github.com/MetalBlockchain/subnet-evm@v0.4.9/trie/proof_test.go (about) 1 // (c) 2020-2021, Ava Labs, Inc. 2 // 3 // This file is a derived work, based on the go-ethereum library whose original 4 // notices appear below. 5 // 6 // It is distributed under a license compatible with the licensing terms of the 7 // original code from which it is derived. 8 // 9 // Much love to the original authors for their work. 10 // ********** 11 // Copyright 2015 The go-ethereum Authors 12 // This file is part of the go-ethereum library. 13 // 14 // The go-ethereum library is free software: you can redistribute it and/or modify 15 // it under the terms of the GNU Lesser General Public License as published by 16 // the Free Software Foundation, either version 3 of the License, or 17 // (at your option) any later version. 18 // 19 // The go-ethereum library is distributed in the hope that it will be useful, 20 // but WITHOUT ANY WARRANTY; without even the implied warranty of 21 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 22 // GNU Lesser General Public License for more details. 23 // 24 // You should have received a copy of the GNU Lesser General Public License 25 // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>. 26 27 package trie 28 29 import ( 30 "bytes" 31 crand "crypto/rand" 32 "encoding/binary" 33 mrand "math/rand" 34 "sort" 35 "testing" 36 "time" 37 38 "github.com/MetalBlockchain/subnet-evm/core/rawdb" 39 "github.com/MetalBlockchain/subnet-evm/ethdb/memorydb" 40 "github.com/ethereum/go-ethereum/common" 41 "github.com/ethereum/go-ethereum/crypto" 42 ) 43 44 func init() { 45 mrand.Seed(time.Now().Unix()) 46 } 47 48 // makeProvers creates Merkle trie provers based on different implementations to 49 // test all variations. 50 func makeProvers(trie *Trie) []func(key []byte) *memorydb.Database { 51 var provers []func(key []byte) *memorydb.Database 52 53 // Create a direct trie based Merkle prover 54 provers = append(provers, func(key []byte) *memorydb.Database { 55 proof := memorydb.New() 56 trie.Prove(key, 0, proof) 57 return proof 58 }) 59 // Create a leaf iterator based Merkle prover 60 provers = append(provers, func(key []byte) *memorydb.Database { 61 proof := memorydb.New() 62 if it := NewIterator(trie.NodeIterator(key)); it.Next() && bytes.Equal(key, it.Key) { 63 for _, p := range it.Prove() { 64 proof.Put(crypto.Keccak256(p), p) 65 } 66 } 67 return proof 68 }) 69 return provers 70 } 71 72 func TestProof(t *testing.T) { 73 trie, vals := randomTrie(500) 74 root := trie.Hash() 75 for i, prover := range makeProvers(trie) { 76 for _, kv := range vals { 77 proof := prover(kv.k) 78 if proof == nil { 79 t.Fatalf("prover %d: missing key %x while constructing proof", i, kv.k) 80 } 81 val, err := VerifyProof(root, kv.k, proof) 82 if err != nil { 83 t.Fatalf("prover %d: failed to verify proof for key %x: %v\nraw proof: %x", i, kv.k, err, proof) 84 } 85 if !bytes.Equal(val, kv.v) { 86 t.Fatalf("prover %d: verified value mismatch for key %x: have %x, want %x", i, kv.k, val, kv.v) 87 } 88 } 89 } 90 } 91 92 func TestOneElementProof(t *testing.T) { 93 trie := NewEmpty(NewDatabase(rawdb.NewMemoryDatabase())) 94 updateString(trie, "k", "v") 95 for i, prover := range makeProvers(trie) { 96 proof := prover([]byte("k")) 97 if proof == nil { 98 t.Fatalf("prover %d: nil proof", i) 99 } 100 if proof.Len() != 1 { 101 t.Errorf("prover %d: proof should have one element", i) 102 } 103 val, err := VerifyProof(trie.Hash(), []byte("k"), proof) 104 if err != nil { 105 t.Fatalf("prover %d: failed to verify proof: %v\nraw proof: %x", i, err, proof) 106 } 107 if !bytes.Equal(val, []byte("v")) { 108 t.Fatalf("prover %d: verified value mismatch: have %x, want 'k'", i, val) 109 } 110 } 111 } 112 113 func TestBadProof(t *testing.T) { 114 trie, vals := randomTrie(800) 115 root := trie.Hash() 116 for i, prover := range makeProvers(trie) { 117 for _, kv := range vals { 118 proof := prover(kv.k) 119 if proof == nil { 120 t.Fatalf("prover %d: nil proof", i) 121 } 122 it := proof.NewIterator(nil, nil) 123 for i, d := 0, mrand.Intn(proof.Len()); i <= d; i++ { 124 it.Next() 125 } 126 key := it.Key() 127 val, _ := proof.Get(key) 128 proof.Delete(key) 129 it.Release() 130 131 mutateByte(val) 132 proof.Put(crypto.Keccak256(val), val) 133 134 if _, err := VerifyProof(root, kv.k, proof); err == nil { 135 t.Fatalf("prover %d: expected proof to fail for key %x", i, kv.k) 136 } 137 } 138 } 139 } 140 141 // Tests that missing keys can also be proven. The test explicitly uses a single 142 // entry trie and checks for missing keys both before and after the single entry. 143 func TestMissingKeyProof(t *testing.T) { 144 trie := NewEmpty(NewDatabase(rawdb.NewMemoryDatabase())) 145 updateString(trie, "k", "v") 146 147 for i, key := range []string{"a", "j", "l", "z"} { 148 proof := memorydb.New() 149 trie.Prove([]byte(key), 0, proof) 150 151 if proof.Len() != 1 { 152 t.Errorf("test %d: proof should have one element", i) 153 } 154 val, err := VerifyProof(trie.Hash(), []byte(key), proof) 155 if err != nil { 156 t.Fatalf("test %d: failed to verify proof: %v\nraw proof: %x", i, err, proof) 157 } 158 if val != nil { 159 t.Fatalf("test %d: verified value mismatch: have %x, want nil", i, val) 160 } 161 } 162 } 163 164 type entrySlice []*kv 165 166 func (p entrySlice) Len() int { return len(p) } 167 func (p entrySlice) Less(i, j int) bool { return bytes.Compare(p[i].k, p[j].k) < 0 } 168 func (p entrySlice) Swap(i, j int) { p[i], p[j] = p[j], p[i] } 169 170 // TestRangeProof tests normal range proof with both edge proofs 171 // as the existent proof. The test cases are generated randomly. 172 func TestRangeProof(t *testing.T) { 173 trie, vals := randomTrie(4096) 174 var entries entrySlice 175 for _, kv := range vals { 176 entries = append(entries, kv) 177 } 178 sort.Sort(entries) 179 for i := 0; i < 500; i++ { 180 start := mrand.Intn(len(entries)) 181 end := mrand.Intn(len(entries)-start) + start + 1 182 183 proof := memorydb.New() 184 if err := trie.Prove(entries[start].k, 0, proof); err != nil { 185 t.Fatalf("Failed to prove the first node %v", err) 186 } 187 if err := trie.Prove(entries[end-1].k, 0, proof); err != nil { 188 t.Fatalf("Failed to prove the last node %v", err) 189 } 190 var keys [][]byte 191 var vals [][]byte 192 for i := start; i < end; i++ { 193 keys = append(keys, entries[i].k) 194 vals = append(vals, entries[i].v) 195 } 196 _, err := VerifyRangeProof(trie.Hash(), keys[0], keys[len(keys)-1], keys, vals, proof) 197 if err != nil { 198 t.Fatalf("Case %d(%d->%d) expect no error, got %v", i, start, end-1, err) 199 } 200 } 201 } 202 203 // TestRangeProof tests normal range proof with two non-existent proofs. 204 // The test cases are generated randomly. 205 func TestRangeProofWithNonExistentProof(t *testing.T) { 206 trie, vals := randomTrie(4096) 207 var entries entrySlice 208 for _, kv := range vals { 209 entries = append(entries, kv) 210 } 211 sort.Sort(entries) 212 for i := 0; i < 500; i++ { 213 start := mrand.Intn(len(entries)) 214 end := mrand.Intn(len(entries)-start) + start + 1 215 proof := memorydb.New() 216 217 // Short circuit if the decreased key is same with the previous key 218 first := decreaseKey(common.CopyBytes(entries[start].k)) 219 if start != 0 && bytes.Equal(first, entries[start-1].k) { 220 continue 221 } 222 // Short circuit if the decreased key is underflow 223 if bytes.Compare(first, entries[start].k) > 0 { 224 continue 225 } 226 // Short circuit if the increased key is same with the next key 227 last := increaseKey(common.CopyBytes(entries[end-1].k)) 228 if end != len(entries) && bytes.Equal(last, entries[end].k) { 229 continue 230 } 231 // Short circuit if the increased key is overflow 232 if bytes.Compare(last, entries[end-1].k) < 0 { 233 continue 234 } 235 if err := trie.Prove(first, 0, proof); err != nil { 236 t.Fatalf("Failed to prove the first node %v", err) 237 } 238 if err := trie.Prove(last, 0, proof); err != nil { 239 t.Fatalf("Failed to prove the last node %v", err) 240 } 241 var keys [][]byte 242 var vals [][]byte 243 for i := start; i < end; i++ { 244 keys = append(keys, entries[i].k) 245 vals = append(vals, entries[i].v) 246 } 247 _, err := VerifyRangeProof(trie.Hash(), first, last, keys, vals, proof) 248 if err != nil { 249 t.Fatalf("Case %d(%d->%d) expect no error, got %v", i, start, end-1, err) 250 } 251 } 252 // Special case, two edge proofs for two edge key. 253 proof := memorydb.New() 254 first := common.HexToHash("0x0000000000000000000000000000000000000000000000000000000000000000").Bytes() 255 last := common.HexToHash("0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff").Bytes() 256 if err := trie.Prove(first, 0, proof); err != nil { 257 t.Fatalf("Failed to prove the first node %v", err) 258 } 259 if err := trie.Prove(last, 0, proof); err != nil { 260 t.Fatalf("Failed to prove the last node %v", err) 261 } 262 var k [][]byte 263 var v [][]byte 264 for i := 0; i < len(entries); i++ { 265 k = append(k, entries[i].k) 266 v = append(v, entries[i].v) 267 } 268 _, err := VerifyRangeProof(trie.Hash(), first, last, k, v, proof) 269 if err != nil { 270 t.Fatal("Failed to verify whole rang with non-existent edges") 271 } 272 } 273 274 // TestRangeProofWithInvalidNonExistentProof tests such scenarios: 275 // - There exists a gap between the first element and the left edge proof 276 // - There exists a gap between the last element and the right edge proof 277 func TestRangeProofWithInvalidNonExistentProof(t *testing.T) { 278 trie, vals := randomTrie(4096) 279 var entries entrySlice 280 for _, kv := range vals { 281 entries = append(entries, kv) 282 } 283 sort.Sort(entries) 284 285 // Case 1 286 start, end := 100, 200 287 first := decreaseKey(common.CopyBytes(entries[start].k)) 288 289 proof := memorydb.New() 290 if err := trie.Prove(first, 0, proof); err != nil { 291 t.Fatalf("Failed to prove the first node %v", err) 292 } 293 if err := trie.Prove(entries[end-1].k, 0, proof); err != nil { 294 t.Fatalf("Failed to prove the last node %v", err) 295 } 296 start = 105 // Gap created 297 k := make([][]byte, 0) 298 v := make([][]byte, 0) 299 for i := start; i < end; i++ { 300 k = append(k, entries[i].k) 301 v = append(v, entries[i].v) 302 } 303 _, err := VerifyRangeProof(trie.Hash(), first, k[len(k)-1], k, v, proof) 304 if err == nil { 305 t.Fatalf("Expected to detect the error, got nil") 306 } 307 308 // Case 2 309 start, end = 100, 200 310 last := increaseKey(common.CopyBytes(entries[end-1].k)) 311 proof = memorydb.New() 312 if err := trie.Prove(entries[start].k, 0, proof); err != nil { 313 t.Fatalf("Failed to prove the first node %v", err) 314 } 315 if err := trie.Prove(last, 0, proof); err != nil { 316 t.Fatalf("Failed to prove the last node %v", err) 317 } 318 end = 195 // Capped slice 319 k = make([][]byte, 0) 320 v = make([][]byte, 0) 321 for i := start; i < end; i++ { 322 k = append(k, entries[i].k) 323 v = append(v, entries[i].v) 324 } 325 _, err = VerifyRangeProof(trie.Hash(), k[0], last, k, v, proof) 326 if err == nil { 327 t.Fatalf("Expected to detect the error, got nil") 328 } 329 } 330 331 // TestOneElementRangeProof tests the proof with only one 332 // element. The first edge proof can be existent one or 333 // non-existent one. 334 func TestOneElementRangeProof(t *testing.T) { 335 trie, vals := randomTrie(4096) 336 var entries entrySlice 337 for _, kv := range vals { 338 entries = append(entries, kv) 339 } 340 sort.Sort(entries) 341 342 // One element with existent edge proof, both edge proofs 343 // point to the SAME key. 344 start := 1000 345 proof := memorydb.New() 346 if err := trie.Prove(entries[start].k, 0, proof); err != nil { 347 t.Fatalf("Failed to prove the first node %v", err) 348 } 349 _, err := VerifyRangeProof(trie.Hash(), entries[start].k, entries[start].k, [][]byte{entries[start].k}, [][]byte{entries[start].v}, proof) 350 if err != nil { 351 t.Fatalf("Expected no error, got %v", err) 352 } 353 354 // One element with left non-existent edge proof 355 start = 1000 356 first := decreaseKey(common.CopyBytes(entries[start].k)) 357 proof = memorydb.New() 358 if err := trie.Prove(first, 0, proof); err != nil { 359 t.Fatalf("Failed to prove the first node %v", err) 360 } 361 if err := trie.Prove(entries[start].k, 0, proof); err != nil { 362 t.Fatalf("Failed to prove the last node %v", err) 363 } 364 _, err = VerifyRangeProof(trie.Hash(), first, entries[start].k, [][]byte{entries[start].k}, [][]byte{entries[start].v}, proof) 365 if err != nil { 366 t.Fatalf("Expected no error, got %v", err) 367 } 368 369 // One element with right non-existent edge proof 370 start = 1000 371 last := increaseKey(common.CopyBytes(entries[start].k)) 372 proof = memorydb.New() 373 if err := trie.Prove(entries[start].k, 0, proof); err != nil { 374 t.Fatalf("Failed to prove the first node %v", err) 375 } 376 if err := trie.Prove(last, 0, proof); err != nil { 377 t.Fatalf("Failed to prove the last node %v", err) 378 } 379 _, err = VerifyRangeProof(trie.Hash(), entries[start].k, last, [][]byte{entries[start].k}, [][]byte{entries[start].v}, proof) 380 if err != nil { 381 t.Fatalf("Expected no error, got %v", err) 382 } 383 384 // One element with two non-existent edge proofs 385 start = 1000 386 first, last = decreaseKey(common.CopyBytes(entries[start].k)), increaseKey(common.CopyBytes(entries[start].k)) 387 proof = memorydb.New() 388 if err := trie.Prove(first, 0, proof); err != nil { 389 t.Fatalf("Failed to prove the first node %v", err) 390 } 391 if err := trie.Prove(last, 0, proof); err != nil { 392 t.Fatalf("Failed to prove the last node %v", err) 393 } 394 _, err = VerifyRangeProof(trie.Hash(), first, last, [][]byte{entries[start].k}, [][]byte{entries[start].v}, proof) 395 if err != nil { 396 t.Fatalf("Expected no error, got %v", err) 397 } 398 399 // Test the mini trie with only a single element. 400 tinyTrie := NewEmpty(NewDatabase(rawdb.NewMemoryDatabase())) 401 entry := &kv{randBytes(32), randBytes(20), false} 402 tinyTrie.Update(entry.k, entry.v) 403 404 first = common.HexToHash("0x0000000000000000000000000000000000000000000000000000000000000000").Bytes() 405 last = entry.k 406 proof = memorydb.New() 407 if err := tinyTrie.Prove(first, 0, proof); err != nil { 408 t.Fatalf("Failed to prove the first node %v", err) 409 } 410 if err := tinyTrie.Prove(last, 0, proof); err != nil { 411 t.Fatalf("Failed to prove the last node %v", err) 412 } 413 _, err = VerifyRangeProof(tinyTrie.Hash(), first, last, [][]byte{entry.k}, [][]byte{entry.v}, proof) 414 if err != nil { 415 t.Fatalf("Expected no error, got %v", err) 416 } 417 } 418 419 // TestAllElementsProof tests the range proof with all elements. 420 // The edge proofs can be nil. 421 func TestAllElementsProof(t *testing.T) { 422 trie, vals := randomTrie(4096) 423 var entries entrySlice 424 for _, kv := range vals { 425 entries = append(entries, kv) 426 } 427 sort.Sort(entries) 428 429 var k [][]byte 430 var v [][]byte 431 for i := 0; i < len(entries); i++ { 432 k = append(k, entries[i].k) 433 v = append(v, entries[i].v) 434 } 435 _, err := VerifyRangeProof(trie.Hash(), nil, nil, k, v, nil) 436 if err != nil { 437 t.Fatalf("Expected no error, got %v", err) 438 } 439 440 // With edge proofs, it should still work. 441 proof := memorydb.New() 442 if err := trie.Prove(entries[0].k, 0, proof); err != nil { 443 t.Fatalf("Failed to prove the first node %v", err) 444 } 445 if err := trie.Prove(entries[len(entries)-1].k, 0, proof); err != nil { 446 t.Fatalf("Failed to prove the last node %v", err) 447 } 448 _, err = VerifyRangeProof(trie.Hash(), k[0], k[len(k)-1], k, v, proof) 449 if err != nil { 450 t.Fatalf("Expected no error, got %v", err) 451 } 452 453 // Even with non-existent edge proofs, it should still work. 454 proof = memorydb.New() 455 first := common.HexToHash("0x0000000000000000000000000000000000000000000000000000000000000000").Bytes() 456 last := common.HexToHash("0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff").Bytes() 457 if err := trie.Prove(first, 0, proof); err != nil { 458 t.Fatalf("Failed to prove the first node %v", err) 459 } 460 if err := trie.Prove(last, 0, proof); err != nil { 461 t.Fatalf("Failed to prove the last node %v", err) 462 } 463 _, err = VerifyRangeProof(trie.Hash(), first, last, k, v, proof) 464 if err != nil { 465 t.Fatalf("Expected no error, got %v", err) 466 } 467 } 468 469 // TestSingleSideRangeProof tests the range starts from zero. 470 func TestSingleSideRangeProof(t *testing.T) { 471 for i := 0; i < 64; i++ { 472 trie := NewEmpty(NewDatabase(rawdb.NewMemoryDatabase())) 473 var entries entrySlice 474 for i := 0; i < 4096; i++ { 475 value := &kv{randBytes(32), randBytes(20), false} 476 trie.Update(value.k, value.v) 477 entries = append(entries, value) 478 } 479 sort.Sort(entries) 480 481 var cases = []int{0, 1, 50, 100, 1000, 2000, len(entries) - 1} 482 for _, pos := range cases { 483 proof := memorydb.New() 484 if err := trie.Prove(common.Hash{}.Bytes(), 0, proof); err != nil { 485 t.Fatalf("Failed to prove the first node %v", err) 486 } 487 if err := trie.Prove(entries[pos].k, 0, proof); err != nil { 488 t.Fatalf("Failed to prove the first node %v", err) 489 } 490 k := make([][]byte, 0) 491 v := make([][]byte, 0) 492 for i := 0; i <= pos; i++ { 493 k = append(k, entries[i].k) 494 v = append(v, entries[i].v) 495 } 496 _, err := VerifyRangeProof(trie.Hash(), common.Hash{}.Bytes(), k[len(k)-1], k, v, proof) 497 if err != nil { 498 t.Fatalf("Expected no error, got %v", err) 499 } 500 } 501 } 502 } 503 504 // TestReverseSingleSideRangeProof tests the range ends with 0xffff...fff. 505 func TestReverseSingleSideRangeProof(t *testing.T) { 506 for i := 0; i < 64; i++ { 507 trie := NewEmpty(NewDatabase(rawdb.NewMemoryDatabase())) 508 var entries entrySlice 509 for i := 0; i < 4096; i++ { 510 value := &kv{randBytes(32), randBytes(20), false} 511 trie.Update(value.k, value.v) 512 entries = append(entries, value) 513 } 514 sort.Sort(entries) 515 516 var cases = []int{0, 1, 50, 100, 1000, 2000, len(entries) - 1} 517 for _, pos := range cases { 518 proof := memorydb.New() 519 if err := trie.Prove(entries[pos].k, 0, proof); err != nil { 520 t.Fatalf("Failed to prove the first node %v", err) 521 } 522 last := common.HexToHash("0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff") 523 if err := trie.Prove(last.Bytes(), 0, proof); err != nil { 524 t.Fatalf("Failed to prove the last node %v", err) 525 } 526 k := make([][]byte, 0) 527 v := make([][]byte, 0) 528 for i := pos; i < len(entries); i++ { 529 k = append(k, entries[i].k) 530 v = append(v, entries[i].v) 531 } 532 _, err := VerifyRangeProof(trie.Hash(), k[0], last.Bytes(), k, v, proof) 533 if err != nil { 534 t.Fatalf("Expected no error, got %v", err) 535 } 536 } 537 } 538 } 539 540 // TestBadRangeProof tests a few cases which the proof is wrong. 541 // The prover is expected to detect the error. 542 func TestBadRangeProof(t *testing.T) { 543 trie, vals := randomTrie(4096) 544 var entries entrySlice 545 for _, kv := range vals { 546 entries = append(entries, kv) 547 } 548 sort.Sort(entries) 549 550 for i := 0; i < 500; i++ { 551 start := mrand.Intn(len(entries)) 552 end := mrand.Intn(len(entries)-start) + start + 1 553 proof := memorydb.New() 554 if err := trie.Prove(entries[start].k, 0, proof); err != nil { 555 t.Fatalf("Failed to prove the first node %v", err) 556 } 557 if err := trie.Prove(entries[end-1].k, 0, proof); err != nil { 558 t.Fatalf("Failed to prove the last node %v", err) 559 } 560 var keys [][]byte 561 var vals [][]byte 562 for i := start; i < end; i++ { 563 keys = append(keys, entries[i].k) 564 vals = append(vals, entries[i].v) 565 } 566 var first, last = keys[0], keys[len(keys)-1] 567 testcase := mrand.Intn(6) 568 var index int 569 switch testcase { 570 case 0: 571 // Modified key 572 index = mrand.Intn(end - start) 573 keys[index] = randBytes(32) // In theory it can't be same 574 case 1: 575 // Modified val 576 index = mrand.Intn(end - start) 577 vals[index] = randBytes(20) // In theory it can't be same 578 case 2: 579 // Gapped entry slice 580 index = mrand.Intn(end - start) 581 if (index == 0 && start < 100) || (index == end-start-1 && end <= 100) { 582 continue 583 } 584 keys = append(keys[:index], keys[index+1:]...) 585 vals = append(vals[:index], vals[index+1:]...) 586 case 3: 587 // Out of order 588 index1 := mrand.Intn(end - start) 589 index2 := mrand.Intn(end - start) 590 if index1 == index2 { 591 continue 592 } 593 keys[index1], keys[index2] = keys[index2], keys[index1] 594 vals[index1], vals[index2] = vals[index2], vals[index1] 595 case 4: 596 // Set random key to nil, do nothing 597 index = mrand.Intn(end - start) 598 keys[index] = nil 599 case 5: 600 // Set random value to nil, deletion 601 index = mrand.Intn(end - start) 602 vals[index] = nil 603 } 604 _, err := VerifyRangeProof(trie.Hash(), first, last, keys, vals, proof) 605 if err == nil { 606 t.Fatalf("%d Case %d index %d range: (%d->%d) expect error, got nil", i, testcase, index, start, end-1) 607 } 608 } 609 } 610 611 // TestGappedRangeProof focuses on the small trie with embedded nodes. 612 // If the gapped node is embedded in the trie, it should be detected too. 613 func TestGappedRangeProof(t *testing.T) { 614 trie := NewEmpty(NewDatabase(rawdb.NewMemoryDatabase())) 615 var entries []*kv // Sorted entries 616 for i := byte(0); i < 10; i++ { 617 value := &kv{common.LeftPadBytes([]byte{i}, 32), []byte{i}, false} 618 trie.Update(value.k, value.v) 619 entries = append(entries, value) 620 } 621 first, last := 2, 8 622 proof := memorydb.New() 623 if err := trie.Prove(entries[first].k, 0, proof); err != nil { 624 t.Fatalf("Failed to prove the first node %v", err) 625 } 626 if err := trie.Prove(entries[last-1].k, 0, proof); err != nil { 627 t.Fatalf("Failed to prove the last node %v", err) 628 } 629 var keys [][]byte 630 var vals [][]byte 631 for i := first; i < last; i++ { 632 if i == (first+last)/2 { 633 continue 634 } 635 keys = append(keys, entries[i].k) 636 vals = append(vals, entries[i].v) 637 } 638 _, err := VerifyRangeProof(trie.Hash(), keys[0], keys[len(keys)-1], keys, vals, proof) 639 if err == nil { 640 t.Fatal("expect error, got nil") 641 } 642 } 643 644 // TestSameSideProofs tests the element is not in the range covered by proofs 645 func TestSameSideProofs(t *testing.T) { 646 trie, vals := randomTrie(4096) 647 var entries entrySlice 648 for _, kv := range vals { 649 entries = append(entries, kv) 650 } 651 sort.Sort(entries) 652 653 pos := 1000 654 first := decreaseKey(common.CopyBytes(entries[pos].k)) 655 first = decreaseKey(first) 656 last := decreaseKey(common.CopyBytes(entries[pos].k)) 657 658 proof := memorydb.New() 659 if err := trie.Prove(first, 0, proof); err != nil { 660 t.Fatalf("Failed to prove the first node %v", err) 661 } 662 if err := trie.Prove(last, 0, proof); err != nil { 663 t.Fatalf("Failed to prove the last node %v", err) 664 } 665 _, err := VerifyRangeProof(trie.Hash(), first, last, [][]byte{entries[pos].k}, [][]byte{entries[pos].v}, proof) 666 if err == nil { 667 t.Fatalf("Expected error, got nil") 668 } 669 670 first = increaseKey(common.CopyBytes(entries[pos].k)) 671 last = increaseKey(common.CopyBytes(entries[pos].k)) 672 last = increaseKey(last) 673 674 proof = memorydb.New() 675 if err := trie.Prove(first, 0, proof); err != nil { 676 t.Fatalf("Failed to prove the first node %v", err) 677 } 678 if err := trie.Prove(last, 0, proof); err != nil { 679 t.Fatalf("Failed to prove the last node %v", err) 680 } 681 _, err = VerifyRangeProof(trie.Hash(), first, last, [][]byte{entries[pos].k}, [][]byte{entries[pos].v}, proof) 682 if err == nil { 683 t.Fatalf("Expected error, got nil") 684 } 685 } 686 687 func TestHasRightElement(t *testing.T) { 688 trie := NewEmpty(NewDatabase(rawdb.NewMemoryDatabase())) 689 var entries entrySlice 690 for i := 0; i < 4096; i++ { 691 value := &kv{randBytes(32), randBytes(20), false} 692 trie.Update(value.k, value.v) 693 entries = append(entries, value) 694 } 695 sort.Sort(entries) 696 697 var cases = []struct { 698 start int 699 end int 700 hasMore bool 701 }{ 702 {-1, 1, true}, // single element with non-existent left proof 703 {0, 1, true}, // single element with existent left proof 704 {0, 10, true}, 705 {50, 100, true}, 706 {50, len(entries), false}, // No more element expected 707 {len(entries) - 1, len(entries), false}, // Single last element with two existent proofs(point to same key) 708 {len(entries) - 1, -1, false}, // Single last element with non-existent right proof 709 {0, len(entries), false}, // The whole set with existent left proof 710 {-1, len(entries), false}, // The whole set with non-existent left proof 711 {-1, -1, false}, // The whole set with non-existent left/right proof 712 } 713 for _, c := range cases { 714 var ( 715 firstKey []byte 716 lastKey []byte 717 start = c.start 718 end = c.end 719 proof = memorydb.New() 720 ) 721 if c.start == -1 { 722 firstKey, start = common.Hash{}.Bytes(), 0 723 if err := trie.Prove(firstKey, 0, proof); err != nil { 724 t.Fatalf("Failed to prove the first node %v", err) 725 } 726 } else { 727 firstKey = entries[c.start].k 728 if err := trie.Prove(entries[c.start].k, 0, proof); err != nil { 729 t.Fatalf("Failed to prove the first node %v", err) 730 } 731 } 732 if c.end == -1 { 733 lastKey, end = common.HexToHash("0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff").Bytes(), len(entries) 734 if err := trie.Prove(lastKey, 0, proof); err != nil { 735 t.Fatalf("Failed to prove the first node %v", err) 736 } 737 } else { 738 lastKey = entries[c.end-1].k 739 if err := trie.Prove(entries[c.end-1].k, 0, proof); err != nil { 740 t.Fatalf("Failed to prove the first node %v", err) 741 } 742 } 743 k := make([][]byte, 0) 744 v := make([][]byte, 0) 745 for i := start; i < end; i++ { 746 k = append(k, entries[i].k) 747 v = append(v, entries[i].v) 748 } 749 hasMore, err := VerifyRangeProof(trie.Hash(), firstKey, lastKey, k, v, proof) 750 if err != nil { 751 t.Fatalf("Expected no error, got %v", err) 752 } 753 if hasMore != c.hasMore { 754 t.Fatalf("Wrong hasMore indicator, want %t, got %t", c.hasMore, hasMore) 755 } 756 } 757 } 758 759 // TestEmptyRangeProof tests the range proof with "no" element. 760 // The first edge proof must be a non-existent proof. 761 func TestEmptyRangeProof(t *testing.T) { 762 trie, vals := randomTrie(4096) 763 var entries entrySlice 764 for _, kv := range vals { 765 entries = append(entries, kv) 766 } 767 sort.Sort(entries) 768 769 var cases = []struct { 770 pos int 771 err bool 772 }{ 773 {len(entries) - 1, false}, 774 {500, true}, 775 } 776 for _, c := range cases { 777 proof := memorydb.New() 778 first := increaseKey(common.CopyBytes(entries[c.pos].k)) 779 if err := trie.Prove(first, 0, proof); err != nil { 780 t.Fatalf("Failed to prove the first node %v", err) 781 } 782 _, err := VerifyRangeProof(trie.Hash(), first, nil, nil, nil, proof) 783 if c.err && err == nil { 784 t.Fatalf("Expected error, got nil") 785 } 786 if !c.err && err != nil { 787 t.Fatalf("Expected no error, got %v", err) 788 } 789 } 790 } 791 792 // TestBloatedProof tests a malicious proof, where the proof is more or less the 793 // whole trie. Previously we didn't accept such packets, but the new APIs do, so 794 // lets leave this test as a bit weird, but present. 795 func TestBloatedProof(t *testing.T) { 796 // Use a small trie 797 trie, kvs := nonRandomTrie(100) 798 var entries entrySlice 799 for _, kv := range kvs { 800 entries = append(entries, kv) 801 } 802 sort.Sort(entries) 803 var keys [][]byte 804 var vals [][]byte 805 806 proof := memorydb.New() 807 // In the 'malicious' case, we add proofs for every single item 808 // (but only one key/value pair used as leaf) 809 for i, entry := range entries { 810 trie.Prove(entry.k, 0, proof) 811 if i == 50 { 812 keys = append(keys, entry.k) 813 vals = append(vals, entry.v) 814 } 815 } 816 // For reference, we use the same function, but _only_ prove the first 817 // and last element 818 want := memorydb.New() 819 trie.Prove(keys[0], 0, want) 820 trie.Prove(keys[len(keys)-1], 0, want) 821 822 if _, err := VerifyRangeProof(trie.Hash(), keys[0], keys[len(keys)-1], keys, vals, proof); err != nil { 823 t.Fatalf("expected bloated proof to succeed, got %v", err) 824 } 825 } 826 827 // TestEmptyValueRangeProof tests normal range proof with both edge proofs 828 // as the existent proof, but with an extra empty value included, which is a 829 // noop technically, but practically should be rejected. 830 func TestEmptyValueRangeProof(t *testing.T) { 831 trie, values := randomTrie(512) 832 var entries entrySlice 833 for _, kv := range values { 834 entries = append(entries, kv) 835 } 836 sort.Sort(entries) 837 838 // Create a new entry with a slightly modified key 839 mid := len(entries) / 2 840 key := common.CopyBytes(entries[mid-1].k) 841 for n := len(key) - 1; n >= 0; n-- { 842 if key[n] < 0xff { 843 key[n]++ 844 break 845 } 846 } 847 noop := &kv{key, []byte{}, false} 848 entries = append(append(append([]*kv{}, entries[:mid]...), noop), entries[mid:]...) 849 850 start, end := 1, len(entries)-1 851 852 proof := memorydb.New() 853 if err := trie.Prove(entries[start].k, 0, proof); err != nil { 854 t.Fatalf("Failed to prove the first node %v", err) 855 } 856 if err := trie.Prove(entries[end-1].k, 0, proof); err != nil { 857 t.Fatalf("Failed to prove the last node %v", err) 858 } 859 var keys [][]byte 860 var vals [][]byte 861 for i := start; i < end; i++ { 862 keys = append(keys, entries[i].k) 863 vals = append(vals, entries[i].v) 864 } 865 _, err := VerifyRangeProof(trie.Hash(), keys[0], keys[len(keys)-1], keys, vals, proof) 866 if err == nil { 867 t.Fatalf("Expected failure on noop entry") 868 } 869 } 870 871 // TestAllElementsEmptyValueRangeProof tests the range proof with all elements, 872 // but with an extra empty value included, which is a noop technically, but 873 // practically should be rejected. 874 func TestAllElementsEmptyValueRangeProof(t *testing.T) { 875 trie, values := randomTrie(512) 876 var entries entrySlice 877 for _, kv := range values { 878 entries = append(entries, kv) 879 } 880 sort.Sort(entries) 881 882 // Create a new entry with a slightly modified key 883 mid := len(entries) / 2 884 key := common.CopyBytes(entries[mid-1].k) 885 for n := len(key) - 1; n >= 0; n-- { 886 if key[n] < 0xff { 887 key[n]++ 888 break 889 } 890 } 891 noop := &kv{key, []byte{}, false} 892 entries = append(append(append([]*kv{}, entries[:mid]...), noop), entries[mid:]...) 893 894 var keys [][]byte 895 var vals [][]byte 896 for i := 0; i < len(entries); i++ { 897 keys = append(keys, entries[i].k) 898 vals = append(vals, entries[i].v) 899 } 900 _, err := VerifyRangeProof(trie.Hash(), nil, nil, keys, vals, nil) 901 if err == nil { 902 t.Fatalf("Expected failure on noop entry") 903 } 904 } 905 906 // mutateByte changes one byte in b. 907 func mutateByte(b []byte) { 908 for r := mrand.Intn(len(b)); ; { 909 new := byte(mrand.Intn(255)) 910 if new != b[r] { 911 b[r] = new 912 break 913 } 914 } 915 } 916 917 func increaseKey(key []byte) []byte { 918 for i := len(key) - 1; i >= 0; i-- { 919 key[i]++ 920 if key[i] != 0x0 { 921 break 922 } 923 } 924 return key 925 } 926 927 func decreaseKey(key []byte) []byte { 928 for i := len(key) - 1; i >= 0; i-- { 929 key[i]-- 930 if key[i] != 0xff { 931 break 932 } 933 } 934 return key 935 } 936 937 func BenchmarkProve(b *testing.B) { 938 trie, vals := randomTrie(100) 939 var keys []string 940 for k := range vals { 941 keys = append(keys, k) 942 } 943 944 b.ResetTimer() 945 for i := 0; i < b.N; i++ { 946 kv := vals[keys[i%len(keys)]] 947 proofs := memorydb.New() 948 if trie.Prove(kv.k, 0, proofs); proofs.Len() == 0 { 949 b.Fatalf("zero length proof for %x", kv.k) 950 } 951 } 952 } 953 954 func BenchmarkVerifyProof(b *testing.B) { 955 trie, vals := randomTrie(100) 956 root := trie.Hash() 957 var keys []string 958 var proofs []*memorydb.Database 959 for k := range vals { 960 keys = append(keys, k) 961 proof := memorydb.New() 962 trie.Prove([]byte(k), 0, proof) 963 proofs = append(proofs, proof) 964 } 965 966 b.ResetTimer() 967 for i := 0; i < b.N; i++ { 968 im := i % len(keys) 969 if _, err := VerifyProof(root, []byte(keys[im]), proofs[im]); err != nil { 970 b.Fatalf("key %x: %v", keys[im], err) 971 } 972 } 973 } 974 975 func BenchmarkVerifyRangeProof10(b *testing.B) { benchmarkVerifyRangeProof(b, 10) } 976 func BenchmarkVerifyRangeProof100(b *testing.B) { benchmarkVerifyRangeProof(b, 100) } 977 func BenchmarkVerifyRangeProof1000(b *testing.B) { benchmarkVerifyRangeProof(b, 1000) } 978 func BenchmarkVerifyRangeProof5000(b *testing.B) { benchmarkVerifyRangeProof(b, 5000) } 979 980 func benchmarkVerifyRangeProof(b *testing.B, size int) { 981 trie, vals := randomTrie(8192) 982 var entries entrySlice 983 for _, kv := range vals { 984 entries = append(entries, kv) 985 } 986 sort.Sort(entries) 987 988 start := 2 989 end := start + size 990 proof := memorydb.New() 991 if err := trie.Prove(entries[start].k, 0, proof); err != nil { 992 b.Fatalf("Failed to prove the first node %v", err) 993 } 994 if err := trie.Prove(entries[end-1].k, 0, proof); err != nil { 995 b.Fatalf("Failed to prove the last node %v", err) 996 } 997 var keys [][]byte 998 var values [][]byte 999 for i := start; i < end; i++ { 1000 keys = append(keys, entries[i].k) 1001 values = append(values, entries[i].v) 1002 } 1003 1004 b.ResetTimer() 1005 for i := 0; i < b.N; i++ { 1006 _, err := VerifyRangeProof(trie.Hash(), keys[0], keys[len(keys)-1], keys, values, proof) 1007 if err != nil { 1008 b.Fatalf("Case %d(%d->%d) expect no error, got %v", i, start, end-1, err) 1009 } 1010 } 1011 } 1012 1013 func BenchmarkVerifyRangeNoProof10(b *testing.B) { benchmarkVerifyRangeNoProof(b, 100) } 1014 func BenchmarkVerifyRangeNoProof500(b *testing.B) { benchmarkVerifyRangeNoProof(b, 500) } 1015 func BenchmarkVerifyRangeNoProof1000(b *testing.B) { benchmarkVerifyRangeNoProof(b, 1000) } 1016 1017 func benchmarkVerifyRangeNoProof(b *testing.B, size int) { 1018 trie, vals := randomTrie(size) 1019 var entries entrySlice 1020 for _, kv := range vals { 1021 entries = append(entries, kv) 1022 } 1023 sort.Sort(entries) 1024 1025 var keys [][]byte 1026 var values [][]byte 1027 for _, entry := range entries { 1028 keys = append(keys, entry.k) 1029 values = append(values, entry.v) 1030 } 1031 b.ResetTimer() 1032 for i := 0; i < b.N; i++ { 1033 _, err := VerifyRangeProof(trie.Hash(), keys[0], keys[len(keys)-1], keys, values, nil) 1034 if err != nil { 1035 b.Fatalf("Expected no error, got %v", err) 1036 } 1037 } 1038 } 1039 1040 func randomTrie(n int) (*Trie, map[string]*kv) { 1041 trie := NewEmpty(NewDatabase(rawdb.NewMemoryDatabase())) 1042 vals := make(map[string]*kv) 1043 for i := byte(0); i < 100; i++ { 1044 value := &kv{common.LeftPadBytes([]byte{i}, 32), []byte{i}, false} 1045 value2 := &kv{common.LeftPadBytes([]byte{i + 10}, 32), []byte{i}, false} 1046 trie.Update(value.k, value.v) 1047 trie.Update(value2.k, value2.v) 1048 vals[string(value.k)] = value 1049 vals[string(value2.k)] = value2 1050 } 1051 for i := 0; i < n; i++ { 1052 value := &kv{randBytes(32), randBytes(20), false} 1053 trie.Update(value.k, value.v) 1054 vals[string(value.k)] = value 1055 } 1056 return trie, vals 1057 } 1058 1059 func randBytes(n int) []byte { 1060 r := make([]byte, n) 1061 crand.Read(r) 1062 return r 1063 } 1064 1065 func nonRandomTrie(n int) (*Trie, map[string]*kv) { 1066 trie := NewEmpty(NewDatabase(rawdb.NewMemoryDatabase())) 1067 vals := make(map[string]*kv) 1068 max := uint64(0xffffffffffffffff) 1069 for i := uint64(0); i < uint64(n); i++ { 1070 value := make([]byte, 32) 1071 key := make([]byte, 32) 1072 binary.LittleEndian.PutUint64(key, i) 1073 binary.LittleEndian.PutUint64(value, i-max) 1074 //value := &kv{common.LeftPadBytes([]byte{i}, 32), []byte{i}, false} 1075 elem := &kv{key, value, false} 1076 trie.Update(elem.k, elem.v) 1077 vals[string(elem.k)] = elem 1078 } 1079 return trie, vals 1080 } 1081 1082 func TestRangeProofKeysWithSharedPrefix(t *testing.T) { 1083 keys := [][]byte{ 1084 common.Hex2Bytes("aa10000000000000000000000000000000000000000000000000000000000000"), 1085 common.Hex2Bytes("aa20000000000000000000000000000000000000000000000000000000000000"), 1086 } 1087 vals := [][]byte{ 1088 common.Hex2Bytes("02"), 1089 common.Hex2Bytes("03"), 1090 } 1091 trie := NewEmpty(NewDatabase(rawdb.NewMemoryDatabase())) 1092 for i, key := range keys { 1093 trie.Update(key, vals[i]) 1094 } 1095 root := trie.Hash() 1096 proof := memorydb.New() 1097 start := common.Hex2Bytes("0000000000000000000000000000000000000000000000000000000000000000") 1098 end := common.Hex2Bytes("ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff") 1099 if err := trie.Prove(start, 0, proof); err != nil { 1100 t.Fatalf("failed to prove start: %v", err) 1101 } 1102 if err := trie.Prove(end, 0, proof); err != nil { 1103 t.Fatalf("failed to prove end: %v", err) 1104 } 1105 1106 more, err := VerifyRangeProof(root, start, end, keys, vals, proof) 1107 if err != nil { 1108 t.Fatalf("failed to verify range proof: %v", err) 1109 } 1110 if more != false { 1111 t.Error("expected more to be false") 1112 } 1113 }