github.com/MetalBlockchain/subnet-evm@v0.6.3/trie/proof.go (about)

     1  // (c) 2020-2021, Ava Labs, Inc.
     2  //
     3  // This file is a derived work, based on the go-ethereum library whose original
     4  // notices appear below.
     5  //
     6  // It is distributed under a license compatible with the licensing terms of the
     7  // original code from which it is derived.
     8  //
     9  // Much love to the original authors for their work.
    10  // **********
    11  // Copyright 2015 The go-ethereum Authors
    12  // This file is part of the go-ethereum library.
    13  //
    14  // The go-ethereum library is free software: you can redistribute it and/or modify
    15  // it under the terms of the GNU Lesser General Public License as published by
    16  // the Free Software Foundation, either version 3 of the License, or
    17  // (at your option) any later version.
    18  //
    19  // The go-ethereum library is distributed in the hope that it will be useful,
    20  // but WITHOUT ANY WARRANTY; without even the implied warranty of
    21  // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
    22  // GNU Lesser General Public License for more details.
    23  //
    24  // You should have received a copy of the GNU Lesser General Public License
    25  // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
    26  
    27  package trie
    28  
    29  import (
    30  	"bytes"
    31  	"errors"
    32  	"fmt"
    33  
    34  	"github.com/ethereum/go-ethereum/common"
    35  	"github.com/ethereum/go-ethereum/ethdb"
    36  	"github.com/ethereum/go-ethereum/log"
    37  )
    38  
    39  // Prove constructs a merkle proof for key. The result contains all encoded nodes
    40  // on the path to the value at key. The value itself is also included in the last
    41  // node and can be retrieved by verifying the proof.
    42  //
    43  // If the trie does not contain a value for key, the returned proof contains all
    44  // nodes of the longest existing prefix of the key (at least the root node), ending
    45  // with the node that proves the absence of the key.
    46  func (t *Trie) Prove(key []byte, proofDb ethdb.KeyValueWriter) error {
    47  	// Short circuit if the trie is already committed and not usable.
    48  	if t.committed {
    49  		return ErrCommitted
    50  	}
    51  	// Collect all nodes on the path to key.
    52  	var (
    53  		prefix []byte
    54  		nodes  []node
    55  		tn     = t.root
    56  	)
    57  	key = keybytesToHex(key)
    58  	for len(key) > 0 && tn != nil {
    59  		switch n := tn.(type) {
    60  		case *shortNode:
    61  			if len(key) < len(n.Key) || !bytes.Equal(n.Key, key[:len(n.Key)]) {
    62  				// The trie doesn't contain the key.
    63  				tn = nil
    64  			} else {
    65  				tn = n.Val
    66  				prefix = append(prefix, n.Key...)
    67  				key = key[len(n.Key):]
    68  			}
    69  			nodes = append(nodes, n)
    70  		case *fullNode:
    71  			tn = n.Children[key[0]]
    72  			prefix = append(prefix, key[0])
    73  			key = key[1:]
    74  			nodes = append(nodes, n)
    75  		case hashNode:
    76  			// Retrieve the specified node from the underlying node reader.
    77  			// trie.resolveAndTrack is not used since in that function the
    78  			// loaded blob will be tracked, while it's not required here since
    79  			// all loaded nodes won't be linked to trie at all and track nodes
    80  			// may lead to out-of-memory issue.
    81  			blob, err := t.reader.node(prefix, common.BytesToHash(n))
    82  			if err != nil {
    83  				log.Error("Unhandled trie error in Trie.Prove", "err", err)
    84  				return err
    85  			}
    86  			// The raw-blob format nodes are loaded either from the
    87  			// clean cache or the database, they are all in their own
    88  			// copy and safe to use unsafe decoder.
    89  			tn = mustDecodeNodeUnsafe(n, blob)
    90  		default:
    91  			panic(fmt.Sprintf("%T: invalid node: %v", tn, tn))
    92  		}
    93  	}
    94  	hasher := newHasher(false)
    95  	defer returnHasherToPool(hasher)
    96  
    97  	for i, n := range nodes {
    98  		var hn node
    99  		n, hn = hasher.proofHash(n)
   100  		if hash, ok := hn.(hashNode); ok || i == 0 {
   101  			// If the node's database encoding is a hash (or is the
   102  			// root node), it becomes a proof element.
   103  			enc := nodeToBytes(n)
   104  			if !ok {
   105  				hash = hasher.hashData(enc)
   106  			}
   107  			proofDb.Put(hash, enc)
   108  		}
   109  	}
   110  	return nil
   111  }
   112  
   113  // Prove constructs a merkle proof for key. The result contains all encoded nodes
   114  // on the path to the value at key. The value itself is also included in the last
   115  // node and can be retrieved by verifying the proof.
   116  //
   117  // If the trie does not contain a value for key, the returned proof contains all
   118  // nodes of the longest existing prefix of the key (at least the root node), ending
   119  // with the node that proves the absence of the key.
   120  func (t *StateTrie) Prove(key []byte, proofDb ethdb.KeyValueWriter) error {
   121  	return t.trie.Prove(key, proofDb)
   122  }
   123  
   124  // VerifyProof checks merkle proofs. The given proof must contain the value for
   125  // key in a trie with the given root hash. VerifyProof returns an error if the
   126  // proof contains invalid trie nodes or the wrong value.
   127  func VerifyProof(rootHash common.Hash, key []byte, proofDb ethdb.KeyValueReader) (value []byte, err error) {
   128  	key = keybytesToHex(key)
   129  	wantHash := rootHash
   130  	for i := 0; ; i++ {
   131  		buf, _ := proofDb.Get(wantHash[:])
   132  		if buf == nil {
   133  			return nil, fmt.Errorf("proof node %d (hash %064x) missing", i, wantHash)
   134  		}
   135  		n, err := decodeNode(wantHash[:], buf)
   136  		if err != nil {
   137  			return nil, fmt.Errorf("bad proof node %d: %v", i, err)
   138  		}
   139  		keyrest, cld := get(n, key, true)
   140  		switch cld := cld.(type) {
   141  		case nil:
   142  			// The trie doesn't contain the key.
   143  			return nil, nil
   144  		case hashNode:
   145  			key = keyrest
   146  			copy(wantHash[:], cld)
   147  		case valueNode:
   148  			return cld, nil
   149  		}
   150  	}
   151  }
   152  
   153  // proofToPath converts a merkle proof to trie node path. The main purpose of
   154  // this function is recovering a node path from the merkle proof stream. All
   155  // necessary nodes will be resolved and leave the remaining as hashnode.
   156  //
   157  // The given edge proof is allowed to be an existent or non-existent proof.
   158  func proofToPath(rootHash common.Hash, root node, key []byte, proofDb ethdb.KeyValueReader, allowNonExistent bool) (node, []byte, error) {
   159  	// resolveNode retrieves and resolves trie node from merkle proof stream
   160  	resolveNode := func(hash common.Hash) (node, error) {
   161  		buf, _ := proofDb.Get(hash[:])
   162  		if buf == nil {
   163  			return nil, fmt.Errorf("proof node (hash %064x) missing", hash)
   164  		}
   165  		n, err := decodeNode(hash[:], buf)
   166  		if err != nil {
   167  			return nil, fmt.Errorf("bad proof node %v", err)
   168  		}
   169  		return n, err
   170  	}
   171  	// If the root node is empty, resolve it first.
   172  	// Root node must be included in the proof.
   173  	if root == nil {
   174  		n, err := resolveNode(rootHash)
   175  		if err != nil {
   176  			return nil, nil, err
   177  		}
   178  		root = n
   179  	}
   180  	var (
   181  		err           error
   182  		child, parent node
   183  		keyrest       []byte
   184  		valnode       []byte
   185  	)
   186  	key, parent = keybytesToHex(key), root
   187  	for {
   188  		keyrest, child = get(parent, key, false)
   189  		switch cld := child.(type) {
   190  		case nil:
   191  			// The trie doesn't contain the key. It's possible
   192  			// the proof is a non-existing proof, but at least
   193  			// we can prove all resolved nodes are correct, it's
   194  			// enough for us to prove range.
   195  			if allowNonExistent {
   196  				return root, nil, nil
   197  			}
   198  			return nil, nil, errors.New("the node is not contained in trie")
   199  		case *shortNode:
   200  			key, parent = keyrest, child // Already resolved
   201  			continue
   202  		case *fullNode:
   203  			key, parent = keyrest, child // Already resolved
   204  			continue
   205  		case hashNode:
   206  			child, err = resolveNode(common.BytesToHash(cld))
   207  			if err != nil {
   208  				return nil, nil, err
   209  			}
   210  		case valueNode:
   211  			valnode = cld
   212  		}
   213  		// Link the parent and child.
   214  		switch pnode := parent.(type) {
   215  		case *shortNode:
   216  			pnode.Val = child
   217  		case *fullNode:
   218  			pnode.Children[key[0]] = child
   219  		default:
   220  			panic(fmt.Sprintf("%T: invalid node: %v", pnode, pnode))
   221  		}
   222  		if len(valnode) > 0 {
   223  			return root, valnode, nil // The whole path is resolved
   224  		}
   225  		key, parent = keyrest, child
   226  	}
   227  }
   228  
   229  // unsetInternal removes all internal node references(hashnode, embedded node).
   230  // It should be called after a trie is constructed with two edge paths. Also
   231  // the given boundary keys must be the one used to construct the edge paths.
   232  //
   233  // It's the key step for range proof. All visited nodes should be marked dirty
   234  // since the node content might be modified. Besides it can happen that some
   235  // fullnodes only have one child which is disallowed. But if the proof is valid,
   236  // the missing children will be filled, otherwise it will be thrown anyway.
   237  //
   238  // Note we have the assumption here the given boundary keys are different
   239  // and right is larger than left.
   240  func unsetInternal(n node, left []byte, right []byte) (bool, error) {
   241  	left, right = keybytesToHex(left), keybytesToHex(right)
   242  
   243  	// Step down to the fork point. There are two scenarios can happen:
   244  	// - the fork point is a shortnode: either the key of left proof or
   245  	//   right proof doesn't match with shortnode's key.
   246  	// - the fork point is a fullnode: both two edge proofs are allowed
   247  	//   to point to a non-existent key.
   248  	var (
   249  		pos    = 0
   250  		parent node
   251  
   252  		// fork indicator, 0 means no fork, -1 means proof is less, 1 means proof is greater
   253  		shortForkLeft, shortForkRight int
   254  	)
   255  findFork:
   256  	for {
   257  		switch rn := (n).(type) {
   258  		case *shortNode:
   259  			rn.flags = nodeFlag{dirty: true}
   260  
   261  			// If either the key of left proof or right proof doesn't match with
   262  			// shortnode, stop here and the forkpoint is the shortnode.
   263  			if len(left)-pos < len(rn.Key) {
   264  				shortForkLeft = bytes.Compare(left[pos:], rn.Key)
   265  			} else {
   266  				shortForkLeft = bytes.Compare(left[pos:pos+len(rn.Key)], rn.Key)
   267  			}
   268  			if len(right)-pos < len(rn.Key) {
   269  				shortForkRight = bytes.Compare(right[pos:], rn.Key)
   270  			} else {
   271  				shortForkRight = bytes.Compare(right[pos:pos+len(rn.Key)], rn.Key)
   272  			}
   273  			if shortForkLeft != 0 || shortForkRight != 0 {
   274  				break findFork
   275  			}
   276  			parent = n
   277  			n, pos = rn.Val, pos+len(rn.Key)
   278  		case *fullNode:
   279  			rn.flags = nodeFlag{dirty: true}
   280  
   281  			// If either the node pointed by left proof or right proof is nil,
   282  			// stop here and the forkpoint is the fullnode.
   283  			leftnode, rightnode := rn.Children[left[pos]], rn.Children[right[pos]]
   284  			if leftnode == nil || rightnode == nil || leftnode != rightnode {
   285  				break findFork
   286  			}
   287  			parent = n
   288  			n, pos = rn.Children[left[pos]], pos+1
   289  		default:
   290  			panic(fmt.Sprintf("%T: invalid node: %v", n, n))
   291  		}
   292  	}
   293  	switch rn := n.(type) {
   294  	case *shortNode:
   295  		// There can have these five scenarios:
   296  		// - both proofs are less than the trie path => no valid range
   297  		// - both proofs are greater than the trie path => no valid range
   298  		// - left proof is less and right proof is greater => valid range, unset the shortnode entirely
   299  		// - left proof points to the shortnode, but right proof is greater
   300  		// - right proof points to the shortnode, but left proof is less
   301  		if shortForkLeft == -1 && shortForkRight == -1 {
   302  			return false, errors.New("empty range")
   303  		}
   304  		if shortForkLeft == 1 && shortForkRight == 1 {
   305  			return false, errors.New("empty range")
   306  		}
   307  		if shortForkLeft != 0 && shortForkRight != 0 {
   308  			// The fork point is root node, unset the entire trie
   309  			if parent == nil {
   310  				return true, nil
   311  			}
   312  			parent.(*fullNode).Children[left[pos-1]] = nil
   313  			return false, nil
   314  		}
   315  		// Only one proof points to non-existent key.
   316  		if shortForkRight != 0 {
   317  			if _, ok := rn.Val.(valueNode); ok {
   318  				// The fork point is root node, unset the entire trie
   319  				if parent == nil {
   320  					return true, nil
   321  				}
   322  				parent.(*fullNode).Children[left[pos-1]] = nil
   323  				return false, nil
   324  			}
   325  			return false, unset(rn, rn.Val, left[pos:], len(rn.Key), false)
   326  		}
   327  		if shortForkLeft != 0 {
   328  			if _, ok := rn.Val.(valueNode); ok {
   329  				// The fork point is root node, unset the entire trie
   330  				if parent == nil {
   331  					return true, nil
   332  				}
   333  				parent.(*fullNode).Children[right[pos-1]] = nil
   334  				return false, nil
   335  			}
   336  			return false, unset(rn, rn.Val, right[pos:], len(rn.Key), true)
   337  		}
   338  		return false, nil
   339  	case *fullNode:
   340  		// unset all internal nodes in the forkpoint
   341  		for i := left[pos] + 1; i < right[pos]; i++ {
   342  			rn.Children[i] = nil
   343  		}
   344  		if err := unset(rn, rn.Children[left[pos]], left[pos:], 1, false); err != nil {
   345  			return false, err
   346  		}
   347  		if err := unset(rn, rn.Children[right[pos]], right[pos:], 1, true); err != nil {
   348  			return false, err
   349  		}
   350  		return false, nil
   351  	default:
   352  		panic(fmt.Sprintf("%T: invalid node: %v", n, n))
   353  	}
   354  }
   355  
   356  // unset removes all internal node references either the left most or right most.
   357  // It can meet these scenarios:
   358  //
   359  //   - The given path is existent in the trie, unset the associated nodes with the
   360  //     specific direction
   361  //   - The given path is non-existent in the trie
   362  //   - the fork point is a fullnode, the corresponding child pointed by path
   363  //     is nil, return
   364  //   - the fork point is a shortnode, the shortnode is included in the range,
   365  //     keep the entire branch and return.
   366  //   - the fork point is a shortnode, the shortnode is excluded in the range,
   367  //     unset the entire branch.
   368  func unset(parent node, child node, key []byte, pos int, removeLeft bool) error {
   369  	switch cld := child.(type) {
   370  	case *fullNode:
   371  		if removeLeft {
   372  			for i := 0; i < int(key[pos]); i++ {
   373  				cld.Children[i] = nil
   374  			}
   375  			cld.flags = nodeFlag{dirty: true}
   376  		} else {
   377  			for i := key[pos] + 1; i < 16; i++ {
   378  				cld.Children[i] = nil
   379  			}
   380  			cld.flags = nodeFlag{dirty: true}
   381  		}
   382  		return unset(cld, cld.Children[key[pos]], key, pos+1, removeLeft)
   383  	case *shortNode:
   384  		if len(key[pos:]) < len(cld.Key) || !bytes.Equal(cld.Key, key[pos:pos+len(cld.Key)]) {
   385  			// Find the fork point, it's an non-existent branch.
   386  			if removeLeft {
   387  				if bytes.Compare(cld.Key, key[pos:]) < 0 {
   388  					// The key of fork shortnode is less than the path
   389  					// (it belongs to the range), unset the entire
   390  					// branch. The parent must be a fullnode.
   391  					fn := parent.(*fullNode)
   392  					fn.Children[key[pos-1]] = nil
   393  				}
   394  				//else {
   395  				// The key of fork shortnode is greater than the
   396  				// path(it doesn't belong to the range), keep
   397  				// it with the cached hash available.
   398  				//}
   399  			} else {
   400  				if bytes.Compare(cld.Key, key[pos:]) > 0 {
   401  					// The key of fork shortnode is greater than the
   402  					// path(it belongs to the range), unset the entrie
   403  					// branch. The parent must be a fullnode.
   404  					fn := parent.(*fullNode)
   405  					fn.Children[key[pos-1]] = nil
   406  				}
   407  				//else {
   408  				// The key of fork shortnode is less than the
   409  				// path(it doesn't belong to the range), keep
   410  				// it with the cached hash available.
   411  				//}
   412  			}
   413  			return nil
   414  		}
   415  		if _, ok := cld.Val.(valueNode); ok {
   416  			fn := parent.(*fullNode)
   417  			fn.Children[key[pos-1]] = nil
   418  			return nil
   419  		}
   420  		cld.flags = nodeFlag{dirty: true}
   421  		return unset(cld, cld.Val, key, pos+len(cld.Key), removeLeft)
   422  	case nil:
   423  		// If the node is nil, then it's a child of the fork point
   424  		// fullnode(it's a non-existent branch).
   425  		return nil
   426  	default:
   427  		panic("it shouldn't happen") // hashNode, valueNode
   428  	}
   429  }
   430  
   431  // hasRightElement returns the indicator whether there exists more elements
   432  // on the right side of the given path. The given path can point to an existent
   433  // key or a non-existent one. This function has the assumption that the whole
   434  // path should already be resolved.
   435  func hasRightElement(node node, key []byte) bool {
   436  	pos, key := 0, keybytesToHex(key)
   437  	for node != nil {
   438  		switch rn := node.(type) {
   439  		case *fullNode:
   440  			for i := key[pos] + 1; i < 16; i++ {
   441  				if rn.Children[i] != nil {
   442  					return true
   443  				}
   444  			}
   445  			node, pos = rn.Children[key[pos]], pos+1
   446  		case *shortNode:
   447  			if len(key)-pos < len(rn.Key) || !bytes.Equal(rn.Key, key[pos:pos+len(rn.Key)]) {
   448  				return bytes.Compare(rn.Key, key[pos:]) > 0
   449  			}
   450  			node, pos = rn.Val, pos+len(rn.Key)
   451  		case valueNode:
   452  			return false // We have resolved the whole path
   453  		default:
   454  			panic(fmt.Sprintf("%T: invalid node: %v", node, node)) // hashnode
   455  		}
   456  	}
   457  	return false
   458  }
   459  
   460  // VerifyRangeProof checks whether the given leaf nodes and edge proof
   461  // can prove the given trie leaves range is matched with the specific root.
   462  // Besides, the range should be consecutive (no gap inside) and monotonic
   463  // increasing.
   464  //
   465  // Note the given proof actually contains two edge proofs. Both of them can
   466  // be non-existent proofs. For example the first proof is for a non-existent
   467  // key 0x03, the last proof is for a non-existent key 0x10. The given batch
   468  // leaves are [0x04, 0x05, .. 0x09]. It's still feasible to prove the given
   469  // batch is valid.
   470  //
   471  // The firstKey is paired with firstProof, not necessarily the same as keys[0]
   472  // (unless firstProof is an existent proof). Similarly, lastKey and lastProof
   473  // are paired.
   474  //
   475  // Expect the normal case, this function can also be used to verify the following
   476  // range proofs:
   477  //
   478  //   - All elements proof. In this case the proof can be nil, but the range should
   479  //     be all the leaves in the trie.
   480  //
   481  //   - One element proof. In this case no matter the edge proof is a non-existent
   482  //     proof or not, we can always verify the correctness of the proof.
   483  //
   484  //   - Zero element proof. In this case a single non-existent proof is enough to prove.
   485  //     Besides, if there are still some other leaves available on the right side, then
   486  //     an error will be returned.
   487  //
   488  // Except returning the error to indicate the proof is valid or not, the function will
   489  // also return a flag to indicate whether there exists more accounts/slots in the trie.
   490  //
   491  // Note: This method does not verify that the proof is of minimal form. If the input
   492  // proofs are 'bloated' with neighbour leaves or random data, aside from the 'useful'
   493  // data, then the proof will still be accepted.
   494  func VerifyRangeProof(rootHash common.Hash, firstKey []byte, lastKey []byte, keys [][]byte, values [][]byte, proof ethdb.KeyValueReader) (bool, error) {
   495  	if len(keys) != len(values) {
   496  		return false, fmt.Errorf("inconsistent proof data, keys: %d, values: %d", len(keys), len(values))
   497  	}
   498  	// Ensure the received batch is monotonic increasing and contains no deletions
   499  	for i := 0; i < len(keys)-1; i++ {
   500  		if bytes.Compare(keys[i], keys[i+1]) >= 0 {
   501  			return false, errors.New("range is not monotonically increasing")
   502  		}
   503  	}
   504  	for _, value := range values {
   505  		if len(value) == 0 {
   506  			return false, errors.New("range contains deletion")
   507  		}
   508  	}
   509  	// Special case, there is no edge proof at all. The given range is expected
   510  	// to be the whole leaf-set in the trie.
   511  	if proof == nil {
   512  		tr := NewStackTrie(nil)
   513  		for index, key := range keys {
   514  			tr.Update(key, values[index])
   515  		}
   516  		if have, want := tr.Hash(), rootHash; have != want {
   517  			return false, fmt.Errorf("invalid proof, want hash %x, got %x", want, have)
   518  		}
   519  		return false, nil // No more elements
   520  	}
   521  	// Special case, there is a provided edge proof but zero key/value
   522  	// pairs, ensure there are no more accounts / slots in the trie.
   523  	if len(keys) == 0 {
   524  		root, val, err := proofToPath(rootHash, nil, firstKey, proof, true)
   525  		if err != nil {
   526  			return false, err
   527  		}
   528  		if val != nil || hasRightElement(root, firstKey) {
   529  			return false, errors.New("more entries available")
   530  		}
   531  		return false, nil
   532  	}
   533  	// Special case, there is only one element and two edge keys are same.
   534  	// In this case, we can't construct two edge paths. So handle it here.
   535  	if len(keys) == 1 && bytes.Equal(firstKey, lastKey) {
   536  		root, val, err := proofToPath(rootHash, nil, firstKey, proof, false)
   537  		if err != nil {
   538  			return false, err
   539  		}
   540  		if !bytes.Equal(firstKey, keys[0]) {
   541  			return false, errors.New("correct proof but invalid key")
   542  		}
   543  		if !bytes.Equal(val, values[0]) {
   544  			return false, errors.New("correct proof but invalid data")
   545  		}
   546  		return hasRightElement(root, firstKey), nil
   547  	}
   548  	// Ok, in all other cases, we require two edge paths available.
   549  	// First check the validity of edge keys.
   550  	if bytes.Compare(firstKey, lastKey) >= 0 {
   551  		return false, errors.New("invalid edge keys")
   552  	}
   553  	// todo(rjl493456442) different length edge keys should be supported
   554  	if len(firstKey) != len(lastKey) {
   555  		return false, fmt.Errorf("inconsistent edge keys (%d != %d)", len(firstKey), len(lastKey))
   556  	}
   557  	// Convert the edge proofs to edge trie paths. Then we can
   558  	// have the same tree architecture with the original one.
   559  	// For the first edge proof, non-existent proof is allowed.
   560  	root, _, err := proofToPath(rootHash, nil, firstKey, proof, true)
   561  	if err != nil {
   562  		return false, err
   563  	}
   564  	// Pass the root node here, the second path will be merged
   565  	// with the first one. For the last edge proof, non-existent
   566  	// proof is also allowed.
   567  	root, _, err = proofToPath(rootHash, root, lastKey, proof, true)
   568  	if err != nil {
   569  		return false, err
   570  	}
   571  	// Remove all internal references. All the removed parts should
   572  	// be re-filled(or re-constructed) by the given leaves range.
   573  	empty, err := unsetInternal(root, firstKey, lastKey)
   574  	if err != nil {
   575  		return false, err
   576  	}
   577  	// Rebuild the trie with the leaf stream, the shape of trie
   578  	// should be same with the original one.
   579  	tr := &Trie{root: root, reader: newEmptyReader(), tracer: newTracer()}
   580  	if empty {
   581  		tr.root = nil
   582  	}
   583  	for index, key := range keys {
   584  		tr.Update(key, values[index])
   585  	}
   586  	if tr.Hash() != rootHash {
   587  		return false, fmt.Errorf("invalid proof, want hash %x, got %x", rootHash, tr.Hash())
   588  	}
   589  	return hasRightElement(tr.root, keys[len(keys)-1]), nil
   590  }
   591  
   592  // get returns the child of the given node. Return nil if the
   593  // node with specified key doesn't exist at all.
   594  //
   595  // There is an additional flag `skipResolved`. If it's set then
   596  // all resolved nodes won't be returned.
   597  func get(tn node, key []byte, skipResolved bool) ([]byte, node) {
   598  	for {
   599  		switch n := tn.(type) {
   600  		case *shortNode:
   601  			if len(key) < len(n.Key) || !bytes.Equal(n.Key, key[:len(n.Key)]) {
   602  				return nil, nil
   603  			}
   604  			tn = n.Val
   605  			key = key[len(n.Key):]
   606  			if !skipResolved {
   607  				return key, tn
   608  			}
   609  		case *fullNode:
   610  			tn = n.Children[key[0]]
   611  			key = key[1:]
   612  			if !skipResolved {
   613  				return key, tn
   614  			}
   615  		case hashNode:
   616  			return key, n
   617  		case nil:
   618  			return key, nil
   619  		case valueNode:
   620  			return nil, n
   621  		default:
   622  			panic(fmt.Sprintf("%T: invalid node: %v", tn, tn))
   623  		}
   624  	}
   625  }