github.com/MetalBlockchain/subnet-evm@v0.4.9/trie/encoding.go (about)

     1  // (c) 2020-2021, Ava Labs, Inc.
     2  //
     3  // This file is a derived work, based on the go-ethereum library whose original
     4  // notices appear below.
     5  //
     6  // It is distributed under a license compatible with the licensing terms of the
     7  // original code from which it is derived.
     8  //
     9  // Much love to the original authors for their work.
    10  // **********
    11  // Copyright 2014 The go-ethereum Authors
    12  // This file is part of the go-ethereum library.
    13  //
    14  // The go-ethereum library is free software: you can redistribute it and/or modify
    15  // it under the terms of the GNU Lesser General Public License as published by
    16  // the Free Software Foundation, either version 3 of the License, or
    17  // (at your option) any later version.
    18  //
    19  // The go-ethereum library is distributed in the hope that it will be useful,
    20  // but WITHOUT ANY WARRANTY; without even the implied warranty of
    21  // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
    22  // GNU Lesser General Public License for more details.
    23  //
    24  // You should have received a copy of the GNU Lesser General Public License
    25  // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
    26  
    27  package trie
    28  
    29  // Trie keys are dealt with in three distinct encodings:
    30  //
    31  // KEYBYTES encoding contains the actual key and nothing else. This encoding is the
    32  // input to most API functions.
    33  //
    34  // HEX encoding contains one byte for each nibble of the key and an optional trailing
    35  // 'terminator' byte of value 0x10 which indicates whether or not the node at the key
    36  // contains a value. Hex key encoding is used for nodes loaded in memory because it's
    37  // convenient to access.
    38  //
    39  // COMPACT encoding is defined by the Ethereum Yellow Paper (it's called "hex prefix
    40  // encoding" there) and contains the bytes of the key and a flag. The high nibble of the
    41  // first byte contains the flag; the lowest bit encoding the oddness of the length and
    42  // the second-lowest encoding whether the node at the key is a value node. The low nibble
    43  // of the first byte is zero in the case of an even number of nibbles and the first nibble
    44  // in the case of an odd number. All remaining nibbles (now an even number) fit properly
    45  // into the remaining bytes. Compact encoding is used for nodes stored on disk.
    46  
    47  func hexToCompact(hex []byte) []byte {
    48  	terminator := byte(0)
    49  	if hasTerm(hex) {
    50  		terminator = 1
    51  		hex = hex[:len(hex)-1]
    52  	}
    53  	buf := make([]byte, len(hex)/2+1)
    54  	buf[0] = terminator << 5 // the flag byte
    55  	if len(hex)&1 == 1 {
    56  		buf[0] |= 1 << 4 // odd flag
    57  		buf[0] |= hex[0] // first nibble is contained in the first byte
    58  		hex = hex[1:]
    59  	}
    60  	decodeNibbles(hex, buf[1:])
    61  	return buf
    62  }
    63  
    64  // hexToCompactInPlace places the compact key in input buffer, returning the length
    65  // needed for the representation
    66  func hexToCompactInPlace(hex []byte) int {
    67  	var (
    68  		hexLen    = len(hex) // length of the hex input
    69  		firstByte = byte(0)
    70  	)
    71  	// Check if we have a terminator there
    72  	if hexLen > 0 && hex[hexLen-1] == 16 {
    73  		firstByte = 1 << 5
    74  		hexLen-- // last part was the terminator, ignore that
    75  	}
    76  	var (
    77  		binLen = hexLen/2 + 1
    78  		ni     = 0 // index in hex
    79  		bi     = 1 // index in bin (compact)
    80  	)
    81  	if hexLen&1 == 1 {
    82  		firstByte |= 1 << 4 // odd flag
    83  		firstByte |= hex[0] // first nibble is contained in the first byte
    84  		ni++
    85  	}
    86  	for ; ni < hexLen; bi, ni = bi+1, ni+2 {
    87  		hex[bi] = hex[ni]<<4 | hex[ni+1]
    88  	}
    89  	hex[0] = firstByte
    90  	return binLen
    91  }
    92  
    93  func compactToHex(compact []byte) []byte {
    94  	if len(compact) == 0 {
    95  		return compact
    96  	}
    97  	base := keybytesToHex(compact)
    98  	// delete terminator flag
    99  	if base[0] < 2 {
   100  		base = base[:len(base)-1]
   101  	}
   102  	// apply odd flag
   103  	chop := 2 - base[0]&1
   104  	return base[chop:]
   105  }
   106  
   107  func keybytesToHex(str []byte) []byte {
   108  	l := len(str)*2 + 1
   109  	var nibbles = make([]byte, l)
   110  	for i, b := range str {
   111  		nibbles[i*2] = b / 16
   112  		nibbles[i*2+1] = b % 16
   113  	}
   114  	nibbles[l-1] = 16
   115  	return nibbles
   116  }
   117  
   118  // hexToKeybytes turns hex nibbles into key bytes.
   119  // This can only be used for keys of even length.
   120  func hexToKeybytes(hex []byte) []byte {
   121  	if hasTerm(hex) {
   122  		hex = hex[:len(hex)-1]
   123  	}
   124  	if len(hex)&1 != 0 {
   125  		panic("can't convert hex key of odd length")
   126  	}
   127  	key := make([]byte, len(hex)/2)
   128  	decodeNibbles(hex, key)
   129  	return key
   130  }
   131  
   132  func decodeNibbles(nibbles []byte, bytes []byte) {
   133  	for bi, ni := 0, 0; ni < len(nibbles); bi, ni = bi+1, ni+2 {
   134  		bytes[bi] = nibbles[ni]<<4 | nibbles[ni+1]
   135  	}
   136  }
   137  
   138  // prefixLen returns the length of the common prefix of a and b.
   139  func prefixLen(a, b []byte) int {
   140  	var i, length = 0, len(a)
   141  	if len(b) < length {
   142  		length = len(b)
   143  	}
   144  	for ; i < length; i++ {
   145  		if a[i] != b[i] {
   146  			break
   147  		}
   148  	}
   149  	return i
   150  }
   151  
   152  // hasTerm returns whether a hex key has the terminator flag.
   153  func hasTerm(s []byte) bool {
   154  	return len(s) > 0 && s[len(s)-1] == 16
   155  }