github.com/MikyChow/arbitrum-go-ethereum@v0.0.0-20230306102812-078da49636de/core/vm/contracts.go (about)

     1  // Copyright 2014 The go-ethereum Authors
     2  // This file is part of the go-ethereum library.
     3  //
     4  // The go-ethereum library is free software: you can redistribute it and/or modify
     5  // it under the terms of the GNU Lesser General Public License as published by
     6  // the Free Software Foundation, either version 3 of the License, or
     7  // (at your option) any later version.
     8  //
     9  // The go-ethereum library is distributed in the hope that it will be useful,
    10  // but WITHOUT ANY WARRANTY; without even the implied warranty of
    11  // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
    12  // GNU Lesser General Public License for more details.
    13  //
    14  // You should have received a copy of the GNU Lesser General Public License
    15  // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
    16  
    17  package vm
    18  
    19  import (
    20  	"crypto/sha256"
    21  	"encoding/binary"
    22  	"errors"
    23  	"math/big"
    24  
    25  	"github.com/MikyChow/arbitrum-go-ethereum/common"
    26  	"github.com/MikyChow/arbitrum-go-ethereum/common/math"
    27  	"github.com/MikyChow/arbitrum-go-ethereum/crypto"
    28  	"github.com/MikyChow/arbitrum-go-ethereum/crypto/blake2b"
    29  	"github.com/MikyChow/arbitrum-go-ethereum/crypto/bls12381"
    30  	"github.com/MikyChow/arbitrum-go-ethereum/crypto/bn256"
    31  	"github.com/MikyChow/arbitrum-go-ethereum/params"
    32  	"golang.org/x/crypto/ripemd160"
    33  )
    34  
    35  // PrecompiledContract is the basic interface for native Go contracts. The implementation
    36  // requires a deterministic gas count based on the input size of the Run method of the
    37  // contract.
    38  type PrecompiledContract interface {
    39  	RequiredGas(input []byte) uint64  // RequiredPrice calculates the contract gas use
    40  	Run(input []byte) ([]byte, error) // Run runs the precompiled contract
    41  }
    42  
    43  // PrecompiledContractsHomestead contains the default set of pre-compiled Ethereum
    44  // contracts used in the Frontier and Homestead releases.
    45  var PrecompiledContractsHomestead = map[common.Address]PrecompiledContract{
    46  	common.BytesToAddress([]byte{1}): &ecrecover{},
    47  	common.BytesToAddress([]byte{2}): &sha256hash{},
    48  	common.BytesToAddress([]byte{3}): &ripemd160hash{},
    49  	common.BytesToAddress([]byte{4}): &dataCopy{},
    50  }
    51  
    52  // PrecompiledContractsByzantium contains the default set of pre-compiled Ethereum
    53  // contracts used in the Byzantium release.
    54  var PrecompiledContractsByzantium = map[common.Address]PrecompiledContract{
    55  	common.BytesToAddress([]byte{1}): &ecrecover{},
    56  	common.BytesToAddress([]byte{2}): &sha256hash{},
    57  	common.BytesToAddress([]byte{3}): &ripemd160hash{},
    58  	common.BytesToAddress([]byte{4}): &dataCopy{},
    59  	common.BytesToAddress([]byte{5}): &bigModExp{eip2565: false},
    60  	common.BytesToAddress([]byte{6}): &bn256AddByzantium{},
    61  	common.BytesToAddress([]byte{7}): &bn256ScalarMulByzantium{},
    62  	common.BytesToAddress([]byte{8}): &bn256PairingByzantium{},
    63  }
    64  
    65  // PrecompiledContractsIstanbul contains the default set of pre-compiled Ethereum
    66  // contracts used in the Istanbul release.
    67  var PrecompiledContractsIstanbul = map[common.Address]PrecompiledContract{
    68  	common.BytesToAddress([]byte{1}): &ecrecover{},
    69  	common.BytesToAddress([]byte{2}): &sha256hash{},
    70  	common.BytesToAddress([]byte{3}): &ripemd160hash{},
    71  	common.BytesToAddress([]byte{4}): &dataCopy{},
    72  	common.BytesToAddress([]byte{5}): &bigModExp{eip2565: false},
    73  	common.BytesToAddress([]byte{6}): &bn256AddIstanbul{},
    74  	common.BytesToAddress([]byte{7}): &bn256ScalarMulIstanbul{},
    75  	common.BytesToAddress([]byte{8}): &bn256PairingIstanbul{},
    76  	common.BytesToAddress([]byte{9}): &blake2F{},
    77  }
    78  
    79  // PrecompiledContractsBerlin contains the default set of pre-compiled Ethereum
    80  // contracts used in the Berlin release.
    81  var PrecompiledContractsBerlin = map[common.Address]PrecompiledContract{
    82  	common.BytesToAddress([]byte{1}): &ecrecover{},
    83  	common.BytesToAddress([]byte{2}): &sha256hash{},
    84  	common.BytesToAddress([]byte{3}): &ripemd160hash{},
    85  	common.BytesToAddress([]byte{4}): &dataCopy{},
    86  	common.BytesToAddress([]byte{5}): &bigModExp{eip2565: true},
    87  	common.BytesToAddress([]byte{6}): &bn256AddIstanbul{},
    88  	common.BytesToAddress([]byte{7}): &bn256ScalarMulIstanbul{},
    89  	common.BytesToAddress([]byte{8}): &bn256PairingIstanbul{},
    90  	common.BytesToAddress([]byte{9}): &blake2F{},
    91  }
    92  
    93  // PrecompiledContractsBLS contains the set of pre-compiled Ethereum
    94  // contracts specified in EIP-2537. These are exported for testing purposes.
    95  var PrecompiledContractsBLS = map[common.Address]PrecompiledContract{
    96  	common.BytesToAddress([]byte{10}): &bls12381G1Add{},
    97  	common.BytesToAddress([]byte{11}): &bls12381G1Mul{},
    98  	common.BytesToAddress([]byte{12}): &bls12381G1MultiExp{},
    99  	common.BytesToAddress([]byte{13}): &bls12381G2Add{},
   100  	common.BytesToAddress([]byte{14}): &bls12381G2Mul{},
   101  	common.BytesToAddress([]byte{15}): &bls12381G2MultiExp{},
   102  	common.BytesToAddress([]byte{16}): &bls12381Pairing{},
   103  	common.BytesToAddress([]byte{17}): &bls12381MapG1{},
   104  	common.BytesToAddress([]byte{18}): &bls12381MapG2{},
   105  }
   106  
   107  var (
   108  	PrecompiledAddressesBerlin    []common.Address
   109  	PrecompiledAddressesIstanbul  []common.Address
   110  	PrecompiledAddressesByzantium []common.Address
   111  	PrecompiledAddressesHomestead []common.Address
   112  )
   113  
   114  func init() {
   115  	for k := range PrecompiledContractsHomestead {
   116  		PrecompiledAddressesHomestead = append(PrecompiledAddressesHomestead, k)
   117  	}
   118  	for k := range PrecompiledContractsByzantium {
   119  		PrecompiledAddressesByzantium = append(PrecompiledAddressesByzantium, k)
   120  	}
   121  	for k := range PrecompiledContractsIstanbul {
   122  		PrecompiledAddressesIstanbul = append(PrecompiledAddressesIstanbul, k)
   123  	}
   124  	for k := range PrecompiledContractsBerlin {
   125  		PrecompiledAddressesBerlin = append(PrecompiledAddressesBerlin, k)
   126  	}
   127  }
   128  
   129  // ActivePrecompiles returns the precompiles enabled with the current configuration.
   130  func ActivePrecompiles(rules params.Rules) []common.Address {
   131  	switch {
   132  	case rules.IsArbitrum:
   133  		return PrecompiledAddressesArbitrum
   134  	case rules.IsBerlin:
   135  		return PrecompiledAddressesBerlin
   136  	case rules.IsIstanbul:
   137  		return PrecompiledAddressesIstanbul
   138  	case rules.IsByzantium:
   139  		return PrecompiledAddressesByzantium
   140  	default:
   141  		return PrecompiledAddressesHomestead
   142  	}
   143  }
   144  
   145  type AdvancedPrecompileCall struct {
   146  	PrecompileAddress common.Address
   147  	ActingAsAddress   common.Address
   148  	Caller            common.Address
   149  	Value             *big.Int
   150  	ReadOnly          bool
   151  	Evm               *EVM
   152  }
   153  
   154  type AdvancedPrecompile interface {
   155  	RunAdvanced(input []byte, suppliedGas uint64, advancedInfo *AdvancedPrecompileCall) (ret []byte, remainingGas uint64, err error)
   156  	PrecompiledContract
   157  }
   158  
   159  // RunPrecompiledContract runs and evaluates the output of a precompiled contract.
   160  // It returns
   161  // - the returned bytes,
   162  // - the _remaining_ gas,
   163  // - any error that occurred
   164  func RunPrecompiledContract(p PrecompiledContract, input []byte, suppliedGas uint64, advancedInfo *AdvancedPrecompileCall) (ret []byte, remainingGas uint64, err error) {
   165  	advanced, isAdvanced := p.(AdvancedPrecompile)
   166  	if isAdvanced {
   167  		return advanced.RunAdvanced(input, suppliedGas, advancedInfo)
   168  	}
   169  
   170  	gasCost := p.RequiredGas(input)
   171  	if suppliedGas < gasCost {
   172  		return nil, 0, ErrOutOfGas
   173  	}
   174  	suppliedGas -= gasCost
   175  	output, err := p.Run(input)
   176  	return output, suppliedGas, err
   177  }
   178  
   179  // ECRECOVER implemented as a native contract.
   180  type ecrecover struct{}
   181  
   182  func (c *ecrecover) RequiredGas(input []byte) uint64 {
   183  	return params.EcrecoverGas
   184  }
   185  
   186  func (c *ecrecover) Run(input []byte) ([]byte, error) {
   187  	const ecRecoverInputLength = 128
   188  
   189  	input = common.RightPadBytes(input, ecRecoverInputLength)
   190  	// "input" is (hash, v, r, s), each 32 bytes
   191  	// but for ecrecover we want (r, s, v)
   192  
   193  	r := new(big.Int).SetBytes(input[64:96])
   194  	s := new(big.Int).SetBytes(input[96:128])
   195  	v := input[63] - 27
   196  
   197  	// tighter sig s values input homestead only apply to tx sigs
   198  	if !allZero(input[32:63]) || !crypto.ValidateSignatureValues(v, r, s, false) {
   199  		return nil, nil
   200  	}
   201  	// We must make sure not to modify the 'input', so placing the 'v' along with
   202  	// the signature needs to be done on a new allocation
   203  	sig := make([]byte, 65)
   204  	copy(sig, input[64:128])
   205  	sig[64] = v
   206  	// v needs to be at the end for libsecp256k1
   207  	pubKey, err := crypto.Ecrecover(input[:32], sig)
   208  	// make sure the public key is a valid one
   209  	if err != nil {
   210  		return nil, nil
   211  	}
   212  
   213  	// the first byte of pubkey is bitcoin heritage
   214  	return common.LeftPadBytes(crypto.Keccak256(pubKey[1:])[12:], 32), nil
   215  }
   216  
   217  // SHA256 implemented as a native contract.
   218  type sha256hash struct{}
   219  
   220  // RequiredGas returns the gas required to execute the pre-compiled contract.
   221  //
   222  // This method does not require any overflow checking as the input size gas costs
   223  // required for anything significant is so high it's impossible to pay for.
   224  func (c *sha256hash) RequiredGas(input []byte) uint64 {
   225  	return uint64(len(input)+31)/32*params.Sha256PerWordGas + params.Sha256BaseGas
   226  }
   227  func (c *sha256hash) Run(input []byte) ([]byte, error) {
   228  	h := sha256.Sum256(input)
   229  	return h[:], nil
   230  }
   231  
   232  // RIPEMD160 implemented as a native contract.
   233  type ripemd160hash struct{}
   234  
   235  // RequiredGas returns the gas required to execute the pre-compiled contract.
   236  //
   237  // This method does not require any overflow checking as the input size gas costs
   238  // required for anything significant is so high it's impossible to pay for.
   239  func (c *ripemd160hash) RequiredGas(input []byte) uint64 {
   240  	return uint64(len(input)+31)/32*params.Ripemd160PerWordGas + params.Ripemd160BaseGas
   241  }
   242  func (c *ripemd160hash) Run(input []byte) ([]byte, error) {
   243  	ripemd := ripemd160.New()
   244  	ripemd.Write(input)
   245  	return common.LeftPadBytes(ripemd.Sum(nil), 32), nil
   246  }
   247  
   248  // data copy implemented as a native contract.
   249  type dataCopy struct{}
   250  
   251  // RequiredGas returns the gas required to execute the pre-compiled contract.
   252  //
   253  // This method does not require any overflow checking as the input size gas costs
   254  // required for anything significant is so high it's impossible to pay for.
   255  func (c *dataCopy) RequiredGas(input []byte) uint64 {
   256  	return uint64(len(input)+31)/32*params.IdentityPerWordGas + params.IdentityBaseGas
   257  }
   258  func (c *dataCopy) Run(in []byte) ([]byte, error) {
   259  	return in, nil
   260  }
   261  
   262  // bigModExp implements a native big integer exponential modular operation.
   263  type bigModExp struct {
   264  	eip2565 bool
   265  }
   266  
   267  var (
   268  	big0      = big.NewInt(0)
   269  	big1      = big.NewInt(1)
   270  	big3      = big.NewInt(3)
   271  	big4      = big.NewInt(4)
   272  	big7      = big.NewInt(7)
   273  	big8      = big.NewInt(8)
   274  	big16     = big.NewInt(16)
   275  	big20     = big.NewInt(20)
   276  	big32     = big.NewInt(32)
   277  	big64     = big.NewInt(64)
   278  	big96     = big.NewInt(96)
   279  	big480    = big.NewInt(480)
   280  	big1024   = big.NewInt(1024)
   281  	big3072   = big.NewInt(3072)
   282  	big199680 = big.NewInt(199680)
   283  )
   284  
   285  // modexpMultComplexity implements bigModexp multComplexity formula, as defined in EIP-198
   286  //
   287  // def mult_complexity(x):
   288  //
   289  //	if x <= 64: return x ** 2
   290  //	elif x <= 1024: return x ** 2 // 4 + 96 * x - 3072
   291  //	else: return x ** 2 // 16 + 480 * x - 199680
   292  //
   293  // where is x is max(length_of_MODULUS, length_of_BASE)
   294  func modexpMultComplexity(x *big.Int) *big.Int {
   295  	switch {
   296  	case x.Cmp(big64) <= 0:
   297  		x.Mul(x, x) // x ** 2
   298  	case x.Cmp(big1024) <= 0:
   299  		// (x ** 2 // 4 ) + ( 96 * x - 3072)
   300  		x = new(big.Int).Add(
   301  			new(big.Int).Div(new(big.Int).Mul(x, x), big4),
   302  			new(big.Int).Sub(new(big.Int).Mul(big96, x), big3072),
   303  		)
   304  	default:
   305  		// (x ** 2 // 16) + (480 * x - 199680)
   306  		x = new(big.Int).Add(
   307  			new(big.Int).Div(new(big.Int).Mul(x, x), big16),
   308  			new(big.Int).Sub(new(big.Int).Mul(big480, x), big199680),
   309  		)
   310  	}
   311  	return x
   312  }
   313  
   314  // RequiredGas returns the gas required to execute the pre-compiled contract.
   315  func (c *bigModExp) RequiredGas(input []byte) uint64 {
   316  	var (
   317  		baseLen = new(big.Int).SetBytes(getData(input, 0, 32))
   318  		expLen  = new(big.Int).SetBytes(getData(input, 32, 32))
   319  		modLen  = new(big.Int).SetBytes(getData(input, 64, 32))
   320  	)
   321  	if len(input) > 96 {
   322  		input = input[96:]
   323  	} else {
   324  		input = input[:0]
   325  	}
   326  	// Retrieve the head 32 bytes of exp for the adjusted exponent length
   327  	var expHead *big.Int
   328  	if big.NewInt(int64(len(input))).Cmp(baseLen) <= 0 {
   329  		expHead = new(big.Int)
   330  	} else {
   331  		if expLen.Cmp(big32) > 0 {
   332  			expHead = new(big.Int).SetBytes(getData(input, baseLen.Uint64(), 32))
   333  		} else {
   334  			expHead = new(big.Int).SetBytes(getData(input, baseLen.Uint64(), expLen.Uint64()))
   335  		}
   336  	}
   337  	// Calculate the adjusted exponent length
   338  	var msb int
   339  	if bitlen := expHead.BitLen(); bitlen > 0 {
   340  		msb = bitlen - 1
   341  	}
   342  	adjExpLen := new(big.Int)
   343  	if expLen.Cmp(big32) > 0 {
   344  		adjExpLen.Sub(expLen, big32)
   345  		adjExpLen.Mul(big8, adjExpLen)
   346  	}
   347  	adjExpLen.Add(adjExpLen, big.NewInt(int64(msb)))
   348  	// Calculate the gas cost of the operation
   349  	gas := new(big.Int).Set(math.BigMax(modLen, baseLen))
   350  	if c.eip2565 {
   351  		// EIP-2565 has three changes
   352  		// 1. Different multComplexity (inlined here)
   353  		// in EIP-2565 (https://eips.ethereum.org/EIPS/eip-2565):
   354  		//
   355  		// def mult_complexity(x):
   356  		//    ceiling(x/8)^2
   357  		//
   358  		//where is x is max(length_of_MODULUS, length_of_BASE)
   359  		gas = gas.Add(gas, big7)
   360  		gas = gas.Div(gas, big8)
   361  		gas.Mul(gas, gas)
   362  
   363  		gas.Mul(gas, math.BigMax(adjExpLen, big1))
   364  		// 2. Different divisor (`GQUADDIVISOR`) (3)
   365  		gas.Div(gas, big3)
   366  		if gas.BitLen() > 64 {
   367  			return math.MaxUint64
   368  		}
   369  		// 3. Minimum price of 200 gas
   370  		if gas.Uint64() < 200 {
   371  			return 200
   372  		}
   373  		return gas.Uint64()
   374  	}
   375  	gas = modexpMultComplexity(gas)
   376  	gas.Mul(gas, math.BigMax(adjExpLen, big1))
   377  	gas.Div(gas, big20)
   378  
   379  	if gas.BitLen() > 64 {
   380  		return math.MaxUint64
   381  	}
   382  	return gas.Uint64()
   383  }
   384  
   385  func (c *bigModExp) Run(input []byte) ([]byte, error) {
   386  	var (
   387  		baseLen = new(big.Int).SetBytes(getData(input, 0, 32)).Uint64()
   388  		expLen  = new(big.Int).SetBytes(getData(input, 32, 32)).Uint64()
   389  		modLen  = new(big.Int).SetBytes(getData(input, 64, 32)).Uint64()
   390  	)
   391  	if len(input) > 96 {
   392  		input = input[96:]
   393  	} else {
   394  		input = input[:0]
   395  	}
   396  	// Handle a special case when both the base and mod length is zero
   397  	if baseLen == 0 && modLen == 0 {
   398  		return []byte{}, nil
   399  	}
   400  	// Retrieve the operands and execute the exponentiation
   401  	var (
   402  		base = new(big.Int).SetBytes(getData(input, 0, baseLen))
   403  		exp  = new(big.Int).SetBytes(getData(input, baseLen, expLen))
   404  		mod  = new(big.Int).SetBytes(getData(input, baseLen+expLen, modLen))
   405  	)
   406  	if mod.BitLen() == 0 {
   407  		// Modulo 0 is undefined, return zero
   408  		return common.LeftPadBytes([]byte{}, int(modLen)), nil
   409  	}
   410  	return common.LeftPadBytes(base.Exp(base, exp, mod).Bytes(), int(modLen)), nil
   411  }
   412  
   413  // newCurvePoint unmarshals a binary blob into a bn256 elliptic curve point,
   414  // returning it, or an error if the point is invalid.
   415  func newCurvePoint(blob []byte) (*bn256.G1, error) {
   416  	p := new(bn256.G1)
   417  	if _, err := p.Unmarshal(blob); err != nil {
   418  		return nil, err
   419  	}
   420  	return p, nil
   421  }
   422  
   423  // newTwistPoint unmarshals a binary blob into a bn256 elliptic curve point,
   424  // returning it, or an error if the point is invalid.
   425  func newTwistPoint(blob []byte) (*bn256.G2, error) {
   426  	p := new(bn256.G2)
   427  	if _, err := p.Unmarshal(blob); err != nil {
   428  		return nil, err
   429  	}
   430  	return p, nil
   431  }
   432  
   433  // runBn256Add implements the Bn256Add precompile, referenced by both
   434  // Byzantium and Istanbul operations.
   435  func runBn256Add(input []byte) ([]byte, error) {
   436  	x, err := newCurvePoint(getData(input, 0, 64))
   437  	if err != nil {
   438  		return nil, err
   439  	}
   440  	y, err := newCurvePoint(getData(input, 64, 64))
   441  	if err != nil {
   442  		return nil, err
   443  	}
   444  	res := new(bn256.G1)
   445  	res.Add(x, y)
   446  	return res.Marshal(), nil
   447  }
   448  
   449  // bn256Add implements a native elliptic curve point addition conforming to
   450  // Istanbul consensus rules.
   451  type bn256AddIstanbul struct{}
   452  
   453  // RequiredGas returns the gas required to execute the pre-compiled contract.
   454  func (c *bn256AddIstanbul) RequiredGas(input []byte) uint64 {
   455  	return params.Bn256AddGasIstanbul
   456  }
   457  
   458  func (c *bn256AddIstanbul) Run(input []byte) ([]byte, error) {
   459  	return runBn256Add(input)
   460  }
   461  
   462  // bn256AddByzantium implements a native elliptic curve point addition
   463  // conforming to Byzantium consensus rules.
   464  type bn256AddByzantium struct{}
   465  
   466  // RequiredGas returns the gas required to execute the pre-compiled contract.
   467  func (c *bn256AddByzantium) RequiredGas(input []byte) uint64 {
   468  	return params.Bn256AddGasByzantium
   469  }
   470  
   471  func (c *bn256AddByzantium) Run(input []byte) ([]byte, error) {
   472  	return runBn256Add(input)
   473  }
   474  
   475  // runBn256ScalarMul implements the Bn256ScalarMul precompile, referenced by
   476  // both Byzantium and Istanbul operations.
   477  func runBn256ScalarMul(input []byte) ([]byte, error) {
   478  	p, err := newCurvePoint(getData(input, 0, 64))
   479  	if err != nil {
   480  		return nil, err
   481  	}
   482  	res := new(bn256.G1)
   483  	res.ScalarMult(p, new(big.Int).SetBytes(getData(input, 64, 32)))
   484  	return res.Marshal(), nil
   485  }
   486  
   487  // bn256ScalarMulIstanbul implements a native elliptic curve scalar
   488  // multiplication conforming to Istanbul consensus rules.
   489  type bn256ScalarMulIstanbul struct{}
   490  
   491  // RequiredGas returns the gas required to execute the pre-compiled contract.
   492  func (c *bn256ScalarMulIstanbul) RequiredGas(input []byte) uint64 {
   493  	return params.Bn256ScalarMulGasIstanbul
   494  }
   495  
   496  func (c *bn256ScalarMulIstanbul) Run(input []byte) ([]byte, error) {
   497  	return runBn256ScalarMul(input)
   498  }
   499  
   500  // bn256ScalarMulByzantium implements a native elliptic curve scalar
   501  // multiplication conforming to Byzantium consensus rules.
   502  type bn256ScalarMulByzantium struct{}
   503  
   504  // RequiredGas returns the gas required to execute the pre-compiled contract.
   505  func (c *bn256ScalarMulByzantium) RequiredGas(input []byte) uint64 {
   506  	return params.Bn256ScalarMulGasByzantium
   507  }
   508  
   509  func (c *bn256ScalarMulByzantium) Run(input []byte) ([]byte, error) {
   510  	return runBn256ScalarMul(input)
   511  }
   512  
   513  var (
   514  	// true32Byte is returned if the bn256 pairing check succeeds.
   515  	true32Byte = []byte{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1}
   516  
   517  	// false32Byte is returned if the bn256 pairing check fails.
   518  	false32Byte = make([]byte, 32)
   519  
   520  	// errBadPairingInput is returned if the bn256 pairing input is invalid.
   521  	errBadPairingInput = errors.New("bad elliptic curve pairing size")
   522  )
   523  
   524  // runBn256Pairing implements the Bn256Pairing precompile, referenced by both
   525  // Byzantium and Istanbul operations.
   526  func runBn256Pairing(input []byte) ([]byte, error) {
   527  	// Handle some corner cases cheaply
   528  	if len(input)%192 > 0 {
   529  		return nil, errBadPairingInput
   530  	}
   531  	// Convert the input into a set of coordinates
   532  	var (
   533  		cs []*bn256.G1
   534  		ts []*bn256.G2
   535  	)
   536  	for i := 0; i < len(input); i += 192 {
   537  		c, err := newCurvePoint(input[i : i+64])
   538  		if err != nil {
   539  			return nil, err
   540  		}
   541  		t, err := newTwistPoint(input[i+64 : i+192])
   542  		if err != nil {
   543  			return nil, err
   544  		}
   545  		cs = append(cs, c)
   546  		ts = append(ts, t)
   547  	}
   548  	// Execute the pairing checks and return the results
   549  	if bn256.PairingCheck(cs, ts) {
   550  		return true32Byte, nil
   551  	}
   552  	return false32Byte, nil
   553  }
   554  
   555  // bn256PairingIstanbul implements a pairing pre-compile for the bn256 curve
   556  // conforming to Istanbul consensus rules.
   557  type bn256PairingIstanbul struct{}
   558  
   559  // RequiredGas returns the gas required to execute the pre-compiled contract.
   560  func (c *bn256PairingIstanbul) RequiredGas(input []byte) uint64 {
   561  	return params.Bn256PairingBaseGasIstanbul + uint64(len(input)/192)*params.Bn256PairingPerPointGasIstanbul
   562  }
   563  
   564  func (c *bn256PairingIstanbul) Run(input []byte) ([]byte, error) {
   565  	return runBn256Pairing(input)
   566  }
   567  
   568  // bn256PairingByzantium implements a pairing pre-compile for the bn256 curve
   569  // conforming to Byzantium consensus rules.
   570  type bn256PairingByzantium struct{}
   571  
   572  // RequiredGas returns the gas required to execute the pre-compiled contract.
   573  func (c *bn256PairingByzantium) RequiredGas(input []byte) uint64 {
   574  	return params.Bn256PairingBaseGasByzantium + uint64(len(input)/192)*params.Bn256PairingPerPointGasByzantium
   575  }
   576  
   577  func (c *bn256PairingByzantium) Run(input []byte) ([]byte, error) {
   578  	return runBn256Pairing(input)
   579  }
   580  
   581  type blake2F struct{}
   582  
   583  func (c *blake2F) RequiredGas(input []byte) uint64 {
   584  	// If the input is malformed, we can't calculate the gas, return 0 and let the
   585  	// actual call choke and fault.
   586  	if len(input) != blake2FInputLength {
   587  		return 0
   588  	}
   589  	return uint64(binary.BigEndian.Uint32(input[0:4]))
   590  }
   591  
   592  const (
   593  	blake2FInputLength        = 213
   594  	blake2FFinalBlockBytes    = byte(1)
   595  	blake2FNonFinalBlockBytes = byte(0)
   596  )
   597  
   598  var (
   599  	errBlake2FInvalidInputLength = errors.New("invalid input length")
   600  	errBlake2FInvalidFinalFlag   = errors.New("invalid final flag")
   601  )
   602  
   603  func (c *blake2F) Run(input []byte) ([]byte, error) {
   604  	// Make sure the input is valid (correct length and final flag)
   605  	if len(input) != blake2FInputLength {
   606  		return nil, errBlake2FInvalidInputLength
   607  	}
   608  	if input[212] != blake2FNonFinalBlockBytes && input[212] != blake2FFinalBlockBytes {
   609  		return nil, errBlake2FInvalidFinalFlag
   610  	}
   611  	// Parse the input into the Blake2b call parameters
   612  	var (
   613  		rounds = binary.BigEndian.Uint32(input[0:4])
   614  		final  = input[212] == blake2FFinalBlockBytes
   615  
   616  		h [8]uint64
   617  		m [16]uint64
   618  		t [2]uint64
   619  	)
   620  	for i := 0; i < 8; i++ {
   621  		offset := 4 + i*8
   622  		h[i] = binary.LittleEndian.Uint64(input[offset : offset+8])
   623  	}
   624  	for i := 0; i < 16; i++ {
   625  		offset := 68 + i*8
   626  		m[i] = binary.LittleEndian.Uint64(input[offset : offset+8])
   627  	}
   628  	t[0] = binary.LittleEndian.Uint64(input[196:204])
   629  	t[1] = binary.LittleEndian.Uint64(input[204:212])
   630  
   631  	// Execute the compression function, extract and return the result
   632  	blake2b.F(&h, m, t, final, rounds)
   633  
   634  	output := make([]byte, 64)
   635  	for i := 0; i < 8; i++ {
   636  		offset := i * 8
   637  		binary.LittleEndian.PutUint64(output[offset:offset+8], h[i])
   638  	}
   639  	return output, nil
   640  }
   641  
   642  var (
   643  	errBLS12381InvalidInputLength          = errors.New("invalid input length")
   644  	errBLS12381InvalidFieldElementTopBytes = errors.New("invalid field element top bytes")
   645  	errBLS12381G1PointSubgroup             = errors.New("g1 point is not on correct subgroup")
   646  	errBLS12381G2PointSubgroup             = errors.New("g2 point is not on correct subgroup")
   647  )
   648  
   649  // bls12381G1Add implements EIP-2537 G1Add precompile.
   650  type bls12381G1Add struct{}
   651  
   652  // RequiredGas returns the gas required to execute the pre-compiled contract.
   653  func (c *bls12381G1Add) RequiredGas(input []byte) uint64 {
   654  	return params.Bls12381G1AddGas
   655  }
   656  
   657  func (c *bls12381G1Add) Run(input []byte) ([]byte, error) {
   658  	// Implements EIP-2537 G1Add precompile.
   659  	// > G1 addition call expects `256` bytes as an input that is interpreted as byte concatenation of two G1 points (`128` bytes each).
   660  	// > Output is an encoding of addition operation result - single G1 point (`128` bytes).
   661  	if len(input) != 256 {
   662  		return nil, errBLS12381InvalidInputLength
   663  	}
   664  	var err error
   665  	var p0, p1 *bls12381.PointG1
   666  
   667  	// Initialize G1
   668  	g := bls12381.NewG1()
   669  
   670  	// Decode G1 point p_0
   671  	if p0, err = g.DecodePoint(input[:128]); err != nil {
   672  		return nil, err
   673  	}
   674  	// Decode G1 point p_1
   675  	if p1, err = g.DecodePoint(input[128:]); err != nil {
   676  		return nil, err
   677  	}
   678  
   679  	// Compute r = p_0 + p_1
   680  	r := g.New()
   681  	g.Add(r, p0, p1)
   682  
   683  	// Encode the G1 point result into 128 bytes
   684  	return g.EncodePoint(r), nil
   685  }
   686  
   687  // bls12381G1Mul implements EIP-2537 G1Mul precompile.
   688  type bls12381G1Mul struct{}
   689  
   690  // RequiredGas returns the gas required to execute the pre-compiled contract.
   691  func (c *bls12381G1Mul) RequiredGas(input []byte) uint64 {
   692  	return params.Bls12381G1MulGas
   693  }
   694  
   695  func (c *bls12381G1Mul) Run(input []byte) ([]byte, error) {
   696  	// Implements EIP-2537 G1Mul precompile.
   697  	// > G1 multiplication call expects `160` bytes as an input that is interpreted as byte concatenation of encoding of G1 point (`128` bytes) and encoding of a scalar value (`32` bytes).
   698  	// > Output is an encoding of multiplication operation result - single G1 point (`128` bytes).
   699  	if len(input) != 160 {
   700  		return nil, errBLS12381InvalidInputLength
   701  	}
   702  	var err error
   703  	var p0 *bls12381.PointG1
   704  
   705  	// Initialize G1
   706  	g := bls12381.NewG1()
   707  
   708  	// Decode G1 point
   709  	if p0, err = g.DecodePoint(input[:128]); err != nil {
   710  		return nil, err
   711  	}
   712  	// Decode scalar value
   713  	e := new(big.Int).SetBytes(input[128:])
   714  
   715  	// Compute r = e * p_0
   716  	r := g.New()
   717  	g.MulScalar(r, p0, e)
   718  
   719  	// Encode the G1 point into 128 bytes
   720  	return g.EncodePoint(r), nil
   721  }
   722  
   723  // bls12381G1MultiExp implements EIP-2537 G1MultiExp precompile.
   724  type bls12381G1MultiExp struct{}
   725  
   726  // RequiredGas returns the gas required to execute the pre-compiled contract.
   727  func (c *bls12381G1MultiExp) RequiredGas(input []byte) uint64 {
   728  	// Calculate G1 point, scalar value pair length
   729  	k := len(input) / 160
   730  	if k == 0 {
   731  		// Return 0 gas for small input length
   732  		return 0
   733  	}
   734  	// Lookup discount value for G1 point, scalar value pair length
   735  	var discount uint64
   736  	if dLen := len(params.Bls12381MultiExpDiscountTable); k < dLen {
   737  		discount = params.Bls12381MultiExpDiscountTable[k-1]
   738  	} else {
   739  		discount = params.Bls12381MultiExpDiscountTable[dLen-1]
   740  	}
   741  	// Calculate gas and return the result
   742  	return (uint64(k) * params.Bls12381G1MulGas * discount) / 1000
   743  }
   744  
   745  func (c *bls12381G1MultiExp) Run(input []byte) ([]byte, error) {
   746  	// Implements EIP-2537 G1MultiExp precompile.
   747  	// G1 multiplication call expects `160*k` bytes as an input that is interpreted as byte concatenation of `k` slices each of them being a byte concatenation of encoding of G1 point (`128` bytes) and encoding of a scalar value (`32` bytes).
   748  	// Output is an encoding of multiexponentiation operation result - single G1 point (`128` bytes).
   749  	k := len(input) / 160
   750  	if len(input) == 0 || len(input)%160 != 0 {
   751  		return nil, errBLS12381InvalidInputLength
   752  	}
   753  	var err error
   754  	points := make([]*bls12381.PointG1, k)
   755  	scalars := make([]*big.Int, k)
   756  
   757  	// Initialize G1
   758  	g := bls12381.NewG1()
   759  
   760  	// Decode point scalar pairs
   761  	for i := 0; i < k; i++ {
   762  		off := 160 * i
   763  		t0, t1, t2 := off, off+128, off+160
   764  		// Decode G1 point
   765  		if points[i], err = g.DecodePoint(input[t0:t1]); err != nil {
   766  			return nil, err
   767  		}
   768  		// Decode scalar value
   769  		scalars[i] = new(big.Int).SetBytes(input[t1:t2])
   770  	}
   771  
   772  	// Compute r = e_0 * p_0 + e_1 * p_1 + ... + e_(k-1) * p_(k-1)
   773  	r := g.New()
   774  	g.MultiExp(r, points, scalars)
   775  
   776  	// Encode the G1 point to 128 bytes
   777  	return g.EncodePoint(r), nil
   778  }
   779  
   780  // bls12381G2Add implements EIP-2537 G2Add precompile.
   781  type bls12381G2Add struct{}
   782  
   783  // RequiredGas returns the gas required to execute the pre-compiled contract.
   784  func (c *bls12381G2Add) RequiredGas(input []byte) uint64 {
   785  	return params.Bls12381G2AddGas
   786  }
   787  
   788  func (c *bls12381G2Add) Run(input []byte) ([]byte, error) {
   789  	// Implements EIP-2537 G2Add precompile.
   790  	// > G2 addition call expects `512` bytes as an input that is interpreted as byte concatenation of two G2 points (`256` bytes each).
   791  	// > Output is an encoding of addition operation result - single G2 point (`256` bytes).
   792  	if len(input) != 512 {
   793  		return nil, errBLS12381InvalidInputLength
   794  	}
   795  	var err error
   796  	var p0, p1 *bls12381.PointG2
   797  
   798  	// Initialize G2
   799  	g := bls12381.NewG2()
   800  	r := g.New()
   801  
   802  	// Decode G2 point p_0
   803  	if p0, err = g.DecodePoint(input[:256]); err != nil {
   804  		return nil, err
   805  	}
   806  	// Decode G2 point p_1
   807  	if p1, err = g.DecodePoint(input[256:]); err != nil {
   808  		return nil, err
   809  	}
   810  
   811  	// Compute r = p_0 + p_1
   812  	g.Add(r, p0, p1)
   813  
   814  	// Encode the G2 point into 256 bytes
   815  	return g.EncodePoint(r), nil
   816  }
   817  
   818  // bls12381G2Mul implements EIP-2537 G2Mul precompile.
   819  type bls12381G2Mul struct{}
   820  
   821  // RequiredGas returns the gas required to execute the pre-compiled contract.
   822  func (c *bls12381G2Mul) RequiredGas(input []byte) uint64 {
   823  	return params.Bls12381G2MulGas
   824  }
   825  
   826  func (c *bls12381G2Mul) Run(input []byte) ([]byte, error) {
   827  	// Implements EIP-2537 G2MUL precompile logic.
   828  	// > G2 multiplication call expects `288` bytes as an input that is interpreted as byte concatenation of encoding of G2 point (`256` bytes) and encoding of a scalar value (`32` bytes).
   829  	// > Output is an encoding of multiplication operation result - single G2 point (`256` bytes).
   830  	if len(input) != 288 {
   831  		return nil, errBLS12381InvalidInputLength
   832  	}
   833  	var err error
   834  	var p0 *bls12381.PointG2
   835  
   836  	// Initialize G2
   837  	g := bls12381.NewG2()
   838  
   839  	// Decode G2 point
   840  	if p0, err = g.DecodePoint(input[:256]); err != nil {
   841  		return nil, err
   842  	}
   843  	// Decode scalar value
   844  	e := new(big.Int).SetBytes(input[256:])
   845  
   846  	// Compute r = e * p_0
   847  	r := g.New()
   848  	g.MulScalar(r, p0, e)
   849  
   850  	// Encode the G2 point into 256 bytes
   851  	return g.EncodePoint(r), nil
   852  }
   853  
   854  // bls12381G2MultiExp implements EIP-2537 G2MultiExp precompile.
   855  type bls12381G2MultiExp struct{}
   856  
   857  // RequiredGas returns the gas required to execute the pre-compiled contract.
   858  func (c *bls12381G2MultiExp) RequiredGas(input []byte) uint64 {
   859  	// Calculate G2 point, scalar value pair length
   860  	k := len(input) / 288
   861  	if k == 0 {
   862  		// Return 0 gas for small input length
   863  		return 0
   864  	}
   865  	// Lookup discount value for G2 point, scalar value pair length
   866  	var discount uint64
   867  	if dLen := len(params.Bls12381MultiExpDiscountTable); k < dLen {
   868  		discount = params.Bls12381MultiExpDiscountTable[k-1]
   869  	} else {
   870  		discount = params.Bls12381MultiExpDiscountTable[dLen-1]
   871  	}
   872  	// Calculate gas and return the result
   873  	return (uint64(k) * params.Bls12381G2MulGas * discount) / 1000
   874  }
   875  
   876  func (c *bls12381G2MultiExp) Run(input []byte) ([]byte, error) {
   877  	// Implements EIP-2537 G2MultiExp precompile logic
   878  	// > G2 multiplication call expects `288*k` bytes as an input that is interpreted as byte concatenation of `k` slices each of them being a byte concatenation of encoding of G2 point (`256` bytes) and encoding of a scalar value (`32` bytes).
   879  	// > Output is an encoding of multiexponentiation operation result - single G2 point (`256` bytes).
   880  	k := len(input) / 288
   881  	if len(input) == 0 || len(input)%288 != 0 {
   882  		return nil, errBLS12381InvalidInputLength
   883  	}
   884  	var err error
   885  	points := make([]*bls12381.PointG2, k)
   886  	scalars := make([]*big.Int, k)
   887  
   888  	// Initialize G2
   889  	g := bls12381.NewG2()
   890  
   891  	// Decode point scalar pairs
   892  	for i := 0; i < k; i++ {
   893  		off := 288 * i
   894  		t0, t1, t2 := off, off+256, off+288
   895  		// Decode G1 point
   896  		if points[i], err = g.DecodePoint(input[t0:t1]); err != nil {
   897  			return nil, err
   898  		}
   899  		// Decode scalar value
   900  		scalars[i] = new(big.Int).SetBytes(input[t1:t2])
   901  	}
   902  
   903  	// Compute r = e_0 * p_0 + e_1 * p_1 + ... + e_(k-1) * p_(k-1)
   904  	r := g.New()
   905  	g.MultiExp(r, points, scalars)
   906  
   907  	// Encode the G2 point to 256 bytes.
   908  	return g.EncodePoint(r), nil
   909  }
   910  
   911  // bls12381Pairing implements EIP-2537 Pairing precompile.
   912  type bls12381Pairing struct{}
   913  
   914  // RequiredGas returns the gas required to execute the pre-compiled contract.
   915  func (c *bls12381Pairing) RequiredGas(input []byte) uint64 {
   916  	return params.Bls12381PairingBaseGas + uint64(len(input)/384)*params.Bls12381PairingPerPairGas
   917  }
   918  
   919  func (c *bls12381Pairing) Run(input []byte) ([]byte, error) {
   920  	// Implements EIP-2537 Pairing precompile logic.
   921  	// > Pairing call expects `384*k` bytes as an inputs that is interpreted as byte concatenation of `k` slices. Each slice has the following structure:
   922  	// > - `128` bytes of G1 point encoding
   923  	// > - `256` bytes of G2 point encoding
   924  	// > Output is a `32` bytes where last single byte is `0x01` if pairing result is equal to multiplicative identity in a pairing target field and `0x00` otherwise
   925  	// > (which is equivalent of Big Endian encoding of Solidity values `uint256(1)` and `uin256(0)` respectively).
   926  	k := len(input) / 384
   927  	if len(input) == 0 || len(input)%384 != 0 {
   928  		return nil, errBLS12381InvalidInputLength
   929  	}
   930  
   931  	// Initialize BLS12-381 pairing engine
   932  	e := bls12381.NewPairingEngine()
   933  	g1, g2 := e.G1, e.G2
   934  
   935  	// Decode pairs
   936  	for i := 0; i < k; i++ {
   937  		off := 384 * i
   938  		t0, t1, t2 := off, off+128, off+384
   939  
   940  		// Decode G1 point
   941  		p1, err := g1.DecodePoint(input[t0:t1])
   942  		if err != nil {
   943  			return nil, err
   944  		}
   945  		// Decode G2 point
   946  		p2, err := g2.DecodePoint(input[t1:t2])
   947  		if err != nil {
   948  			return nil, err
   949  		}
   950  
   951  		// 'point is on curve' check already done,
   952  		// Here we need to apply subgroup checks.
   953  		if !g1.InCorrectSubgroup(p1) {
   954  			return nil, errBLS12381G1PointSubgroup
   955  		}
   956  		if !g2.InCorrectSubgroup(p2) {
   957  			return nil, errBLS12381G2PointSubgroup
   958  		}
   959  
   960  		// Update pairing engine with G1 and G2 ponits
   961  		e.AddPair(p1, p2)
   962  	}
   963  	// Prepare 32 byte output
   964  	out := make([]byte, 32)
   965  
   966  	// Compute pairing and set the result
   967  	if e.Check() {
   968  		out[31] = 1
   969  	}
   970  	return out, nil
   971  }
   972  
   973  // decodeBLS12381FieldElement decodes BLS12-381 elliptic curve field element.
   974  // Removes top 16 bytes of 64 byte input.
   975  func decodeBLS12381FieldElement(in []byte) ([]byte, error) {
   976  	if len(in) != 64 {
   977  		return nil, errors.New("invalid field element length")
   978  	}
   979  	// check top bytes
   980  	for i := 0; i < 16; i++ {
   981  		if in[i] != byte(0x00) {
   982  			return nil, errBLS12381InvalidFieldElementTopBytes
   983  		}
   984  	}
   985  	out := make([]byte, 48)
   986  	copy(out[:], in[16:])
   987  	return out, nil
   988  }
   989  
   990  // bls12381MapG1 implements EIP-2537 MapG1 precompile.
   991  type bls12381MapG1 struct{}
   992  
   993  // RequiredGas returns the gas required to execute the pre-compiled contract.
   994  func (c *bls12381MapG1) RequiredGas(input []byte) uint64 {
   995  	return params.Bls12381MapG1Gas
   996  }
   997  
   998  func (c *bls12381MapG1) Run(input []byte) ([]byte, error) {
   999  	// Implements EIP-2537 Map_To_G1 precompile.
  1000  	// > Field-to-curve call expects `64` bytes an an input that is interpreted as a an element of the base field.
  1001  	// > Output of this call is `128` bytes and is G1 point following respective encoding rules.
  1002  	if len(input) != 64 {
  1003  		return nil, errBLS12381InvalidInputLength
  1004  	}
  1005  
  1006  	// Decode input field element
  1007  	fe, err := decodeBLS12381FieldElement(input)
  1008  	if err != nil {
  1009  		return nil, err
  1010  	}
  1011  
  1012  	// Initialize G1
  1013  	g := bls12381.NewG1()
  1014  
  1015  	// Compute mapping
  1016  	r, err := g.MapToCurve(fe)
  1017  	if err != nil {
  1018  		return nil, err
  1019  	}
  1020  
  1021  	// Encode the G1 point to 128 bytes
  1022  	return g.EncodePoint(r), nil
  1023  }
  1024  
  1025  // bls12381MapG2 implements EIP-2537 MapG2 precompile.
  1026  type bls12381MapG2 struct{}
  1027  
  1028  // RequiredGas returns the gas required to execute the pre-compiled contract.
  1029  func (c *bls12381MapG2) RequiredGas(input []byte) uint64 {
  1030  	return params.Bls12381MapG2Gas
  1031  }
  1032  
  1033  func (c *bls12381MapG2) Run(input []byte) ([]byte, error) {
  1034  	// Implements EIP-2537 Map_FP2_TO_G2 precompile logic.
  1035  	// > Field-to-curve call expects `128` bytes an an input that is interpreted as a an element of the quadratic extension field.
  1036  	// > Output of this call is `256` bytes and is G2 point following respective encoding rules.
  1037  	if len(input) != 128 {
  1038  		return nil, errBLS12381InvalidInputLength
  1039  	}
  1040  
  1041  	// Decode input field element
  1042  	fe := make([]byte, 96)
  1043  	c0, err := decodeBLS12381FieldElement(input[:64])
  1044  	if err != nil {
  1045  		return nil, err
  1046  	}
  1047  	copy(fe[48:], c0)
  1048  	c1, err := decodeBLS12381FieldElement(input[64:])
  1049  	if err != nil {
  1050  		return nil, err
  1051  	}
  1052  	copy(fe[:48], c1)
  1053  
  1054  	// Initialize G2
  1055  	g := bls12381.NewG2()
  1056  
  1057  	// Compute mapping
  1058  	r, err := g.MapToCurve(fe)
  1059  	if err != nil {
  1060  		return nil, err
  1061  	}
  1062  
  1063  	// Encode the G2 point to 256 bytes
  1064  	return g.EncodePoint(r), nil
  1065  }