github.com/Psiphon-Labs/tls-tris@v0.0.0-20230824155421-58bf6d336a9a/cipher_suites.go (about) 1 // Copyright 2010 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package tls 6 7 import ( 8 "crypto" 9 "crypto/aes" 10 "crypto/cipher" 11 "crypto/des" 12 "crypto/hmac" 13 "crypto/rc4" 14 "crypto/sha1" 15 "crypto/sha256" 16 "hash" 17 18 "golang.org/x/crypto/chacha20poly1305" 19 ) 20 21 // a keyAgreement implements the client and server side of a TLS key agreement 22 // protocol by generating and processing key exchange messages. 23 type keyAgreement interface { 24 // On the server side, the first two methods are called in order. 25 26 // In the case that the key agreement protocol doesn't use a 27 // ServerKeyExchange message, generateServerKeyExchange can return nil, 28 // nil. 29 generateServerKeyExchange(*Config, crypto.PrivateKey, *clientHelloMsg, *serverHelloMsg) (*serverKeyExchangeMsg, error) 30 processClientKeyExchange(*Config, crypto.PrivateKey, *clientKeyExchangeMsg, uint16) ([]byte, error) 31 32 // On the client side, the next two methods are called in order. 33 34 // This method may not be called if the server doesn't send a 35 // ServerKeyExchange message. 36 processServerKeyExchange(*Config, *clientHelloMsg, *serverHelloMsg, crypto.PublicKey, *serverKeyExchangeMsg) error 37 generateClientKeyExchange(*Config, *clientHelloMsg, crypto.PublicKey) ([]byte, *clientKeyExchangeMsg, error) 38 } 39 40 const ( 41 // suiteECDH indicates that the cipher suite involves elliptic curve 42 // Diffie-Hellman. This means that it should only be selected when the 43 // client indicates that it supports ECC with a curve and point format 44 // that we're happy with. 45 suiteECDHE = 1 << iota 46 // suiteECDSA indicates that the cipher suite involves an ECDSA 47 // signature and therefore may only be selected when the server's 48 // certificate is ECDSA. If this is not set then the cipher suite is 49 // RSA based. 50 suiteECDSA 51 // suiteTLS12 indicates that the cipher suite should only be advertised 52 // and accepted when using TLS 1.2. 53 suiteTLS12 54 // suiteTLS13 indicates that the ones and only cipher suites to be 55 // advertised and accepted when using TLS 1.3. 56 suiteTLS13 57 // suiteSHA384 indicates that the cipher suite uses SHA384 as the 58 // handshake hash. 59 suiteSHA384 60 // suiteDefaultOff indicates that this cipher suite is not included by 61 // default. 62 suiteDefaultOff 63 ) 64 65 // A cipherSuite is a specific combination of key agreement, cipher and MAC 66 // function. 67 type cipherSuite struct { 68 id uint16 69 // the lengths, in bytes, of the key material needed for each component. 70 keyLen int 71 macLen int 72 ivLen int 73 ka func(version uint16) keyAgreement 74 // flags is a bitmask of the suite* values, above. 75 flags int 76 cipher func(key, iv []byte, isRead bool) interface{} 77 mac func(version uint16, macKey []byte) macFunction 78 aead func(key, fixedNonce []byte) cipher.AEAD 79 } 80 81 var cipherSuites = []*cipherSuite{ 82 // TLS 1.3 ciphersuites specify only the AEAD and the HKDF hash. 83 {TLS_CHACHA20_POLY1305_SHA256, 32, 0, 12, nil, suiteTLS13, nil, nil, aeadChaCha20Poly1305}, 84 {TLS_AES_128_GCM_SHA256, 16, 0, 12, nil, suiteTLS13, nil, nil, aeadAESGCM13}, 85 {TLS_AES_256_GCM_SHA384, 32, 0, 12, nil, suiteTLS13 | suiteSHA384, nil, nil, aeadAESGCM13}, 86 87 // Ciphersuite order is chosen so that ECDHE comes before plain RSA and 88 // AEADs are the top preference. 89 {TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305, 32, 0, 12, ecdheRSAKA, suiteECDHE | suiteTLS12, nil, nil, aeadChaCha20Poly1305}, 90 {TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305, 32, 0, 12, ecdheECDSAKA, suiteECDHE | suiteECDSA | suiteTLS12, nil, nil, aeadChaCha20Poly1305}, 91 {TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256, 16, 0, 4, ecdheRSAKA, suiteECDHE | suiteTLS12, nil, nil, aeadAESGCM12}, 92 {TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, 16, 0, 4, ecdheECDSAKA, suiteECDHE | suiteECDSA | suiteTLS12, nil, nil, aeadAESGCM12}, 93 {TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384, 32, 0, 4, ecdheRSAKA, suiteECDHE | suiteTLS12 | suiteSHA384, nil, nil, aeadAESGCM12}, 94 {TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384, 32, 0, 4, ecdheECDSAKA, suiteECDHE | suiteECDSA | suiteTLS12 | suiteSHA384, nil, nil, aeadAESGCM12}, 95 {TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256, 16, 32, 16, ecdheRSAKA, suiteECDHE | suiteTLS12 | suiteDefaultOff, cipherAES, macSHA256, nil}, 96 {TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA, 16, 20, 16, ecdheRSAKA, suiteECDHE, cipherAES, macSHA1, nil}, 97 {TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256, 16, 32, 16, ecdheECDSAKA, suiteECDHE | suiteECDSA | suiteTLS12 | suiteDefaultOff, cipherAES, macSHA256, nil}, 98 {TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA, 16, 20, 16, ecdheECDSAKA, suiteECDHE | suiteECDSA, cipherAES, macSHA1, nil}, 99 {TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA, 32, 20, 16, ecdheRSAKA, suiteECDHE, cipherAES, macSHA1, nil}, 100 {TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA, 32, 20, 16, ecdheECDSAKA, suiteECDHE | suiteECDSA, cipherAES, macSHA1, nil}, 101 {TLS_RSA_WITH_AES_128_GCM_SHA256, 16, 0, 4, rsaKA, suiteTLS12, nil, nil, aeadAESGCM12}, 102 {TLS_RSA_WITH_AES_256_GCM_SHA384, 32, 0, 4, rsaKA, suiteTLS12 | suiteSHA384, nil, nil, aeadAESGCM12}, 103 {TLS_RSA_WITH_AES_128_CBC_SHA256, 16, 32, 16, rsaKA, suiteTLS12 | suiteDefaultOff, cipherAES, macSHA256, nil}, 104 {TLS_RSA_WITH_AES_128_CBC_SHA, 16, 20, 16, rsaKA, 0, cipherAES, macSHA1, nil}, 105 {TLS_RSA_WITH_AES_256_CBC_SHA, 32, 20, 16, rsaKA, 0, cipherAES, macSHA1, nil}, 106 {TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA, 24, 20, 8, ecdheRSAKA, suiteECDHE, cipher3DES, macSHA1, nil}, 107 {TLS_RSA_WITH_3DES_EDE_CBC_SHA, 24, 20, 8, rsaKA, 0, cipher3DES, macSHA1, nil}, 108 109 // RC4-based cipher suites are disabled by default. 110 {TLS_RSA_WITH_RC4_128_SHA, 16, 20, 0, rsaKA, suiteDefaultOff, cipherRC4, macSHA1, nil}, 111 {TLS_ECDHE_RSA_WITH_RC4_128_SHA, 16, 20, 0, ecdheRSAKA, suiteECDHE | suiteDefaultOff, cipherRC4, macSHA1, nil}, 112 {TLS_ECDHE_ECDSA_WITH_RC4_128_SHA, 16, 20, 0, ecdheECDSAKA, suiteECDHE | suiteECDSA | suiteDefaultOff, cipherRC4, macSHA1, nil}, 113 } 114 115 func cipherRC4(key, iv []byte, isRead bool) interface{} { 116 cipher, _ := rc4.NewCipher(key) 117 return cipher 118 } 119 120 func cipher3DES(key, iv []byte, isRead bool) interface{} { 121 block, _ := des.NewTripleDESCipher(key) 122 if isRead { 123 return cipher.NewCBCDecrypter(block, iv) 124 } 125 return cipher.NewCBCEncrypter(block, iv) 126 } 127 128 func cipherAES(key, iv []byte, isRead bool) interface{} { 129 block, _ := aes.NewCipher(key) 130 if isRead { 131 return cipher.NewCBCDecrypter(block, iv) 132 } 133 return cipher.NewCBCEncrypter(block, iv) 134 } 135 136 // macSHA1 returns a macFunction for the given protocol version. 137 func macSHA1(version uint16, key []byte) macFunction { 138 if version == VersionSSL30 { 139 mac := ssl30MAC{ 140 h: sha1.New(), 141 key: make([]byte, len(key)), 142 } 143 copy(mac.key, key) 144 return mac 145 } 146 return tls10MAC{hmac.New(newConstantTimeHash(sha1.New), key)} 147 } 148 149 // macSHA256 returns a SHA-256 based MAC. These are only supported in TLS 1.2 150 // so the given version is ignored. 151 func macSHA256(version uint16, key []byte) macFunction { 152 return tls10MAC{hmac.New(sha256.New, key)} 153 } 154 155 type macFunction interface { 156 Size() int 157 MAC(digestBuf, seq, header, data, extra []byte) []byte 158 } 159 160 type aead interface { 161 cipher.AEAD 162 163 // explicitIVLen returns the number of bytes used by the explicit nonce 164 // that is included in the record. This is eight for older AEADs and 165 // zero for modern ones. 166 explicitNonceLen() int 167 } 168 169 // fixedNonceAEAD wraps an AEAD and prefixes a fixed portion of the nonce to 170 // each call. 171 type fixedNonceAEAD struct { 172 // nonce contains the fixed part of the nonce in the first four bytes. 173 nonce [12]byte 174 aead cipher.AEAD 175 } 176 177 func (f *fixedNonceAEAD) NonceSize() int { return 8 } 178 179 // Overhead returns the maximum difference between the lengths of a 180 // plaintext and its ciphertext. 181 func (f *fixedNonceAEAD) Overhead() int { return f.aead.Overhead() } 182 func (f *fixedNonceAEAD) explicitNonceLen() int { return 8 } 183 184 func (f *fixedNonceAEAD) Seal(out, nonce, plaintext, additionalData []byte) []byte { 185 copy(f.nonce[4:], nonce) 186 return f.aead.Seal(out, f.nonce[:], plaintext, additionalData) 187 } 188 189 func (f *fixedNonceAEAD) Open(out, nonce, plaintext, additionalData []byte) ([]byte, error) { 190 copy(f.nonce[4:], nonce) 191 return f.aead.Open(out, f.nonce[:], plaintext, additionalData) 192 } 193 194 // xoredNonceAEAD wraps an AEAD by XORing in a fixed pattern to the nonce 195 // before each call. 196 type xorNonceAEAD struct { 197 nonceMask [12]byte 198 aead cipher.AEAD 199 } 200 201 func (f *xorNonceAEAD) NonceSize() int { return 8 } 202 func (f *xorNonceAEAD) Overhead() int { return f.aead.Overhead() } 203 func (f *xorNonceAEAD) explicitNonceLen() int { return 0 } 204 205 func (f *xorNonceAEAD) Seal(out, nonce, plaintext, additionalData []byte) []byte { 206 for i, b := range nonce { 207 f.nonceMask[4+i] ^= b 208 } 209 result := f.aead.Seal(out, f.nonceMask[:], plaintext, additionalData) 210 for i, b := range nonce { 211 f.nonceMask[4+i] ^= b 212 } 213 214 return result 215 } 216 217 func (f *xorNonceAEAD) Open(out, nonce, plaintext, additionalData []byte) ([]byte, error) { 218 for i, b := range nonce { 219 f.nonceMask[4+i] ^= b 220 } 221 result, err := f.aead.Open(out, f.nonceMask[:], plaintext, additionalData) 222 for i, b := range nonce { 223 f.nonceMask[4+i] ^= b 224 } 225 226 return result, err 227 } 228 229 func aeadAESGCM12(key, fixedNonce []byte) cipher.AEAD { 230 aes, err := aes.NewCipher(key) 231 if err != nil { 232 panic(err) 233 } 234 aead, err := cipher.NewGCM(aes) 235 if err != nil { 236 panic(err) 237 } 238 239 ret := &fixedNonceAEAD{aead: aead} 240 copy(ret.nonce[:], fixedNonce) 241 return ret 242 } 243 244 func aeadAESGCM13(key, fixedNonce []byte) cipher.AEAD { 245 aes, err := aes.NewCipher(key) 246 if err != nil { 247 panic(err) 248 } 249 aead, err := cipher.NewGCM(aes) 250 if err != nil { 251 panic(err) 252 } 253 254 ret := &xorNonceAEAD{aead: aead} 255 copy(ret.nonceMask[:], fixedNonce) 256 return ret 257 } 258 259 func aeadChaCha20Poly1305(key, fixedNonce []byte) cipher.AEAD { 260 aead, err := chacha20poly1305.New(key) 261 if err != nil { 262 panic(err) 263 } 264 265 ret := &xorNonceAEAD{aead: aead} 266 copy(ret.nonceMask[:], fixedNonce) 267 return ret 268 } 269 270 // ssl30MAC implements the SSLv3 MAC function, as defined in 271 // www.mozilla.org/projects/security/pki/nss/ssl/draft302.txt section 5.2.3.1 272 type ssl30MAC struct { 273 h hash.Hash 274 key []byte 275 } 276 277 func (s ssl30MAC) Size() int { 278 return s.h.Size() 279 } 280 281 var ssl30Pad1 = [48]byte{0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36} 282 283 var ssl30Pad2 = [48]byte{0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c} 284 285 // MAC does not offer constant timing guarantees for SSL v3.0, since it's deemed 286 // useless considering the similar, protocol-level POODLE vulnerability. 287 func (s ssl30MAC) MAC(digestBuf, seq, header, data, extra []byte) []byte { 288 padLength := 48 289 if s.h.Size() == 20 { 290 padLength = 40 291 } 292 293 s.h.Reset() 294 s.h.Write(s.key) 295 s.h.Write(ssl30Pad1[:padLength]) 296 s.h.Write(seq) 297 s.h.Write(header[:1]) 298 s.h.Write(header[3:5]) 299 s.h.Write(data) 300 digestBuf = s.h.Sum(digestBuf[:0]) 301 302 s.h.Reset() 303 s.h.Write(s.key) 304 s.h.Write(ssl30Pad2[:padLength]) 305 s.h.Write(digestBuf) 306 return s.h.Sum(digestBuf[:0]) 307 } 308 309 type constantTimeHash interface { 310 hash.Hash 311 ConstantTimeSum(b []byte) []byte 312 } 313 314 // cthWrapper wraps any hash.Hash that implements ConstantTimeSum, and replaces 315 // with that all calls to Sum. It's used to obtain a ConstantTimeSum-based HMAC. 316 type cthWrapper struct { 317 h constantTimeHash 318 } 319 320 func (c *cthWrapper) Size() int { return c.h.Size() } 321 func (c *cthWrapper) BlockSize() int { return c.h.BlockSize() } 322 func (c *cthWrapper) Reset() { c.h.Reset() } 323 func (c *cthWrapper) Write(p []byte) (int, error) { return c.h.Write(p) } 324 func (c *cthWrapper) Sum(b []byte) []byte { return c.h.ConstantTimeSum(b) } 325 326 func newConstantTimeHash(h func() hash.Hash) func() hash.Hash { 327 return func() hash.Hash { 328 return &cthWrapper{h().(constantTimeHash)} 329 } 330 } 331 332 // tls10MAC implements the TLS 1.0 MAC function. RFC 2246, section 6.2.3. 333 type tls10MAC struct { 334 h hash.Hash 335 } 336 337 func (s tls10MAC) Size() int { 338 return s.h.Size() 339 } 340 341 // MAC is guaranteed to take constant time, as long as 342 // len(seq)+len(header)+len(data)+len(extra) is constant. extra is not fed into 343 // the MAC, but is only provided to make the timing profile constant. 344 func (s tls10MAC) MAC(digestBuf, seq, header, data, extra []byte) []byte { 345 s.h.Reset() 346 s.h.Write(seq) 347 s.h.Write(header) 348 s.h.Write(data) 349 res := s.h.Sum(digestBuf[:0]) 350 if extra != nil { 351 s.h.Write(extra) 352 } 353 return res 354 } 355 356 func rsaKA(version uint16) keyAgreement { 357 return rsaKeyAgreement{} 358 } 359 360 func ecdheECDSAKA(version uint16) keyAgreement { 361 return &ecdheKeyAgreement{ 362 isRSA: false, 363 version: version, 364 } 365 } 366 367 func ecdheRSAKA(version uint16) keyAgreement { 368 return &ecdheKeyAgreement{ 369 isRSA: true, 370 version: version, 371 } 372 } 373 374 // mutualCipherSuite returns a cipherSuite given a list of supported 375 // ciphersuites and the id requested by the peer. 376 func mutualCipherSuite(have []uint16, want uint16) *cipherSuite { 377 for _, id := range have { 378 if id == want { 379 for _, suite := range cipherSuites { 380 if suite.id == want { 381 return suite 382 } 383 } 384 return nil 385 } 386 } 387 return nil 388 } 389 390 // A list of cipher suite IDs that are, or have been, implemented by this 391 // package. 392 // 393 // Taken from http://www.iana.org/assignments/tls-parameters/tls-parameters.xml 394 const ( 395 // TLS 1.0 - 1.2 cipher suites. 396 TLS_RSA_WITH_RC4_128_SHA uint16 = 0x0005 397 TLS_RSA_WITH_3DES_EDE_CBC_SHA uint16 = 0x000a 398 TLS_RSA_WITH_AES_128_CBC_SHA uint16 = 0x002f 399 TLS_RSA_WITH_AES_256_CBC_SHA uint16 = 0x0035 400 TLS_RSA_WITH_AES_128_CBC_SHA256 uint16 = 0x003c 401 TLS_RSA_WITH_AES_128_GCM_SHA256 uint16 = 0x009c 402 TLS_RSA_WITH_AES_256_GCM_SHA384 uint16 = 0x009d 403 TLS_ECDHE_ECDSA_WITH_RC4_128_SHA uint16 = 0xc007 404 TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA uint16 = 0xc009 405 TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA uint16 = 0xc00a 406 TLS_ECDHE_RSA_WITH_RC4_128_SHA uint16 = 0xc011 407 TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA uint16 = 0xc012 408 TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA uint16 = 0xc013 409 TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA uint16 = 0xc014 410 TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256 uint16 = 0xc023 411 TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256 uint16 = 0xc027 412 TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 uint16 = 0xc02f 413 TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 uint16 = 0xc02b 414 TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 uint16 = 0xc030 415 TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 uint16 = 0xc02c 416 TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305 uint16 = 0xcca8 417 TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305 uint16 = 0xcca9 418 419 // TLS 1.3+ cipher suites. 420 TLS_AES_128_GCM_SHA256 uint16 = 0x1301 421 TLS_AES_256_GCM_SHA384 uint16 = 0x1302 422 TLS_CHACHA20_POLY1305_SHA256 uint16 = 0x1303 423 424 // TLS_FALLBACK_SCSV isn't a standard cipher suite but an indicator 425 // that the client is doing version fallback. See 426 // https://tools.ietf.org/html/rfc7507. 427 TLS_FALLBACK_SCSV uint16 = 0x5600 428 )