutgoingRequestsSent *StatCounter
  2029  
  2030  	// RepliesReceived is the number of ARP replies received.
  2031  	RepliesReceived *StatCounter
  2032  
  2033  	// OutgoingRepliesDropped is the number of ARP replies which failed to write
  2034  	// to a link-layer endpoint.
  2035  	OutgoingRepliesDropped *StatCounter
  2036  
  2037  	// OutgoingRepliesSent is the number of ARP replies successfully written to a
  2038  	// link-layer endpoint.
  2039  	OutgoingRepliesSent *StatCounter
  2040  
  2041  	// LINT.ThenChange(network/arp/stats.go:multiCounterARPStats)
  2042  }
  2043  
  2044  // TCPStats collects TCP-specific stats.
  2045  type TCPStats struct {
  2046  	// ActiveConnectionOpenings is the number of connections opened
  2047  	// successfully via Connect.
  2048  	ActiveConnectionOpenings *StatCounter
  2049  
  2050  	// PassiveConnectionOpenings is the number of connections opened
  2051  	// successfully via Listen.
  2052  	PassiveConnectionOpenings *StatCounter
  2053  
  2054  	// CurrentEstablished is the number of TCP connections for which the
  2055  	// current state is ESTABLISHED.
  2056  	CurrentEstablished *StatCounter
  2057  
  2058  	// CurrentConnected is the number of TCP connections that
  2059  	// are in connected state.
  2060  	CurrentConnected *StatCounter
  2061  
  2062  	// EstablishedResets is the number of times TCP connections have made
  2063  	// a direct transition to the CLOSED state from either the
  2064  	// ESTABLISHED state or the CLOSE-WAIT state.
  2065  	EstablishedResets *StatCounter
  2066  
  2067  	// EstablishedClosed is the number of times established TCP connections
  2068  	// made a transition to CLOSED state.
  2069  	EstablishedClosed *StatCounter
  2070  
  2071  	// EstablishedTimedout is the number of times an established connection
  2072  	// was reset because of keep-alive time out.
  2073  	EstablishedTimedout *StatCounter
  2074  
  2075  	// ListenOverflowSynDrop is the number of times the listen queue overflowed
  2076  	// and a SYN was dropped.
  2077  	ListenOverflowSynDrop *StatCounter
  2078  
  2079  	// ListenOverflowAckDrop is the number of times the final ACK
  2080  	// in the handshake was dropped due to overflow.
  2081  	ListenOverflowAckDrop *StatCounter
  2082  
  2083  	// ListenOverflowCookieSent is the number of times a SYN cookie was sent.
  2084  	ListenOverflowSynCookieSent *StatCounter
  2085  
  2086  	// ListenOverflowSynCookieRcvd is the number of times a valid SYN
  2087  	// cookie was received.
  2088  	ListenOverflowSynCookieRcvd *StatCounter
  2089  
  2090  	// ListenOverflowInvalidSynCookieRcvd is the number of times an invalid SYN cookie
  2091  	// was received.
  2092  	ListenOverflowInvalidSynCookieRcvd *StatCounter
  2093  
  2094  	// FailedConnectionAttempts is the number of calls to Connect or Listen
  2095  	// (active and passive openings, respectively) that end in an error.
  2096  	FailedConnectionAttempts *StatCounter
  2097  
  2098  	// ValidSegmentsReceived is the number of TCP segments received that
  2099  	// the transport layer successfully parsed.
  2100  	ValidSegmentsReceived *StatCounter
  2101  
  2102  	// InvalidSegmentsReceived is the number of TCP segments received that
  2103  	// the transport layer could not parse.
  2104  	InvalidSegmentsReceived *StatCounter
  2105  
  2106  	// SegmentsSent is the number of TCP segments sent.
  2107  	SegmentsSent *StatCounter
  2108  
  2109  	// SegmentSendErrors is the number of TCP segments failed to be sent.
  2110  	SegmentSendErrors *StatCounter
  2111  
  2112  	// ResetsSent is the number of TCP resets sent.
  2113  	ResetsSent *StatCounter
  2114  
  2115  	// ResetsReceived is the number of TCP resets received.
  2116  	ResetsReceived *StatCounter
  2117  
  2118  	// Retransmits is the number of TCP segments retransmitted.
  2119  	Retransmits *StatCounter
  2120  
  2121  	// FastRecovery is the number of times Fast Recovery was used to
  2122  	// recover from packet loss.
  2123  	FastRecovery *StatCounter
  2124  
  2125  	// SACKRecovery is the number of times SACK Recovery was used to
  2126  	// recover from packet loss.
  2127  	SACKRecovery *StatCounter
  2128  
  2129  	// TLPRecovery is the number of times recovery was accomplished by the tail
  2130  	// loss probe.
  2131  	TLPRecovery *StatCounter
  2132  
  2133  	// SlowStartRetransmits is the number of segments retransmitted in slow
  2134  	// start.
  2135  	SlowStartRetransmits *StatCounter
  2136  
  2137  	// FastRetransmit is the number of segments retransmitted in fast
  2138  	// recovery.
  2139  	FastRetransmit *StatCounter
  2140  
  2141  	// Timeouts is the number of times the RTO expired.
  2142  	Timeouts *StatCounter
  2143  
  2144  	// ChecksumErrors is the number of segments dropped due to bad checksums.
  2145  	ChecksumErrors *StatCounter
  2146  
  2147  	// FailedPortReservations is the number of times TCP failed to reserve
  2148  	// a port.
  2149  	FailedPortReservations *StatCounter
  2150  
  2151  	// SegmentsAckedWithDSACK is the number of segments acknowledged with
  2152  	// DSACK.
  2153  	SegmentsAckedWithDSACK *StatCounter
  2154  
  2155  	// SpuriousRecovery is the number of times the connection entered loss
  2156  	// recovery spuriously.
  2157  	SpuriousRecovery *StatCounter
  2158  
  2159  	// SpuriousRTORecovery is the number of spurious RTOs.
  2160  	SpuriousRTORecovery *StatCounter
  2161  
  2162  	// ForwardMaxInFlightDrop is the number of connection requests that are
  2163  	// dropped due to exceeding the maximum number of in-flight connection
  2164  	// requests.
  2165  	ForwardMaxInFlightDrop *StatCounter
  2166  }
  2167  
  2168  // UDPStats collects UDP-specific stats.
  2169  type UDPStats struct {
  2170  	// PacketsReceived is the number of UDP datagrams received via
  2171  	// HandlePacket.
  2172  	PacketsReceived *StatCounter
  2173  
  2174  	// UnknownPortErrors is the number of incoming UDP datagrams dropped
  2175  	// because they did not have a known destination port.
  2176  	UnknownPortErrors *StatCounter
  2177  
  2178  	// ReceiveBufferErrors is the number of incoming UDP datagrams dropped
  2179  	// due to the receiving buffer being in an invalid state.
  2180  	ReceiveBufferErrors *StatCounter
  2181  
  2182  	// MalformedPacketsReceived is the number of incoming UDP datagrams
  2183  	// dropped due to the UDP header being in a malformed state.
  2184  	MalformedPacketsReceived *StatCounter
  2185  
  2186  	// PacketsSent is the number of UDP datagrams sent via sendUDP.
  2187  	PacketsSent *StatCounter
  2188  
  2189  	// PacketSendErrors is the number of datagrams failed to be sent.
  2190  	PacketSendErrors *StatCounter
  2191  
  2192  	// ChecksumErrors is the number of datagrams dropped due to bad checksums.
  2193  	ChecksumErrors *StatCounter
  2194  }
  2195  
  2196  // NICNeighborStats holds metrics for the neighbor table.
  2197  type NICNeighborStats struct {
  2198  	// LINT.IfChange(NICNeighborStats)
  2199  
  2200  	// UnreachableEntryLookups counts the number of lookups performed on an
  2201  	// entry in Unreachable state.
  2202  	UnreachableEntryLookups *StatCounter
  2203  
  2204  	// DroppedConfirmationForNoninitiatedNeighbor counts the number of neighbor
  2205  	// responses that were dropped because they didn't match an entry in the
  2206  	// cache.
  2207  	DroppedConfirmationForNoninitiatedNeighbor *StatCounter
  2208  
  2209  	// DroppedInvalidLinkAddressConfirmations counts the number of neighbor
  2210  	// responses that were ignored because they had an invalid source link-layer
  2211  	// address.
  2212  	DroppedInvalidLinkAddressConfirmations *StatCounter
  2213  
  2214  	// LINT.ThenChange(stack/nic_stats.go:multiCounterNICNeighborStats)
  2215  }
  2216  
  2217  // NICPacketStats holds basic packet statistics.
  2218  type NICPacketStats struct {
  2219  	// LINT.IfChange(NICPacketStats)
  2220  
  2221  	// Packets is the number of packets counted.
  2222  	Packets *StatCounter
  2223  
  2224  	// Bytes is the number of bytes counted.
  2225  	Bytes *StatCounter
  2226  
  2227  	// LINT.ThenChange(stack/nic_stats.go:multiCounterNICPacketStats)
  2228  }
  2229  
  2230  // IntegralStatCounterMap holds a map associating integral keys with
  2231  // StatCounters.
  2232  type IntegralStatCounterMap struct {
  2233  	mu sync.RWMutex
  2234  	// +checklocks:mu
  2235  	counterMap map[uint64]*StatCounter
  2236  }
  2237  
  2238  // Keys returns all keys present in the map.
  2239  func (m *IntegralStatCounterMap) Keys() []uint64 {
  2240  	m.mu.RLock()
  2241  	defer m.mu.RUnlock()
  2242  	var keys []uint64
  2243  	for k := range m.counterMap {
  2244  		keys = append(keys, k)
  2245  	}
  2246  	return keys
  2247  }
  2248  
  2249  // Get returns the counter mapped by the provided key.
  2250  func (m *IntegralStatCounterMap) Get(key uint64) (*StatCounter, bool) {
  2251  	m.mu.RLock()
  2252  	defer m.mu.RUnlock()
  2253  	counter, ok := m.counterMap[key]
  2254  	return counter, ok
  2255  }
  2256  
  2257  // Init initializes the map.
  2258  func (m *IntegralStatCounterMap) Init() {
  2259  	m.mu.Lock()
  2260  	defer m.mu.Unlock()
  2261  	m.counterMap = make(map[uint64]*StatCounter)
  2262  }
  2263  
  2264  // Increment increments the counter associated with the provided key.
  2265  func (m *IntegralStatCounterMap) Increment(key uint64) {
  2266  	m.mu.RLock()
  2267  	counter, ok := m.counterMap[key]
  2268  	m.mu.RUnlock()
  2269  
  2270  	if !ok {
  2271  		m.mu.Lock()
  2272  		counter, ok = m.counterMap[key]
  2273  		if !ok {
  2274  			counter = new(StatCounter)
  2275  			m.counterMap[key] = counter
  2276  		}
  2277  		m.mu.Unlock()
  2278  	}
  2279  	counter.Increment()
  2280  }
  2281  
  2282  // A MultiIntegralStatCounterMap keeps track of two integral counter maps at
  2283  // once.
  2284  type MultiIntegralStatCounterMap struct {
  2285  	a *IntegralStatCounterMap
  2286  	b *IntegralStatCounterMap
  2287  }
  2288  
  2289  // Init sets the internal integral counter maps to point to a and b.
  2290  func (m *MultiIntegralStatCounterMap) Init(a, b *IntegralStatCounterMap) {
  2291  	m.a = a
  2292  	m.b = b
  2293  }
  2294  
  2295  // Increment increments the counter in each map corresponding to the
  2296  // provided key.
  2297  func (m *MultiIntegralStatCounterMap) Increment(key uint64) {
  2298  	m.a.Increment(key)
  2299  	m.b.Increment(key)
  2300  }
  2301  
  2302  // NICStats holds NIC statistics.
  2303  type NICStats struct {
  2304  	// LINT.IfChange(NICStats)
  2305  
  2306  	// UnknownL3ProtocolRcvdPacketCounts records the number of packets recieved
  2307  	// for each unknown or unsupported netowrk protocol number.
  2308  	UnknownL3ProtocolRcvdPacketCounts *IntegralStatCounterMap
  2309  
  2310  	// UnknownL4ProtocolRcvdPacketCounts records the number of packets recieved
  2311  	// for each unknown or unsupported transport protocol number.
  2312  	UnknownL4ProtocolRcvdPacketCounts *IntegralStatCounterMap
  2313  
  2314  	// MalformedL4RcvdPackets is the number of packets received by a NIC that
  2315  	// could not be delivered to a transport endpoint because the L4 header could
  2316  	// not be parsed.
  2317  	MalformedL4RcvdPackets *StatCounter
  2318  
  2319  	// Tx contains statistics about transmitted packets.
  2320  	Tx NICPacketStats
  2321  
  2322  	// TxPacketsDroppedNoBufferSpace is the number of packets dropepd due to the
  2323  	// NIC not having enough buffer space to send the packet.
  2324  	//
  2325  	// Packets may be dropped with a no buffer space error when the device TX
  2326  	// queue is full.
  2327  	TxPacketsDroppedNoBufferSpace *StatCounter
  2328  
  2329  	// Rx contains statistics about received packets.
  2330  	Rx NICPacketStats
  2331  
  2332  	// DisabledRx contains statistics about received packets on disabled NICs.
  2333  	DisabledRx NICPacketStats
  2334  
  2335  	// Neighbor contains statistics about neighbor entries.
  2336  	Neighbor NICNeighborStats
  2337  
  2338  	// LINT.ThenChange(stack/nic_stats.go:multiCounterNICStats)
  2339  }
  2340  
  2341  // FillIn returns a copy of s with nil fields initialized to new StatCounters.
  2342  func (s NICStats) FillIn() NICStats {
  2343  	InitStatCounters(reflect.ValueOf(&s).Elem())
  2344  	return s
  2345  }
  2346  
  2347  // Stats holds statistics about the networking stack.
  2348  type Stats struct {
  2349  	// TODO(https://gvisor.dev/issues/5986): Make the DroppedPackets stat less
  2350  	// ambiguous.
  2351  
  2352  	// DroppedPackets is the number of packets dropped at the transport layer.
  2353  	DroppedPackets *StatCounter
  2354  
  2355  	// NICs is an aggregation of every NIC's statistics. These should not be
  2356  	// incremented using this field, but using the relevant NIC multicounters.
  2357  	NICs NICStats
  2358  
  2359  	// ICMP is an aggregation of every NetworkEndpoint's ICMP statistics (both v4
  2360  	// and v6). These should not be incremented using this field, but using the
  2361  	// relevant NetworkEndpoint ICMP multicounters.
  2362  	ICMP ICMPStats
  2363  
  2364  	// IGMP is an aggregation of every NetworkEndpoint's IGMP statistics. These
  2365  	// should not be incremented using this field, but using the relevant
  2366  	// NetworkEndpoint IGMP multicounters.
  2367  	IGMP IGMPStats
  2368  
  2369  	// IP is an aggregation of every NetworkEndpoint's IP statistics. These should
  2370  	// not be incremented using this field, but using the relevant NetworkEndpoint
  2371  	// IP multicounters.
  2372  	IP IPStats
  2373  
  2374  	// ARP is an aggregation of every NetworkEndpoint's ARP statistics. These
  2375  	// should not be incremented using this field, but using the relevant
  2376  	// NetworkEndpoint ARP multicounters.
  2377  	ARP ARPStats
  2378  
  2379  	// TCP holds TCP-specific stats.
  2380  	TCP TCPStats
  2381  
  2382  	// UDP holds UDP-specific stats.
  2383  	UDP UDPStats
  2384  }
  2385  
  2386  // ReceiveErrors collects packet receive errors within transport endpoint.
  2387  //
  2388  // +stateify savable
  2389  type ReceiveErrors struct {
  2390  	// ReceiveBufferOverflow is the number of received packets dropped
  2391  	// due to the receive buffer being full.
  2392  	ReceiveBufferOverflow StatCounter
  2393  
  2394  	// MalformedPacketsReceived is the number of incoming packets
  2395  	// dropped due to the packet header being in a malformed state.
  2396  	MalformedPacketsReceived StatCounter
  2397  
  2398  	// ClosedReceiver is the number of received packets dropped because
  2399  	// of receiving endpoint state being closed.
  2400  	ClosedReceiver StatCounter
  2401  
  2402  	// ChecksumErrors is the number of packets dropped due to bad checksums.
  2403  	ChecksumErrors StatCounter
  2404  }
  2405  
  2406  // SendErrors collects packet send errors within the transport layer for an
  2407  // endpoint.
  2408  //
  2409  // +stateify savable
  2410  type SendErrors struct {
  2411  	// SendToNetworkFailed is the number of packets failed to be written to
  2412  	// the network endpoint.
  2413  	SendToNetworkFailed StatCounter
  2414  
  2415  	// NoRoute is the number of times we failed to resolve IP route.
  2416  	NoRoute StatCounter
  2417  }
  2418  
  2419  // ReadErrors collects segment read errors from an endpoint read call.
  2420  //
  2421  // +stateify savable
  2422  type ReadErrors struct {
  2423  	// ReadClosed is the number of received packet drops because the endpoint
  2424  	// was shutdown for read.
  2425  	ReadClosed StatCounter
  2426  
  2427  	// InvalidEndpointState is the number of times we found the endpoint state
  2428  	// to be unexpected.
  2429  	InvalidEndpointState StatCounter
  2430  
  2431  	// NotConnected is the number of times we tried to read but found that the
  2432  	// endpoint was not connected.
  2433  	NotConnected StatCounter
  2434  }
  2435  
  2436  // WriteErrors collects packet write errors from an endpoint write call.
  2437  //
  2438  // +stateify savable
  2439  type WriteErrors struct {
  2440  	// WriteClosed is the number of packet drops because the endpoint
  2441  	// was shutdown for write.
  2442  	WriteClosed StatCounter
  2443  
  2444  	// InvalidEndpointState is the number of times we found the endpoint state
  2445  	// to be unexpected.
  2446  	InvalidEndpointState StatCounter
  2447  
  2448  	// InvalidArgs is the number of times invalid input arguments were
  2449  	// provided for endpoint Write call.
  2450  	InvalidArgs StatCounter
  2451  }
  2452  
  2453  // TransportEndpointStats collects statistics about the endpoint.
  2454  //
  2455  // +stateify savable
  2456  type TransportEndpointStats struct {
  2457  	// PacketsReceived is the number of successful packet receives.
  2458  	PacketsReceived StatCounter
  2459  
  2460  	// PacketsSent is the number of successful packet sends.
  2461  	PacketsSent StatCounter
  2462  
  2463  	// ReceiveErrors collects packet receive errors within transport layer.
  2464  	ReceiveErrors ReceiveErrors
  2465  
  2466  	// ReadErrors collects packet read errors from an endpoint read call.
  2467  	ReadErrors ReadErrors
  2468  
  2469  	// SendErrors collects packet send errors within the transport layer.
  2470  	SendErrors SendErrors
  2471  
  2472  	// WriteErrors collects packet write errors from an endpoint write call.
  2473  	WriteErrors WriteErrors
  2474  }
  2475  
  2476  // IsEndpointStats is an empty method to implement the tcpip.EndpointStats
  2477  // marker interface.
  2478  func (*TransportEndpointStats) IsEndpointStats() {}
  2479  
  2480  // InitStatCounters initializes v's fields with nil StatCounter fields to new
  2481  // StatCounters.
  2482  func InitStatCounters(v reflect.Value) {
  2483  	for i := 0; i < v.NumField(); i++ {
  2484  		v := v.Field(i)
  2485  		if s, ok := v.Addr().Interface().(**StatCounter); ok {
  2486  			if *s == nil {
  2487  				*s = new(StatCounter)
  2488  			}
  2489  		} else if s, ok := v.Addr().Interface().(**IntegralStatCounterMap); ok {
  2490  			if *s == nil {
  2491  				*s = new(IntegralStatCounterMap)
  2492  				(*s).Init()
  2493  			}
  2494  		} else {
  2495  			InitStatCounters(v)
  2496  		}
  2497  	}
  2498  }
  2499  
  2500  // FillIn returns a copy of s with nil fields initialized to new StatCounters.
  2501  func (s Stats) FillIn() Stats {
  2502  	InitStatCounters(reflect.ValueOf(&s).Elem())
  2503  	return s
  2504  }
  2505  
  2506  // Clone clones a copy of the TransportEndpointStats into dst by atomically
  2507  // reading each field.
  2508  func (src *TransportEndpointStats) Clone(dst *TransportEndpointStats) {
  2509  	clone(reflect.ValueOf(dst).Elem(), reflect.ValueOf(src).Elem())
  2510  }
  2511  
  2512  func clone(dst reflect.Value, src reflect.Value) {
  2513  	for i := 0; i < dst.NumField(); i++ {
  2514  		d := dst.Field(i)
  2515  		s := src.Field(i)
  2516  		if c, ok := s.Addr().Interface().(*StatCounter); ok {
  2517  			d.Addr().Interface().(*StatCounter).IncrementBy(c.Value())
  2518  		} else {
  2519  			clone(d, s)
  2520  		}
  2521  	}
  2522  }
  2523  
  2524  // String implements the fmt.Stringer interface.
  2525  func (a Address) String() string {
  2526  	switch l := a.Len(); l {
  2527  	case 4:
  2528  		return fmt.Sprintf("%d.%d.%d.%d", int(a.addr[0]), int(a.addr[1]), int(a.addr[2]), int(a.addr[3]))
  2529  	case 16:
  2530  		// Find the longest subsequence of hexadecimal zeros.
  2531  		start, end := -1, -1
  2532  		for i := 0; i < a.Len(); i += 2 {
  2533  			j := i
  2534  			for j < a.Len() && a.addr[j] == 0 && a.addr[j+1] == 0 {
  2535  				j += 2
  2536  			}
  2537  			if j > i+2 && j-i > end-start {
  2538  				start, end = i, j
  2539  			}
  2540  		}
  2541  
  2542  		var b strings.Builder
  2543  		for i := 0; i < a.Len(); i += 2 {
  2544  			if i == start {
  2545  				b.WriteString("::")
  2546  				i = end
  2547  				if end >= a.Len() {
  2548  					break
  2549  				}
  2550  			} else if i > 0 {
  2551  				b.WriteByte(':')
  2552  			}
  2553  			v := uint16(a.addr[i+0])<<8 | uint16(a.addr[i+1])
  2554  			if v == 0 {
  2555  				b.WriteByte('0')
  2556  			} else {
  2557  				const digits = "0123456789abcdef"
  2558  				for i := uint(3); i < 4; i-- {
  2559  					if v := v >> (i * 4); v != 0 {
  2560  						b.WriteByte(digits[v&0xf])
  2561  					}
  2562  				}
  2563  			}
  2564  		}
  2565  		return b.String()
  2566  	default:
  2567  		return fmt.Sprintf("%x", a.addr[:l])
  2568  	}
  2569  }
  2570  
  2571  // To4 converts the IPv4 address to a 4-byte representation.
  2572  // If the address is not an IPv4 address, To4 returns the empty Address.
  2573  func (a Address) To4() Address {
  2574  	const (
  2575  		ipv4len = 4
  2576  		ipv6len = 16
  2577  	)
  2578  	if a.Len() == ipv4len {
  2579  		return a
  2580  	}
  2581  	if a.Len() == ipv6len &&
  2582  		isZeros(a.addr[:10]) &&
  2583  		a.addr[10] == 0xff &&
  2584  		a.addr[11] == 0xff {
  2585  		return AddrFrom4Slice(a.addr[12:16])
  2586  	}
  2587  	return Address{}
  2588  }
  2589  
  2590  // isZeros reports whether addr is all zeros.
  2591  func isZeros(addr []byte) bool {
  2592  	for _, b := range addr {
  2593  		if b != 0 {
  2594  			return false
  2595  		}
  2596  	}
  2597  	return true
  2598  }
  2599  
  2600  // LinkAddress is a byte slice cast as a string that represents a link address.
  2601  // It is typically a 6-byte MAC address.
  2602  type LinkAddress string
  2603  
  2604  // String implements the fmt.Stringer interface.
  2605  func (a LinkAddress) String() string {
  2606  	switch len(a) {
  2607  	case 6:
  2608  		return fmt.Sprintf("%02x:%02x:%02x:%02x:%02x:%02x", a[0], a[1], a[2], a[3], a[4], a[5])
  2609  	default:
  2610  		return fmt.Sprintf("%x", []byte(a))
  2611  	}
  2612  }
  2613  
  2614  // ParseMACAddress parses an IEEE 802 address.
  2615  //
  2616  // It must be in the format aa:bb:cc:dd:ee:ff or aa-bb-cc-dd-ee-ff.
  2617  func ParseMACAddress(s string) (LinkAddress, error) {
  2618  	parts := strings.FieldsFunc(s, func(c rune) bool {
  2619  		return c == ':' || c == '-'
  2620  	})
  2621  	if len(parts) != 6 {
  2622  		return "", fmt.Errorf("inconsistent parts: %s", s)
  2623  	}
  2624  	addr := make([]byte, 0, len(parts))
  2625  	for _, part := range parts {
  2626  		u, err := strconv.ParseUint(part, 16, 8)
  2627  		if err != nil {
  2628  			return "", fmt.Errorf("invalid hex digits: %s", s)
  2629  		}
  2630  		addr = append(addr, byte(u))
  2631  	}
  2632  	return LinkAddress(addr), nil
  2633  }
  2634  
  2635  // AddressWithPrefix is an address with its subnet prefix length.
  2636  //
  2637  // +stateify savable
  2638  type AddressWithPrefix struct {
  2639  	// Address is a network address.
  2640  	Address Address
  2641  
  2642  	// PrefixLen is the subnet prefix length.
  2643  	PrefixLen int
  2644  }
  2645  
  2646  // String implements the fmt.Stringer interface.
  2647  func (a AddressWithPrefix) String() string {
  2648  	return fmt.Sprintf("%s/%d", a.Address, a.PrefixLen)
  2649  }
  2650  
  2651  // Subnet converts the address and prefix into a Subnet value and returns it.
  2652  func (a AddressWithPrefix) Subnet() Subnet {
  2653  	addrLen := a.Address.length
  2654  	if a.PrefixLen <= 0 {
  2655  		return Subnet{
  2656  			address: AddrFromSlice(bytes.Repeat([]byte{0}, addrLen)),
  2657  			mask:    MaskFromBytes(bytes.Repeat([]byte{0}, addrLen)),
  2658  		}
  2659  	}
  2660  	if a.PrefixLen >= addrLen*8 {
  2661  		return Subnet{
  2662  			address: a.Address,
  2663  			mask:    MaskFromBytes(bytes.Repeat([]byte{0xff}, addrLen)),
  2664  		}
  2665  	}
  2666  
  2667  	sa := make([]byte, addrLen)
  2668  	sm := make([]byte, addrLen)
  2669  	n := uint(a.PrefixLen)
  2670  	for i := 0; i < addrLen; i++ {
  2671  		if n >= 8 {
  2672  			sa[i] = a.Address.addr[i]
  2673  			sm[i] = 0xff
  2674  			n -= 8
  2675  			continue
  2676  		}
  2677  		sm[i] = ^byte(0xff >> n)
  2678  		sa[i] = a.Address.addr[i] & sm[i]
  2679  		n = 0
  2680  	}
  2681  
  2682  	// For extra caution, call NewSubnet rather than directly creating the Subnet
  2683  	// value. If that fails it indicates a serious bug in this code, so panic is
  2684  	// in order.
  2685  	s, err := NewSubnet(AddrFromSlice(sa), MaskFromBytes(sm))
  2686  	if err != nil {
  2687  		panic("invalid subnet: " + err.Error())
  2688  	}
  2689  	return s
  2690  }
  2691  
  2692  // ProtocolAddress is an address and the network protocol it is associated
  2693  // with.
  2694  type ProtocolAddress struct {
  2695  	// Protocol is the protocol of the address.
  2696  	Protocol NetworkProtocolNumber
  2697  
  2698  	// AddressWithPrefix is a network address with its subnet prefix length.
  2699  	AddressWithPrefix AddressWithPrefix
  2700  }
  2701  
  2702  var (
  2703  	// danglingEndpointsMu protects access to danglingEndpoints.
  2704  	danglingEndpointsMu sync.Mutex
  2705  
  2706  	// danglingEndpoints tracks all dangling endpoints no longer owned by the app.
  2707  	danglingEndpoints = make(map[Endpoint]struct{})
  2708  )
  2709  
  2710  // GetDanglingEndpoints returns all dangling endpoints.
  2711  func GetDanglingEndpoints() []Endpoint {
  2712  	danglingEndpointsMu.Lock()
  2713  	es := make([]Endpoint, 0, len(danglingEndpoints))
  2714  	for e := range danglingEndpoints {
  2715  		es = append(es, e)
  2716  	}
  2717  	danglingEndpointsMu.Unlock()
  2718  	return es
  2719  }
  2720  
  2721  // ReleaseDanglingEndpoints clears out all all reference counted objects held by
  2722  // dangling endpoints.
  2723  func ReleaseDanglingEndpoints() {
  2724  	// Get the dangling endpoints first to avoid locking around Release(), which
  2725  	// can cause a lock inversion with endpoint.mu and danglingEndpointsMu.
  2726  	// Calling Release on a dangling endpoint that has been deleted is a noop.
  2727  	eps := GetDanglingEndpoints()
  2728  	for _, ep := range eps {
  2729  		ep.Abort()
  2730  	}
  2731  }
  2732  
  2733  // AddDanglingEndpoint adds a dangling endpoint.
  2734  func AddDanglingEndpoint(e Endpoint) {
  2735  	danglingEndpointsMu.Lock()
  2736  	danglingEndpoints[e] = struct{}{}
  2737  	danglingEndpointsMu.Unlock()
  2738  }
  2739  
  2740  // DeleteDanglingEndpoint removes a dangling endpoint.
  2741  func DeleteDanglingEndpoint(e Endpoint) {
  2742  	danglingEndpointsMu.Lock()
  2743  	delete(danglingEndpoints, e)
  2744  	danglingEndpointsMu.Unlock()
  2745  }
  2746  
  2747  // AsyncLoading is the global barrier for asynchronous endpoint loading
  2748  // activities.
  2749  var AsyncLoading sync.WaitGroup