github.com/MetalBlockchain/subnet-evm@v0.4.9/trie/proof.go (about)

     1  // (c) 2020-2021, Ava Labs, Inc.
     2  //
     3  // This file is a derived work, based on the go-ethereum library whose original
     4  // notices appear below.
     5  //
     6  // It is distributed under a license compatible with the licensing terms of the
     7  // original code from which it is derived.
     8  //
     9  // Much love to the original authors for their work.
    10  // **********
    11  // Copyright 2015 The go-ethereum Authors
    12  // This file is part of the go-ethereum library.
    13  //
    14  // The go-ethereum library is free software: you can redistribute it and/or modify
    15  // it under the terms of the GNU Lesser General Public License as published by
    16  // the Free Software Foundation, either version 3 of the License, or
    17  // (at your option) any later version.
    18  //
    19  // The go-ethereum library is distributed in the hope that it will be useful,
    20  // but WITHOUT ANY WARRANTY; without even the implied warranty of
    21  // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
    22  // GNU Lesser General Public License for more details.
    23  //
    24  // You should have received a copy of the GNU Lesser General Public License
    25  // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
    26  
    27  package trie
    28  
    29  import (
    30  	"bytes"
    31  	"errors"
    32  	"fmt"
    33  
    34  	"github.com/MetalBlockchain/subnet-evm/core/rawdb"
    35  	"github.com/MetalBlockchain/subnet-evm/ethdb"
    36  	"github.com/ethereum/go-ethereum/common"
    37  	"github.com/ethereum/go-ethereum/log"
    38  )
    39  
    40  // Prove constructs a merkle proof for key. The result contains all encoded nodes
    41  // on the path to the value at key. The value itself is also included in the last
    42  // node and can be retrieved by verifying the proof.
    43  //
    44  // If the trie does not contain a value for key, the returned proof contains all
    45  // nodes of the longest existing prefix of the key (at least the root node), ending
    46  // with the node that proves the absence of the key.
    47  func (t *Trie) Prove(key []byte, fromLevel uint, proofDb ethdb.KeyValueWriter) error {
    48  	// Collect all nodes on the path to key.
    49  	var (
    50  		prefix []byte
    51  		nodes  []node
    52  		tn     = t.root
    53  	)
    54  	key = keybytesToHex(key)
    55  	for len(key) > 0 && tn != nil {
    56  		switch n := tn.(type) {
    57  		case *shortNode:
    58  			if len(key) < len(n.Key) || !bytes.Equal(n.Key, key[:len(n.Key)]) {
    59  				// The trie doesn't contain the key.
    60  				tn = nil
    61  			} else {
    62  				tn = n.Val
    63  				prefix = append(prefix, n.Key...)
    64  				key = key[len(n.Key):]
    65  			}
    66  			nodes = append(nodes, n)
    67  		case *fullNode:
    68  			tn = n.Children[key[0]]
    69  			prefix = append(prefix, key[0])
    70  			key = key[1:]
    71  			nodes = append(nodes, n)
    72  		case hashNode:
    73  			var err error
    74  			tn, err = t.resolveHash(n, prefix)
    75  			if err != nil {
    76  				log.Error(fmt.Sprintf("Unhandled trie error: %v", err))
    77  				return err
    78  			}
    79  		default:
    80  			panic(fmt.Sprintf("%T: invalid node: %v", tn, tn))
    81  		}
    82  	}
    83  	hasher := newHasher(false)
    84  	defer returnHasherToPool(hasher)
    85  
    86  	for i, n := range nodes {
    87  		if fromLevel > 0 {
    88  			fromLevel--
    89  			continue
    90  		}
    91  		var hn node
    92  		n, hn = hasher.proofHash(n)
    93  		if hash, ok := hn.(hashNode); ok || i == 0 {
    94  			// If the node's database encoding is a hash (or is the
    95  			// root node), it becomes a proof element.
    96  			enc := nodeToBytes(n)
    97  			if !ok {
    98  				hash = hasher.hashData(enc)
    99  			}
   100  			proofDb.Put(hash, enc)
   101  		}
   102  	}
   103  	return nil
   104  }
   105  
   106  // Prove constructs a merkle proof for key. The result contains all encoded nodes
   107  // on the path to the value at key. The value itself is also included in the last
   108  // node and can be retrieved by verifying the proof.
   109  //
   110  // If the trie does not contain a value for key, the returned proof contains all
   111  // nodes of the longest existing prefix of the key (at least the root node), ending
   112  // with the node that proves the absence of the key.
   113  func (t *StateTrie) Prove(key []byte, fromLevel uint, proofDb ethdb.KeyValueWriter) error {
   114  	return t.trie.Prove(key, fromLevel, proofDb)
   115  }
   116  
   117  // VerifyProof checks merkle proofs. The given proof must contain the value for
   118  // key in a trie with the given root hash. VerifyProof returns an error if the
   119  // proof contains invalid trie nodes or the wrong value.
   120  func VerifyProof(rootHash common.Hash, key []byte, proofDb ethdb.KeyValueReader) (value []byte, err error) {
   121  	key = keybytesToHex(key)
   122  	wantHash := rootHash
   123  	for i := 0; ; i++ {
   124  		buf, _ := proofDb.Get(wantHash[:])
   125  		if buf == nil {
   126  			return nil, fmt.Errorf("proof node %d (hash %064x) missing", i, wantHash)
   127  		}
   128  		n, err := decodeNode(wantHash[:], buf)
   129  		if err != nil {
   130  			return nil, fmt.Errorf("bad proof node %d: %v", i, err)
   131  		}
   132  		keyrest, cld := get(n, key, true)
   133  		switch cld := cld.(type) {
   134  		case nil:
   135  			// The trie doesn't contain the key.
   136  			return nil, nil
   137  		case hashNode:
   138  			key = keyrest
   139  			copy(wantHash[:], cld)
   140  		case valueNode:
   141  			return cld, nil
   142  		}
   143  	}
   144  }
   145  
   146  // proofToPath converts a merkle proof to trie node path. The main purpose of
   147  // this function is recovering a node path from the merkle proof stream. All
   148  // necessary nodes will be resolved and leave the remaining as hashnode.
   149  //
   150  // The given edge proof is allowed to be an existent or non-existent proof.
   151  func proofToPath(rootHash common.Hash, root node, key []byte, proofDb ethdb.KeyValueReader, allowNonExistent bool) (node, []byte, error) {
   152  	// resolveNode retrieves and resolves trie node from merkle proof stream
   153  	resolveNode := func(hash common.Hash) (node, error) {
   154  		buf, _ := proofDb.Get(hash[:])
   155  		if buf == nil {
   156  			return nil, fmt.Errorf("proof node (hash %064x) missing", hash)
   157  		}
   158  		n, err := decodeNode(hash[:], buf)
   159  		if err != nil {
   160  			return nil, fmt.Errorf("bad proof node %v", err)
   161  		}
   162  		return n, err
   163  	}
   164  	// If the root node is empty, resolve it first.
   165  	// Root node must be included in the proof.
   166  	if root == nil {
   167  		n, err := resolveNode(rootHash)
   168  		if err != nil {
   169  			return nil, nil, err
   170  		}
   171  		root = n
   172  	}
   173  	var (
   174  		err           error
   175  		child, parent node
   176  		keyrest       []byte
   177  		valnode       []byte
   178  	)
   179  	key, parent = keybytesToHex(key), root
   180  	for {
   181  		keyrest, child = get(parent, key, false)
   182  		switch cld := child.(type) {
   183  		case nil:
   184  			// The trie doesn't contain the key. It's possible
   185  			// the proof is a non-existing proof, but at least
   186  			// we can prove all resolved nodes are correct, it's
   187  			// enough for us to prove range.
   188  			if allowNonExistent {
   189  				return root, nil, nil
   190  			}
   191  			return nil, nil, errors.New("the node is not contained in trie")
   192  		case *shortNode:
   193  			key, parent = keyrest, child // Already resolved
   194  			continue
   195  		case *fullNode:
   196  			key, parent = keyrest, child // Already resolved
   197  			continue
   198  		case hashNode:
   199  			child, err = resolveNode(common.BytesToHash(cld))
   200  			if err != nil {
   201  				return nil, nil, err
   202  			}
   203  		case valueNode:
   204  			valnode = cld
   205  		}
   206  		// Link the parent and child.
   207  		switch pnode := parent.(type) {
   208  		case *shortNode:
   209  			pnode.Val = child
   210  		case *fullNode:
   211  			pnode.Children[key[0]] = child
   212  		default:
   213  			panic(fmt.Sprintf("%T: invalid node: %v", pnode, pnode))
   214  		}
   215  		if len(valnode) > 0 {
   216  			return root, valnode, nil // The whole path is resolved
   217  		}
   218  		key, parent = keyrest, child
   219  	}
   220  }
   221  
   222  // unsetInternal removes all internal node references(hashnode, embedded node).
   223  // It should be called after a trie is constructed with two edge paths. Also
   224  // the given boundary keys must be the one used to construct the edge paths.
   225  //
   226  // It's the key step for range proof. All visited nodes should be marked dirty
   227  // since the node content might be modified. Besides it can happen that some
   228  // fullnodes only have one child which is disallowed. But if the proof is valid,
   229  // the missing children will be filled, otherwise it will be thrown anyway.
   230  //
   231  // Note we have the assumption here the given boundary keys are different
   232  // and right is larger than left.
   233  func unsetInternal(n node, left []byte, right []byte) (bool, error) {
   234  	left, right = keybytesToHex(left), keybytesToHex(right)
   235  
   236  	// Step down to the fork point. There are two scenarios can happen:
   237  	// - the fork point is a shortnode: either the key of left proof or
   238  	//   right proof doesn't match with shortnode's key.
   239  	// - the fork point is a fullnode: both two edge proofs are allowed
   240  	//   to point to a non-existent key.
   241  	var (
   242  		pos    = 0
   243  		parent node
   244  
   245  		// fork indicator, 0 means no fork, -1 means proof is less, 1 means proof is greater
   246  		shortForkLeft, shortForkRight int
   247  	)
   248  findFork:
   249  	for {
   250  		switch rn := (n).(type) {
   251  		case *shortNode:
   252  			rn.flags = nodeFlag{dirty: true}
   253  
   254  			// If either the key of left proof or right proof doesn't match with
   255  			// shortnode, stop here and the forkpoint is the shortnode.
   256  			if len(left)-pos < len(rn.Key) {
   257  				shortForkLeft = bytes.Compare(left[pos:], rn.Key)
   258  			} else {
   259  				shortForkLeft = bytes.Compare(left[pos:pos+len(rn.Key)], rn.Key)
   260  			}
   261  			if len(right)-pos < len(rn.Key) {
   262  				shortForkRight = bytes.Compare(right[pos:], rn.Key)
   263  			} else {
   264  				shortForkRight = bytes.Compare(right[pos:pos+len(rn.Key)], rn.Key)
   265  			}
   266  			if shortForkLeft != 0 || shortForkRight != 0 {
   267  				break findFork
   268  			}
   269  			parent = n
   270  			n, pos = rn.Val, pos+len(rn.Key)
   271  		case *fullNode:
   272  			rn.flags = nodeFlag{dirty: true}
   273  
   274  			// If either the node pointed by left proof or right proof is nil,
   275  			// stop here and the forkpoint is the fullnode.
   276  			leftnode, rightnode := rn.Children[left[pos]], rn.Children[right[pos]]
   277  			if leftnode == nil || rightnode == nil || leftnode != rightnode {
   278  				break findFork
   279  			}
   280  			parent = n
   281  			n, pos = rn.Children[left[pos]], pos+1
   282  		default:
   283  			panic(fmt.Sprintf("%T: invalid node: %v", n, n))
   284  		}
   285  	}
   286  	switch rn := n.(type) {
   287  	case *shortNode:
   288  		// There can have these five scenarios:
   289  		// - both proofs are less than the trie path => no valid range
   290  		// - both proofs are greater than the trie path => no valid range
   291  		// - left proof is less and right proof is greater => valid range, unset the shortnode entirely
   292  		// - left proof points to the shortnode, but right proof is greater
   293  		// - right proof points to the shortnode, but left proof is less
   294  		if shortForkLeft == -1 && shortForkRight == -1 {
   295  			return false, errors.New("empty range")
   296  		}
   297  		if shortForkLeft == 1 && shortForkRight == 1 {
   298  			return false, errors.New("empty range")
   299  		}
   300  		if shortForkLeft != 0 && shortForkRight != 0 {
   301  			// The fork point is root node, unset the entire trie
   302  			if parent == nil {
   303  				return true, nil
   304  			}
   305  			parent.(*fullNode).Children[left[pos-1]] = nil
   306  			return false, nil
   307  		}
   308  		// Only one proof points to non-existent key.
   309  		if shortForkRight != 0 {
   310  			if _, ok := rn.Val.(valueNode); ok {
   311  				// The fork point is root node, unset the entire trie
   312  				if parent == nil {
   313  					return true, nil
   314  				}
   315  				parent.(*fullNode).Children[left[pos-1]] = nil
   316  				return false, nil
   317  			}
   318  			return false, unset(rn, rn.Val, left[pos:], len(rn.Key), false)
   319  		}
   320  		if shortForkLeft != 0 {
   321  			if _, ok := rn.Val.(valueNode); ok {
   322  				// The fork point is root node, unset the entire trie
   323  				if parent == nil {
   324  					return true, nil
   325  				}
   326  				parent.(*fullNode).Children[right[pos-1]] = nil
   327  				return false, nil
   328  			}
   329  			return false, unset(rn, rn.Val, right[pos:], len(rn.Key), true)
   330  		}
   331  		return false, nil
   332  	case *fullNode:
   333  		// unset all internal nodes in the forkpoint
   334  		for i := left[pos] + 1; i < right[pos]; i++ {
   335  			rn.Children[i] = nil
   336  		}
   337  		if err := unset(rn, rn.Children[left[pos]], left[pos:], 1, false); err != nil {
   338  			return false, err
   339  		}
   340  		if err := unset(rn, rn.Children[right[pos]], right[pos:], 1, true); err != nil {
   341  			return false, err
   342  		}
   343  		return false, nil
   344  	default:
   345  		panic(fmt.Sprintf("%T: invalid node: %v", n, n))
   346  	}
   347  }
   348  
   349  // unset removes all internal node references either the left most or right most.
   350  // It can meet these scenarios:
   351  //
   352  // - The given path is existent in the trie, unset the associated nodes with the
   353  //   specific direction
   354  // - The given path is non-existent in the trie
   355  //   - the fork point is a fullnode, the corresponding child pointed by path
   356  //     is nil, return
   357  //   - the fork point is a shortnode, the shortnode is included in the range,
   358  //     keep the entire branch and return.
   359  //   - the fork point is a shortnode, the shortnode is excluded in the range,
   360  //     unset the entire branch.
   361  func unset(parent node, child node, key []byte, pos int, removeLeft bool) error {
   362  	switch cld := child.(type) {
   363  	case *fullNode:
   364  		if removeLeft {
   365  			for i := 0; i < int(key[pos]); i++ {
   366  				cld.Children[i] = nil
   367  			}
   368  			cld.flags = nodeFlag{dirty: true}
   369  		} else {
   370  			for i := key[pos] + 1; i < 16; i++ {
   371  				cld.Children[i] = nil
   372  			}
   373  			cld.flags = nodeFlag{dirty: true}
   374  		}
   375  		return unset(cld, cld.Children[key[pos]], key, pos+1, removeLeft)
   376  	case *shortNode:
   377  		if len(key[pos:]) < len(cld.Key) || !bytes.Equal(cld.Key, key[pos:pos+len(cld.Key)]) {
   378  			// Find the fork point, it's an non-existent branch.
   379  			if removeLeft {
   380  				if bytes.Compare(cld.Key, key[pos:]) < 0 {
   381  					// The key of fork shortnode is less than the path
   382  					// (it belongs to the range), unset the entrie
   383  					// branch. The parent must be a fullnode.
   384  					fn := parent.(*fullNode)
   385  					fn.Children[key[pos-1]] = nil
   386  				}
   387  				//else {
   388  				// The key of fork shortnode is greater than the
   389  				// path(it doesn't belong to the range), keep
   390  				// it with the cached hash available.
   391  				//}
   392  			} else {
   393  				if bytes.Compare(cld.Key, key[pos:]) > 0 {
   394  					// The key of fork shortnode is greater than the
   395  					// path(it belongs to the range), unset the entrie
   396  					// branch. The parent must be a fullnode.
   397  					fn := parent.(*fullNode)
   398  					fn.Children[key[pos-1]] = nil
   399  				}
   400  				//else {
   401  				// The key of fork shortnode is less than the
   402  				// path(it doesn't belong to the range), keep
   403  				// it with the cached hash available.
   404  				//}
   405  			}
   406  			return nil
   407  		}
   408  		if _, ok := cld.Val.(valueNode); ok {
   409  			fn := parent.(*fullNode)
   410  			fn.Children[key[pos-1]] = nil
   411  			return nil
   412  		}
   413  		cld.flags = nodeFlag{dirty: true}
   414  		return unset(cld, cld.Val, key, pos+len(cld.Key), removeLeft)
   415  	case nil:
   416  		// If the node is nil, then it's a child of the fork point
   417  		// fullnode(it's a non-existent branch).
   418  		return nil
   419  	default:
   420  		panic("it shouldn't happen") // hashNode, valueNode
   421  	}
   422  }
   423  
   424  // hasRightElement returns the indicator whether there exists more elements
   425  // on the right side of the given path. The given path can point to an existent
   426  // key or a non-existent one. This function has the assumption that the whole
   427  // path should already be resolved.
   428  func hasRightElement(node node, key []byte) bool {
   429  	pos, key := 0, keybytesToHex(key)
   430  	for node != nil {
   431  		switch rn := node.(type) {
   432  		case *fullNode:
   433  			for i := key[pos] + 1; i < 16; i++ {
   434  				if rn.Children[i] != nil {
   435  					return true
   436  				}
   437  			}
   438  			node, pos = rn.Children[key[pos]], pos+1
   439  		case *shortNode:
   440  			if len(key)-pos < len(rn.Key) || !bytes.Equal(rn.Key, key[pos:pos+len(rn.Key)]) {
   441  				return bytes.Compare(rn.Key, key[pos:]) > 0
   442  			}
   443  			node, pos = rn.Val, pos+len(rn.Key)
   444  		case valueNode:
   445  			return false // We have resolved the whole path
   446  		default:
   447  			panic(fmt.Sprintf("%T: invalid node: %v", node, node)) // hashnode
   448  		}
   449  	}
   450  	return false
   451  }
   452  
   453  // VerifyRangeProof checks whether the given leaf nodes and edge proof
   454  // can prove the given trie leaves range is matched with the specific root.
   455  // Besides, the range should be consecutive (no gap inside) and monotonic
   456  // increasing.
   457  //
   458  // Note the given proof actually contains two edge proofs. Both of them can
   459  // be non-existent proofs. For example the first proof is for a non-existent
   460  // key 0x03, the last proof is for a non-existent key 0x10. The given batch
   461  // leaves are [0x04, 0x05, .. 0x09]. It's still feasible to prove the given
   462  // batch is valid.
   463  //
   464  // The firstKey is paired with firstProof, not necessarily the same as keys[0]
   465  // (unless firstProof is an existent proof). Similarly, lastKey and lastProof
   466  // are paired.
   467  //
   468  // Expect the normal case, this function can also be used to verify the following
   469  // range proofs:
   470  //
   471  // - All elements proof. In this case the proof can be nil, but the range should
   472  //   be all the leaves in the trie.
   473  //
   474  // - One element proof. In this case no matter the edge proof is a non-existent
   475  //   proof or not, we can always verify the correctness of the proof.
   476  //
   477  // - Zero element proof. In this case a single non-existent proof is enough to prove.
   478  //   Besides, if there are still some other leaves available on the right side, then
   479  //   an error will be returned.
   480  //
   481  // Except returning the error to indicate the proof is valid or not, the function will
   482  // also return a flag to indicate whether there exists more accounts/slots in the trie.
   483  //
   484  // Note: This method does not verify that the proof is of minimal form. If the input
   485  // proofs are 'bloated' with neighbour leaves or random data, aside from the 'useful'
   486  // data, then the proof will still be accepted.
   487  func VerifyRangeProof(rootHash common.Hash, firstKey []byte, lastKey []byte, keys [][]byte, values [][]byte, proof ethdb.KeyValueReader) (bool, error) {
   488  	if len(keys) != len(values) {
   489  		return false, fmt.Errorf("inconsistent proof data, keys: %d, values: %d", len(keys), len(values))
   490  	}
   491  	// Ensure the received batch is monotonic increasing and contains no deletions
   492  	for i := 0; i < len(keys)-1; i++ {
   493  		if bytes.Compare(keys[i], keys[i+1]) >= 0 {
   494  			return false, errors.New("range is not monotonically increasing")
   495  		}
   496  	}
   497  	for _, value := range values {
   498  		if len(value) == 0 {
   499  			return false, errors.New("range contains deletion")
   500  		}
   501  	}
   502  	// Special case, there is no edge proof at all. The given range is expected
   503  	// to be the whole leaf-set in the trie.
   504  	if proof == nil {
   505  		tr := NewStackTrie(nil)
   506  		for index, key := range keys {
   507  			tr.TryUpdate(key, values[index])
   508  		}
   509  		if have, want := tr.Hash(), rootHash; have != want {
   510  			return false, fmt.Errorf("invalid proof, want hash %x, got %x", want, have)
   511  		}
   512  		return false, nil // No more elements
   513  	}
   514  	// Special case, there is a provided edge proof but zero key/value
   515  	// pairs, ensure there are no more accounts / slots in the trie.
   516  	if len(keys) == 0 {
   517  		root, val, err := proofToPath(rootHash, nil, firstKey, proof, true)
   518  		if err != nil {
   519  			return false, err
   520  		}
   521  		if val != nil || hasRightElement(root, firstKey) {
   522  			return false, errors.New("more entries available")
   523  		}
   524  		return false, nil
   525  	}
   526  	// Special case, there is only one element and two edge keys are same.
   527  	// In this case, we can't construct two edge paths. So handle it here.
   528  	if len(keys) == 1 && bytes.Equal(firstKey, lastKey) {
   529  		root, val, err := proofToPath(rootHash, nil, firstKey, proof, false)
   530  		if err != nil {
   531  			return false, err
   532  		}
   533  		if !bytes.Equal(firstKey, keys[0]) {
   534  			return false, errors.New("correct proof but invalid key")
   535  		}
   536  		if !bytes.Equal(val, values[0]) {
   537  			return false, errors.New("correct proof but invalid data")
   538  		}
   539  		return hasRightElement(root, firstKey), nil
   540  	}
   541  	// Ok, in all other cases, we require two edge paths available.
   542  	// First check the validity of edge keys.
   543  	if bytes.Compare(firstKey, lastKey) >= 0 {
   544  		return false, errors.New("invalid edge keys")
   545  	}
   546  	// todo(rjl493456442) different length edge keys should be supported
   547  	if len(firstKey) != len(lastKey) {
   548  		return false, fmt.Errorf("inconsistent edge keys (%d != %d)", len(firstKey), len(lastKey))
   549  	}
   550  	// Convert the edge proofs to edge trie paths. Then we can
   551  	// have the same tree architecture with the original one.
   552  	// For the first edge proof, non-existent proof is allowed.
   553  	root, _, err := proofToPath(rootHash, nil, firstKey, proof, true)
   554  	if err != nil {
   555  		return false, err
   556  	}
   557  	// Pass the root node here, the second path will be merged
   558  	// with the first one. For the last edge proof, non-existent
   559  	// proof is also allowed.
   560  	root, _, err = proofToPath(rootHash, root, lastKey, proof, true)
   561  	if err != nil {
   562  		return false, err
   563  	}
   564  	// Remove all internal references. All the removed parts should
   565  	// be re-filled(or re-constructed) by the given leaves range.
   566  	empty, err := unsetInternal(root, firstKey, lastKey)
   567  	if err != nil {
   568  		return false, err
   569  	}
   570  	// Rebuild the trie with the leaf stream, the shape of trie
   571  	// should be same with the original one.
   572  	tr := &Trie{root: root, db: NewDatabase(rawdb.NewMemoryDatabase())}
   573  	if empty {
   574  		tr.root = nil
   575  	}
   576  	for index, key := range keys {
   577  		tr.TryUpdate(key, values[index])
   578  	}
   579  	if tr.Hash() != rootHash {
   580  		return false, fmt.Errorf("invalid proof, want hash %x, got %x", rootHash, tr.Hash())
   581  	}
   582  	return hasRightElement(tr.root, keys[len(keys)-1]), nil
   583  }
   584  
   585  // get returns the child of the given node. Return nil if the
   586  // node with specified key doesn't exist at all.
   587  //
   588  // There is an additional flag `skipResolved`. If it's set then
   589  // all resolved nodes won't be returned.
   590  func get(tn node, key []byte, skipResolved bool) ([]byte, node) {
   591  	for {
   592  		switch n := tn.(type) {
   593  		case *shortNode:
   594  			if len(key) < len(n.Key) || !bytes.Equal(n.Key, key[:len(n.Key)]) {
   595  				return nil, nil
   596  			}
   597  			tn = n.Val
   598  			key = key[len(n.Key):]
   599  			if !skipResolved {
   600  				return key, tn
   601  			}
   602  		case *fullNode:
   603  			tn = n.Children[key[0]]
   604  			key = key[1:]
   605  			if !skipResolved {
   606  				return key, tn
   607  			}
   608  		case hashNode:
   609  			return key, n
   610  		case nil:
   611  			return key, nil
   612  		case valueNode:
   613  			return nil, n
   614  		default:
   615  			panic(fmt.Sprintf("%T: invalid node: %v", tn, tn))
   616  		}
   617  	}
   618  }