github.com/SagerNet/gvisor@v0.0.0-20210707092255-7731c139d75c/pkg/tcpip/tcpip.go (about) 1 // Copyright 2018 The gVisor Authors. 2 // 3 // Licensed under the Apache License, Version 2.0 (the "License"); 4 // you may not use this file except in compliance with the License. 5 // You may obtain a copy of the License at 6 // 7 // http://www.apache.org/licenses/LICENSE-2.0 8 // 9 // Unless required by applicable law or agreed to in writing, software 10 // distributed under the License is distributed on an "AS IS" BASIS, 11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12 // See the License for the specific language governing permissions and 13 // limitations under the License. 14 15 // Package tcpip provides the interfaces and related types that users of the 16 // tcpip stack will use in order to create endpoints used to send and receive 17 // data over the network stack. 18 // 19 // The starting point is the creation and configuration of a stack. A stack can 20 // be created by calling the New() function of the tcpip/stack/stack package; 21 // configuring a stack involves creating NICs (via calls to Stack.CreateNIC()), 22 // adding network addresses (via calls to Stack.AddAddress()), and 23 // setting a route table (via a call to Stack.SetRouteTable()). 24 // 25 // Once a stack is configured, endpoints can be created by calling 26 // Stack.NewEndpoint(). Such endpoints can be used to send/receive data, connect 27 // to peers, listen for connections, accept connections, etc., depending on the 28 // transport protocol selected. 29 package tcpip 30 31 import ( 32 "bytes" 33 "errors" 34 "fmt" 35 "io" 36 "math/bits" 37 "reflect" 38 "strconv" 39 "strings" 40 "time" 41 42 "github.com/SagerNet/gvisor/pkg/atomicbitops" 43 "github.com/SagerNet/gvisor/pkg/sync" 44 "github.com/SagerNet/gvisor/pkg/waiter" 45 ) 46 47 // Using header.IPv4AddressSize would cause an import cycle. 48 const ipv4AddressSize = 4 49 50 // Errors related to Subnet 51 var ( 52 errSubnetLengthMismatch = errors.New("subnet length of address and mask differ") 53 errSubnetAddressMasked = errors.New("subnet address has bits set outside the mask") 54 ) 55 56 // ErrSaveRejection indicates a failed save due to unsupported networking state. 57 // This type of errors is only used for save logic. 58 type ErrSaveRejection struct { 59 Err error 60 } 61 62 // Error returns a sensible description of the save rejection error. 63 func (e *ErrSaveRejection) Error() string { 64 return "save rejected due to unsupported networking state: " + e.Err.Error() 65 } 66 67 // MonotonicTime is a monotonic clock reading. 68 // 69 // +stateify savable 70 type MonotonicTime struct { 71 nanoseconds int64 72 } 73 74 // Before reports whether the monotonic clock reading mt is before u. 75 func (mt MonotonicTime) Before(u MonotonicTime) bool { 76 return mt.nanoseconds < u.nanoseconds 77 } 78 79 // After reports whether the monotonic clock reading mt is after u. 80 func (mt MonotonicTime) After(u MonotonicTime) bool { 81 return mt.nanoseconds > u.nanoseconds 82 } 83 84 // Add returns the monotonic clock reading mt+d. 85 func (mt MonotonicTime) Add(d time.Duration) MonotonicTime { 86 return MonotonicTime{ 87 nanoseconds: time.Unix(0, mt.nanoseconds).Add(d).Sub(time.Unix(0, 0)).Nanoseconds(), 88 } 89 } 90 91 // Sub returns the duration mt-u. If the result exceeds the maximum (or minimum) 92 // value that can be stored in a Duration, the maximum (or minimum) duration 93 // will be returned. To compute t-d for a duration d, use t.Add(-d). 94 func (mt MonotonicTime) Sub(u MonotonicTime) time.Duration { 95 return time.Unix(0, mt.nanoseconds).Sub(time.Unix(0, u.nanoseconds)) 96 } 97 98 // A Clock provides the current time and schedules work for execution. 99 // 100 // Times returned by a Clock should always be used for application-visible 101 // time. Only monotonic times should be used for netstack internal timekeeping. 102 type Clock interface { 103 // Now returns the current local time. 104 Now() time.Time 105 106 // NowMonotonic returns the current monotonic clock reading. 107 NowMonotonic() MonotonicTime 108 109 // AfterFunc waits for the duration to elapse and then calls f in its own 110 // goroutine. It returns a Timer that can be used to cancel the call using 111 // its Stop method. 112 AfterFunc(d time.Duration, f func()) Timer 113 } 114 115 // Timer represents a single event. A Timer must be created with 116 // Clock.AfterFunc. 117 type Timer interface { 118 // Stop prevents the Timer from firing. It returns true if the call stops the 119 // timer, false if the timer has already expired or been stopped. 120 // 121 // If Stop returns false, then the timer has already expired and the function 122 // f of Clock.AfterFunc(d, f) has been started in its own goroutine; Stop 123 // does not wait for f to complete before returning. If the caller needs to 124 // know whether f is completed, it must coordinate with f explicitly. 125 Stop() bool 126 127 // Reset changes the timer to expire after duration d. 128 // 129 // Reset should be invoked only on stopped or expired timers. If the timer is 130 // known to have expired, Reset can be used directly. Otherwise, the caller 131 // must coordinate with the function f of Clock.AfterFunc(d, f). 132 Reset(d time.Duration) 133 } 134 135 // Address is a byte slice cast as a string that represents the address of a 136 // network node. Or, in the case of unix endpoints, it may represent a path. 137 type Address string 138 139 // WithPrefix returns the address with a prefix that represents a point subnet. 140 func (a Address) WithPrefix() AddressWithPrefix { 141 return AddressWithPrefix{ 142 Address: a, 143 PrefixLen: len(a) * 8, 144 } 145 } 146 147 // Unspecified returns true if the address is unspecified. 148 func (a Address) Unspecified() bool { 149 for _, b := range a { 150 if b != 0 { 151 return false 152 } 153 } 154 return true 155 } 156 157 // MatchingPrefix returns the matching prefix length in bits. 158 // 159 // Panics if b and a have different lengths. 160 func (a Address) MatchingPrefix(b Address) uint8 { 161 const bitsInAByte = 8 162 163 if len(a) != len(b) { 164 panic(fmt.Sprintf("addresses %s and %s do not have the same length", a, b)) 165 } 166 167 var prefix uint8 168 for i := range a { 169 aByte := a[i] 170 bByte := b[i] 171 172 if aByte == bByte { 173 prefix += bitsInAByte 174 continue 175 } 176 177 // Count the remaining matching bits in the byte from MSbit to LSBbit. 178 mask := uint8(1) << (bitsInAByte - 1) 179 for { 180 if aByte&mask == bByte&mask { 181 prefix++ 182 mask >>= 1 183 continue 184 } 185 186 break 187 } 188 189 break 190 } 191 192 return prefix 193 } 194 195 // AddressMask is a bitmask for an address. 196 type AddressMask string 197 198 // String implements Stringer. 199 func (m AddressMask) String() string { 200 return Address(m).String() 201 } 202 203 // Prefix returns the number of bits before the first host bit. 204 func (m AddressMask) Prefix() int { 205 p := 0 206 for _, b := range []byte(m) { 207 p += bits.LeadingZeros8(^b) 208 } 209 return p 210 } 211 212 // Subnet is a subnet defined by its address and mask. 213 type Subnet struct { 214 address Address 215 mask AddressMask 216 } 217 218 // NewSubnet creates a new Subnet, checking that the address and mask are the same length. 219 func NewSubnet(a Address, m AddressMask) (Subnet, error) { 220 if len(a) != len(m) { 221 return Subnet{}, errSubnetLengthMismatch 222 } 223 for i := 0; i < len(a); i++ { 224 if a[i]&^m[i] != 0 { 225 return Subnet{}, errSubnetAddressMasked 226 } 227 } 228 return Subnet{a, m}, nil 229 } 230 231 // String implements Stringer. 232 func (s Subnet) String() string { 233 return fmt.Sprintf("%s/%d", s.ID(), s.Prefix()) 234 } 235 236 // Contains returns true iff the address is of the same length and matches the 237 // subnet address and mask. 238 func (s *Subnet) Contains(a Address) bool { 239 if len(a) != len(s.address) { 240 return false 241 } 242 for i := 0; i < len(a); i++ { 243 if a[i]&s.mask[i] != s.address[i] { 244 return false 245 } 246 } 247 return true 248 } 249 250 // ID returns the subnet ID. 251 func (s *Subnet) ID() Address { 252 return s.address 253 } 254 255 // Bits returns the number of ones (network bits) and zeros (host bits) in the 256 // subnet mask. 257 func (s *Subnet) Bits() (ones int, zeros int) { 258 ones = s.mask.Prefix() 259 return ones, len(s.mask)*8 - ones 260 } 261 262 // Prefix returns the number of bits before the first host bit. 263 func (s *Subnet) Prefix() int { 264 return s.mask.Prefix() 265 } 266 267 // Mask returns the subnet mask. 268 func (s *Subnet) Mask() AddressMask { 269 return s.mask 270 } 271 272 // Broadcast returns the subnet's broadcast address. 273 func (s *Subnet) Broadcast() Address { 274 addr := []byte(s.address) 275 for i := range addr { 276 addr[i] |= ^s.mask[i] 277 } 278 return Address(addr) 279 } 280 281 // IsBroadcast returns true if the address is considered a broadcast address. 282 func (s *Subnet) IsBroadcast(address Address) bool { 283 // Only IPv4 supports the notion of a broadcast address. 284 if len(address) != ipv4AddressSize { 285 return false 286 } 287 288 // Normally, we would just compare address with the subnet's broadcast 289 // address but there is an exception where a simple comparison is not 290 // correct. This exception is for /31 and /32 IPv4 subnets where all 291 // addresses are considered valid host addresses. 292 // 293 // For /31 subnets, the case is easy. RFC 3021 Section 2.1 states that 294 // both addresses in a /31 subnet "MUST be interpreted as host addresses." 295 // 296 // For /32, the case is a bit more vague. RFC 3021 makes no mention of /32 297 // subnets. However, the same reasoning applies - if an exception is not 298 // made, then there do not exist any host addresses in a /32 subnet. RFC 299 // 4632 Section 3.1 also vaguely implies this interpretation by referring 300 // to addresses in /32 subnets as "host routes." 301 return s.Prefix() <= 30 && s.Broadcast() == address 302 } 303 304 // Equal returns true if this Subnet is equal to the given Subnet. 305 func (s Subnet) Equal(o Subnet) bool { 306 // If this changes, update Route.Equal accordingly. 307 return s == o 308 } 309 310 // NICID is a number that uniquely identifies a NIC. 311 type NICID int32 312 313 // ShutdownFlags represents flags that can be passed to the Shutdown() method 314 // of the Endpoint interface. 315 type ShutdownFlags int 316 317 // Values of the flags that can be passed to the Shutdown() method. They can 318 // be OR'ed together. 319 const ( 320 ShutdownRead ShutdownFlags = 1 << iota 321 ShutdownWrite 322 ) 323 324 // PacketType is used to indicate the destination of the packet. 325 type PacketType uint8 326 327 const ( 328 // PacketHost indicates a packet addressed to the local host. 329 PacketHost PacketType = iota 330 331 // PacketOtherHost indicates an outgoing packet addressed to 332 // another host caught by a NIC in promiscuous mode. 333 PacketOtherHost 334 335 // PacketOutgoing for a packet originating from the local host 336 // that is looped back to a packet socket. 337 PacketOutgoing 338 339 // PacketBroadcast indicates a link layer broadcast packet. 340 PacketBroadcast 341 342 // PacketMulticast indicates a link layer multicast packet. 343 PacketMulticast 344 ) 345 346 // FullAddress represents a full transport node address, as required by the 347 // Connect() and Bind() methods. 348 // 349 // +stateify savable 350 type FullAddress struct { 351 // NIC is the ID of the NIC this address refers to. 352 // 353 // This may not be used by all endpoint types. 354 NIC NICID 355 356 // Addr is the network or link layer address. 357 Addr Address 358 359 // Port is the transport port. 360 // 361 // This may not be used by all endpoint types. 362 Port uint16 363 } 364 365 // Payloader is an interface that provides data. 366 // 367 // This interface allows the endpoint to request the amount of data it needs 368 // based on internal buffers without exposing them. 369 type Payloader interface { 370 io.Reader 371 372 // Len returns the number of bytes of the unread portion of the 373 // Reader. 374 Len() int 375 } 376 377 var _ Payloader = (*bytes.Buffer)(nil) 378 var _ Payloader = (*bytes.Reader)(nil) 379 380 var _ io.Writer = (*SliceWriter)(nil) 381 382 // SliceWriter implements io.Writer for slices. 383 type SliceWriter []byte 384 385 // Write implements io.Writer.Write. 386 func (s *SliceWriter) Write(b []byte) (int, error) { 387 n := copy(*s, b) 388 *s = (*s)[n:] 389 var err error 390 if n != len(b) { 391 err = io.ErrShortWrite 392 } 393 return n, err 394 } 395 396 var _ io.Writer = (*LimitedWriter)(nil) 397 398 // A LimitedWriter writes to W but limits the amount of data copied to just N 399 // bytes. Each call to Write updates N to reflect the new amount remaining. 400 type LimitedWriter struct { 401 W io.Writer 402 N int64 403 } 404 405 func (l *LimitedWriter) Write(p []byte) (int, error) { 406 pLen := int64(len(p)) 407 if pLen > l.N { 408 p = p[:l.N] 409 } 410 n, err := l.W.Write(p) 411 n64 := int64(n) 412 if err == nil && n64 != pLen { 413 err = io.ErrShortWrite 414 } 415 l.N -= n64 416 return n, err 417 } 418 419 // A ControlMessages contains socket control messages for IP sockets. 420 // 421 // +stateify savable 422 type ControlMessages struct { 423 // HasTimestamp indicates whether Timestamp is valid/set. 424 HasTimestamp bool 425 426 // Timestamp is the time (in ns) that the last packet used to create 427 // the read data was received. 428 Timestamp int64 429 430 // HasInq indicates whether Inq is valid/set. 431 HasInq bool 432 433 // Inq is the number of bytes ready to be received. 434 Inq int32 435 436 // HasTOS indicates whether Tos is valid/set. 437 HasTOS bool 438 439 // TOS is the IPv4 type of service of the associated packet. 440 TOS uint8 441 442 // HasTClass indicates whether TClass is valid/set. 443 HasTClass bool 444 445 // TClass is the IPv6 traffic class of the associated packet. 446 TClass uint32 447 448 // HasIPPacketInfo indicates whether PacketInfo is set. 449 HasIPPacketInfo bool 450 451 // PacketInfo holds interface and address data on an incoming packet. 452 PacketInfo IPPacketInfo 453 454 // HasOriginalDestinationAddress indicates whether OriginalDstAddress is 455 // set. 456 HasOriginalDstAddress bool 457 458 // OriginalDestinationAddress holds the original destination address 459 // and port of the incoming packet. 460 OriginalDstAddress FullAddress 461 462 // SockErr is the dequeued socket error on recvmsg(MSG_ERRQUEUE). 463 SockErr *SockError 464 } 465 466 // PacketOwner is used to get UID and GID of the packet. 467 type PacketOwner interface { 468 // UID returns KUID of the packet. 469 KUID() uint32 470 471 // GID returns KGID of the packet. 472 KGID() uint32 473 } 474 475 // ReadOptions contains options for Endpoint.Read. 476 type ReadOptions struct { 477 // Peek indicates whether this read is a peek. 478 Peek bool 479 480 // NeedRemoteAddr indicates whether to return the remote address, if 481 // supported. 482 NeedRemoteAddr bool 483 484 // NeedLinkPacketInfo indicates whether to return the link-layer information, 485 // if supported. 486 NeedLinkPacketInfo bool 487 } 488 489 // ReadResult represents result for a successful Endpoint.Read. 490 type ReadResult struct { 491 // Count is the number of bytes received and written to the buffer. 492 Count int 493 494 // Total is the number of bytes of the received packet. This can be used to 495 // determine whether the read is truncated. 496 Total int 497 498 // ControlMessages is the control messages received. 499 ControlMessages ControlMessages 500 501 // RemoteAddr is the remote address if ReadOptions.NeedAddr is true. 502 RemoteAddr FullAddress 503 504 // LinkPacketInfo is the link-layer information of the received packet if 505 // ReadOptions.NeedLinkPacketInfo is true. 506 LinkPacketInfo LinkPacketInfo 507 } 508 509 // Endpoint is the interface implemented by transport protocols (e.g., tcp, udp) 510 // that exposes functionality like read, write, connect, etc. to users of the 511 // networking stack. 512 type Endpoint interface { 513 // Close puts the endpoint in a closed state and frees all resources 514 // associated with it. Close initiates the teardown process, the 515 // Endpoint may not be fully closed when Close returns. 516 Close() 517 518 // Abort initiates an expedited endpoint teardown. As compared to 519 // Close, Abort prioritizes closing the Endpoint quickly over cleanly. 520 // Abort is best effort; implementing Abort with Close is acceptable. 521 Abort() 522 523 // Read reads data from the endpoint and optionally writes to dst. 524 // 525 // This method does not block if there is no data pending; in this case, 526 // ErrWouldBlock is returned. 527 // 528 // If non-zero number of bytes are successfully read and written to dst, err 529 // must be nil. Otherwise, if dst failed to write anything, ErrBadBuffer 530 // should be returned. 531 Read(io.Writer, ReadOptions) (ReadResult, Error) 532 533 // Write writes data to the endpoint's peer. This method does not block if 534 // the data cannot be written. 535 // 536 // Unlike io.Writer.Write, Endpoint.Write transfers ownership of any bytes 537 // successfully written to the Endpoint. That is, if a call to 538 // Write(SlicePayload{data}) returns (n, err), it may retain data[:n], and 539 // the caller should not use data[:n] after Write returns. 540 // 541 // Note that unlike io.Writer.Write, it is not an error for Write to 542 // perform a partial write (if n > 0, no error may be returned). Only 543 // stream (TCP) Endpoints may return partial writes, and even then only 544 // in the case where writing additional data would block. Other Endpoints 545 // will either write the entire message or return an error. 546 Write(Payloader, WriteOptions) (int64, Error) 547 548 // Connect connects the endpoint to its peer. Specifying a NIC is 549 // optional. 550 // 551 // There are three classes of return values: 552 // nil -- the attempt to connect succeeded. 553 // ErrConnectStarted/ErrAlreadyConnecting -- the connect attempt started 554 // but hasn't completed yet. In this case, the caller must call Connect 555 // or GetSockOpt(ErrorOption) when the endpoint becomes writable to 556 // get the actual result. The first call to Connect after the socket has 557 // connected returns nil. Calling connect again results in ErrAlreadyConnected. 558 // Anything else -- the attempt to connect failed. 559 // 560 // If address.Addr is empty, this means that Endpoint has to be 561 // disconnected if this is supported, otherwise 562 // ErrAddressFamilyNotSupported must be returned. 563 Connect(address FullAddress) Error 564 565 // Disconnect disconnects the endpoint from its peer. 566 Disconnect() Error 567 568 // Shutdown closes the read and/or write end of the endpoint connection 569 // to its peer. 570 Shutdown(flags ShutdownFlags) Error 571 572 // Listen puts the endpoint in "listen" mode, which allows it to accept 573 // new connections. 574 Listen(backlog int) Error 575 576 // Accept returns a new endpoint if a peer has established a connection 577 // to an endpoint previously set to listen mode. This method does not 578 // block if no new connections are available. 579 // 580 // The returned Queue is the wait queue for the newly created endpoint. 581 // 582 // If peerAddr is not nil then it is populated with the peer address of the 583 // returned endpoint. 584 Accept(peerAddr *FullAddress) (Endpoint, *waiter.Queue, Error) 585 586 // Bind binds the endpoint to a specific local address and port. 587 // Specifying a NIC is optional. 588 Bind(address FullAddress) Error 589 590 // GetLocalAddress returns the address to which the endpoint is bound. 591 GetLocalAddress() (FullAddress, Error) 592 593 // GetRemoteAddress returns the address to which the endpoint is 594 // connected. 595 GetRemoteAddress() (FullAddress, Error) 596 597 // Readiness returns the current readiness of the endpoint. For example, 598 // if waiter.EventIn is set, the endpoint is immediately readable. 599 Readiness(mask waiter.EventMask) waiter.EventMask 600 601 // SetSockOpt sets a socket option. 602 SetSockOpt(opt SettableSocketOption) Error 603 604 // SetSockOptInt sets a socket option, for simple cases where a value 605 // has the int type. 606 SetSockOptInt(opt SockOptInt, v int) Error 607 608 // GetSockOpt gets a socket option. 609 GetSockOpt(opt GettableSocketOption) Error 610 611 // GetSockOptInt gets a socket option for simple cases where a return 612 // value has the int type. 613 GetSockOptInt(SockOptInt) (int, Error) 614 615 // State returns a socket's lifecycle state. The returned value is 616 // protocol-specific and is primarily used for diagnostics. 617 State() uint32 618 619 // ModerateRecvBuf should be called everytime data is copied to the user 620 // space. This allows for dynamic tuning of recv buffer space for a 621 // given socket. 622 // 623 // NOTE: This method is a no-op for sockets other than TCP. 624 ModerateRecvBuf(copied int) 625 626 // Info returns a copy to the transport endpoint info. 627 Info() EndpointInfo 628 629 // Stats returns a reference to the endpoint stats. 630 Stats() EndpointStats 631 632 // SetOwner sets the task owner to the endpoint owner. 633 SetOwner(owner PacketOwner) 634 635 // LastError clears and returns the last error reported by the endpoint. 636 LastError() Error 637 638 // SocketOptions returns the structure which contains all the socket 639 // level options. 640 SocketOptions() *SocketOptions 641 } 642 643 // LinkPacketInfo holds Link layer information for a received packet. 644 // 645 // +stateify savable 646 type LinkPacketInfo struct { 647 // Protocol is the NetworkProtocolNumber for the packet. 648 Protocol NetworkProtocolNumber 649 650 // PktType is used to indicate the destination of the packet. 651 PktType PacketType 652 } 653 654 // EndpointInfo is the interface implemented by each endpoint info struct. 655 type EndpointInfo interface { 656 // IsEndpointInfo is an empty method to implement the tcpip.EndpointInfo 657 // marker interface. 658 IsEndpointInfo() 659 } 660 661 // EndpointStats is the interface implemented by each endpoint stats struct. 662 type EndpointStats interface { 663 // IsEndpointStats is an empty method to implement the tcpip.EndpointStats 664 // marker interface. 665 IsEndpointStats() 666 } 667 668 // WriteOptions contains options for Endpoint.Write. 669 type WriteOptions struct { 670 // If To is not nil, write to the given address instead of the endpoint's 671 // peer. 672 To *FullAddress 673 674 // More has the same semantics as Linux's MSG_MORE. 675 More bool 676 677 // EndOfRecord has the same semantics as Linux's MSG_EOR. 678 EndOfRecord bool 679 680 // Atomic means that all data fetched from Payloader must be written to the 681 // endpoint. If Atomic is false, then data fetched from the Payloader may be 682 // discarded if available endpoint buffer space is unsufficient. 683 Atomic bool 684 } 685 686 // SockOptInt represents socket options which values have the int type. 687 type SockOptInt int 688 689 const ( 690 // KeepaliveCountOption is used by SetSockOptInt/GetSockOptInt to 691 // specify the number of un-ACKed TCP keepalives that will be sent 692 // before the connection is closed. 693 KeepaliveCountOption SockOptInt = iota 694 695 // IPv4TOSOption is used by SetSockOptInt/GetSockOptInt to specify TOS 696 // for all subsequent outgoing IPv4 packets from the endpoint. 697 IPv4TOSOption 698 699 // IPv6TrafficClassOption is used by SetSockOptInt/GetSockOptInt to 700 // specify TOS for all subsequent outgoing IPv6 packets from the 701 // endpoint. 702 IPv6TrafficClassOption 703 704 // MaxSegOption is used by SetSockOptInt/GetSockOptInt to set/get the 705 // current Maximum Segment Size(MSS) value as specified using the 706 // TCP_MAXSEG option. 707 MaxSegOption 708 709 // MTUDiscoverOption is used to set/get the path MTU discovery setting. 710 // 711 // NOTE: Setting this option to any other value than PMTUDiscoveryDont 712 // is not supported and will fail as such, and getting this option will 713 // always return PMTUDiscoveryDont. 714 MTUDiscoverOption 715 716 // MulticastTTLOption is used by SetSockOptInt/GetSockOptInt to control 717 // the default TTL value for multicast messages. The default is 1. 718 MulticastTTLOption 719 720 // ReceiveQueueSizeOption is used in GetSockOptInt to specify that the 721 // number of unread bytes in the input buffer should be returned. 722 ReceiveQueueSizeOption 723 724 // SendQueueSizeOption is used in GetSockOptInt to specify that the 725 // number of unread bytes in the output buffer should be returned. 726 SendQueueSizeOption 727 728 // TTLOption is used by SetSockOptInt/GetSockOptInt to control the 729 // default TTL/hop limit value for unicast messages. The default is 730 // protocol specific. 731 // 732 // A zero value indicates the default. 733 TTLOption 734 735 // TCPSynCountOption is used by SetSockOptInt/GetSockOptInt to specify 736 // the number of SYN retransmits that TCP should send before aborting 737 // the attempt to connect. It cannot exceed 255. 738 // 739 // NOTE: This option is currently only stubbed out and is no-op. 740 TCPSynCountOption 741 742 // TCPWindowClampOption is used by SetSockOptInt/GetSockOptInt to bound 743 // the size of the advertised window to this value. 744 // 745 // NOTE: This option is currently only stubed out and is a no-op 746 TCPWindowClampOption 747 ) 748 749 const ( 750 // PMTUDiscoveryWant is a setting of the MTUDiscoverOption to use 751 // per-route settings. 752 PMTUDiscoveryWant int = iota 753 754 // PMTUDiscoveryDont is a setting of the MTUDiscoverOption to disable 755 // path MTU discovery. 756 PMTUDiscoveryDont 757 758 // PMTUDiscoveryDo is a setting of the MTUDiscoverOption to always do 759 // path MTU discovery. 760 PMTUDiscoveryDo 761 762 // PMTUDiscoveryProbe is a setting of the MTUDiscoverOption to set DF 763 // but ignore path MTU. 764 PMTUDiscoveryProbe 765 ) 766 767 // GettableNetworkProtocolOption is a marker interface for network protocol 768 // options that may be queried. 769 type GettableNetworkProtocolOption interface { 770 isGettableNetworkProtocolOption() 771 } 772 773 // SettableNetworkProtocolOption is a marker interface for network protocol 774 // options that may be set. 775 type SettableNetworkProtocolOption interface { 776 isSettableNetworkProtocolOption() 777 } 778 779 // DefaultTTLOption is used by stack.(*Stack).NetworkProtocolOption to specify 780 // a default TTL. 781 type DefaultTTLOption uint8 782 783 func (*DefaultTTLOption) isGettableNetworkProtocolOption() {} 784 785 func (*DefaultTTLOption) isSettableNetworkProtocolOption() {} 786 787 // GettableTransportProtocolOption is a marker interface for transport protocol 788 // options that may be queried. 789 type GettableTransportProtocolOption interface { 790 isGettableTransportProtocolOption() 791 } 792 793 // SettableTransportProtocolOption is a marker interface for transport protocol 794 // options that may be set. 795 type SettableTransportProtocolOption interface { 796 isSettableTransportProtocolOption() 797 } 798 799 // TCPSACKEnabled the SACK option for TCP. 800 // 801 // See: https://tools.ietf.org/html/rfc2018. 802 type TCPSACKEnabled bool 803 804 func (*TCPSACKEnabled) isGettableTransportProtocolOption() {} 805 806 func (*TCPSACKEnabled) isSettableTransportProtocolOption() {} 807 808 // TCPRecovery is the loss deteoction algorithm used by TCP. 809 type TCPRecovery int32 810 811 func (*TCPRecovery) isGettableTransportProtocolOption() {} 812 813 func (*TCPRecovery) isSettableTransportProtocolOption() {} 814 815 // TCPAlwaysUseSynCookies indicates unconditional usage of syncookies. 816 type TCPAlwaysUseSynCookies bool 817 818 func (*TCPAlwaysUseSynCookies) isGettableTransportProtocolOption() {} 819 820 func (*TCPAlwaysUseSynCookies) isSettableTransportProtocolOption() {} 821 822 const ( 823 // TCPRACKLossDetection indicates RACK is used for loss detection and 824 // recovery. 825 TCPRACKLossDetection TCPRecovery = 1 << iota 826 827 // TCPRACKStaticReoWnd indicates the reordering window should not be 828 // adjusted when DSACK is received. 829 TCPRACKStaticReoWnd 830 831 // TCPRACKNoDupTh indicates RACK should not consider the classic three 832 // duplicate acknowledgements rule to mark the segments as lost. This 833 // is used when reordering is not detected. 834 TCPRACKNoDupTh 835 ) 836 837 // TCPDelayEnabled enables/disables Nagle's algorithm in TCP. 838 type TCPDelayEnabled bool 839 840 func (*TCPDelayEnabled) isGettableTransportProtocolOption() {} 841 842 func (*TCPDelayEnabled) isSettableTransportProtocolOption() {} 843 844 // TCPSendBufferSizeRangeOption is the send buffer size range for TCP. 845 type TCPSendBufferSizeRangeOption struct { 846 Min int 847 Default int 848 Max int 849 } 850 851 func (*TCPSendBufferSizeRangeOption) isGettableTransportProtocolOption() {} 852 853 func (*TCPSendBufferSizeRangeOption) isSettableTransportProtocolOption() {} 854 855 // TCPReceiveBufferSizeRangeOption is the receive buffer size range for TCP. 856 type TCPReceiveBufferSizeRangeOption struct { 857 Min int 858 Default int 859 Max int 860 } 861 862 func (*TCPReceiveBufferSizeRangeOption) isGettableTransportProtocolOption() {} 863 864 func (*TCPReceiveBufferSizeRangeOption) isSettableTransportProtocolOption() {} 865 866 // TCPAvailableCongestionControlOption is the supported congestion control 867 // algorithms for TCP 868 type TCPAvailableCongestionControlOption string 869 870 func (*TCPAvailableCongestionControlOption) isGettableTransportProtocolOption() {} 871 872 func (*TCPAvailableCongestionControlOption) isSettableTransportProtocolOption() {} 873 874 // TCPModerateReceiveBufferOption enables/disables receive buffer moderation 875 // for TCP. 876 type TCPModerateReceiveBufferOption bool 877 878 func (*TCPModerateReceiveBufferOption) isGettableTransportProtocolOption() {} 879 880 func (*TCPModerateReceiveBufferOption) isSettableTransportProtocolOption() {} 881 882 // GettableSocketOption is a marker interface for socket options that may be 883 // queried. 884 type GettableSocketOption interface { 885 isGettableSocketOption() 886 } 887 888 // SettableSocketOption is a marker interface for socket options that may be 889 // configured. 890 type SettableSocketOption interface { 891 isSettableSocketOption() 892 } 893 894 // EndpointState represents the state of an endpoint. 895 type EndpointState uint8 896 897 // CongestionControlState indicates the current congestion control state for 898 // TCP sender. 899 type CongestionControlState int 900 901 const ( 902 // Open indicates that the sender is receiving acks in order and 903 // no loss or dupACK's etc have been detected. 904 Open CongestionControlState = iota 905 // RTORecovery indicates that an RTO has occurred and the sender 906 // has entered an RTO based recovery phase. 907 RTORecovery 908 // FastRecovery indicates that the sender has entered FastRecovery 909 // based on receiving nDupAck's. This state is entered only when 910 // SACK is not in use. 911 FastRecovery 912 // SACKRecovery indicates that the sender has entered SACK based 913 // recovery. 914 SACKRecovery 915 // Disorder indicates the sender either received some SACK blocks 916 // or dupACK's. 917 Disorder 918 ) 919 920 // TCPInfoOption is used by GetSockOpt to expose TCP statistics. 921 // 922 // TODO(b/64800844): Add and populate stat fields. 923 type TCPInfoOption struct { 924 // RTT is the smoothed round trip time. 925 RTT time.Duration 926 927 // RTTVar is the round trip time variation. 928 RTTVar time.Duration 929 930 // RTO is the retransmission timeout for the endpoint. 931 RTO time.Duration 932 933 // State is the current endpoint protocol state. 934 State EndpointState 935 936 // CcState is the congestion control state. 937 CcState CongestionControlState 938 939 // SndCwnd is the congestion window, in packets. 940 SndCwnd uint32 941 942 // SndSsthresh is the threshold between slow start and congestion 943 // avoidance. 944 SndSsthresh uint32 945 946 // ReorderSeen indicates if reordering is seen in the endpoint. 947 ReorderSeen bool 948 } 949 950 func (*TCPInfoOption) isGettableSocketOption() {} 951 952 // KeepaliveIdleOption is used by SetSockOpt/GetSockOpt to specify the time a 953 // connection must remain idle before the first TCP keepalive packet is sent. 954 // Once this time is reached, KeepaliveIntervalOption is used instead. 955 type KeepaliveIdleOption time.Duration 956 957 func (*KeepaliveIdleOption) isGettableSocketOption() {} 958 959 func (*KeepaliveIdleOption) isSettableSocketOption() {} 960 961 // KeepaliveIntervalOption is used by SetSockOpt/GetSockOpt to specify the 962 // interval between sending TCP keepalive packets. 963 type KeepaliveIntervalOption time.Duration 964 965 func (*KeepaliveIntervalOption) isGettableSocketOption() {} 966 967 func (*KeepaliveIntervalOption) isSettableSocketOption() {} 968 969 // TCPUserTimeoutOption is used by SetSockOpt/GetSockOpt to specify a user 970 // specified timeout for a given TCP connection. 971 // See: RFC5482 for details. 972 type TCPUserTimeoutOption time.Duration 973 974 func (*TCPUserTimeoutOption) isGettableSocketOption() {} 975 976 func (*TCPUserTimeoutOption) isSettableSocketOption() {} 977 978 // CongestionControlOption is used by SetSockOpt/GetSockOpt to set/get 979 // the current congestion control algorithm. 980 type CongestionControlOption string 981 982 func (*CongestionControlOption) isGettableSocketOption() {} 983 984 func (*CongestionControlOption) isSettableSocketOption() {} 985 986 func (*CongestionControlOption) isGettableTransportProtocolOption() {} 987 988 func (*CongestionControlOption) isSettableTransportProtocolOption() {} 989 990 // TCPLingerTimeoutOption is used by SetSockOpt/GetSockOpt to set/get the 991 // maximum duration for which a socket lingers in the TCP_FIN_WAIT_2 state 992 // before being marked closed. 993 type TCPLingerTimeoutOption time.Duration 994 995 func (*TCPLingerTimeoutOption) isGettableSocketOption() {} 996 997 func (*TCPLingerTimeoutOption) isSettableSocketOption() {} 998 999 func (*TCPLingerTimeoutOption) isGettableTransportProtocolOption() {} 1000 1001 func (*TCPLingerTimeoutOption) isSettableTransportProtocolOption() {} 1002 1003 // TCPTimeWaitTimeoutOption is used by SetSockOpt/GetSockOpt to set/get the 1004 // maximum duration for which a socket lingers in the TIME_WAIT state 1005 // before being marked closed. 1006 type TCPTimeWaitTimeoutOption time.Duration 1007 1008 func (*TCPTimeWaitTimeoutOption) isGettableSocketOption() {} 1009 1010 func (*TCPTimeWaitTimeoutOption) isSettableSocketOption() {} 1011 1012 func (*TCPTimeWaitTimeoutOption) isGettableTransportProtocolOption() {} 1013 1014 func (*TCPTimeWaitTimeoutOption) isSettableTransportProtocolOption() {} 1015 1016 // TCPDeferAcceptOption is used by SetSockOpt/GetSockOpt to allow a 1017 // accept to return a completed connection only when there is data to be 1018 // read. This usually means the listening socket will drop the final ACK 1019 // for a handshake till the specified timeout until a segment with data arrives. 1020 type TCPDeferAcceptOption time.Duration 1021 1022 func (*TCPDeferAcceptOption) isGettableSocketOption() {} 1023 1024 func (*TCPDeferAcceptOption) isSettableSocketOption() {} 1025 1026 // TCPMinRTOOption is use by SetSockOpt/GetSockOpt to allow overriding 1027 // default MinRTO used by the Stack. 1028 type TCPMinRTOOption time.Duration 1029 1030 func (*TCPMinRTOOption) isGettableSocketOption() {} 1031 1032 func (*TCPMinRTOOption) isSettableSocketOption() {} 1033 1034 func (*TCPMinRTOOption) isGettableTransportProtocolOption() {} 1035 1036 func (*TCPMinRTOOption) isSettableTransportProtocolOption() {} 1037 1038 // TCPMaxRTOOption is use by SetSockOpt/GetSockOpt to allow overriding 1039 // default MaxRTO used by the Stack. 1040 type TCPMaxRTOOption time.Duration 1041 1042 func (*TCPMaxRTOOption) isGettableSocketOption() {} 1043 1044 func (*TCPMaxRTOOption) isSettableSocketOption() {} 1045 1046 func (*TCPMaxRTOOption) isGettableTransportProtocolOption() {} 1047 1048 func (*TCPMaxRTOOption) isSettableTransportProtocolOption() {} 1049 1050 // TCPMaxRetriesOption is used by SetSockOpt/GetSockOpt to set/get the 1051 // maximum number of retransmits after which we time out the connection. 1052 type TCPMaxRetriesOption uint64 1053 1054 func (*TCPMaxRetriesOption) isGettableSocketOption() {} 1055 1056 func (*TCPMaxRetriesOption) isSettableSocketOption() {} 1057 1058 func (*TCPMaxRetriesOption) isGettableTransportProtocolOption() {} 1059 1060 func (*TCPMaxRetriesOption) isSettableTransportProtocolOption() {} 1061 1062 // TCPSynRetriesOption is used by SetSockOpt/GetSockOpt to specify stack-wide 1063 // default for number of times SYN is retransmitted before aborting a connect. 1064 type TCPSynRetriesOption uint8 1065 1066 func (*TCPSynRetriesOption) isGettableSocketOption() {} 1067 1068 func (*TCPSynRetriesOption) isSettableSocketOption() {} 1069 1070 func (*TCPSynRetriesOption) isGettableTransportProtocolOption() {} 1071 1072 func (*TCPSynRetriesOption) isSettableTransportProtocolOption() {} 1073 1074 // MulticastInterfaceOption is used by SetSockOpt/GetSockOpt to specify a 1075 // default interface for multicast. 1076 type MulticastInterfaceOption struct { 1077 NIC NICID 1078 InterfaceAddr Address 1079 } 1080 1081 func (*MulticastInterfaceOption) isGettableSocketOption() {} 1082 1083 func (*MulticastInterfaceOption) isSettableSocketOption() {} 1084 1085 // MembershipOption is used to identify a multicast membership on an interface. 1086 type MembershipOption struct { 1087 NIC NICID 1088 InterfaceAddr Address 1089 MulticastAddr Address 1090 } 1091 1092 // AddMembershipOption identifies a multicast group to join on some interface. 1093 type AddMembershipOption MembershipOption 1094 1095 func (*AddMembershipOption) isSettableSocketOption() {} 1096 1097 // RemoveMembershipOption identifies a multicast group to leave on some 1098 // interface. 1099 type RemoveMembershipOption MembershipOption 1100 1101 func (*RemoveMembershipOption) isSettableSocketOption() {} 1102 1103 // SocketDetachFilterOption is used by SetSockOpt to detach a previously attached 1104 // classic BPF filter on a given endpoint. 1105 type SocketDetachFilterOption int 1106 1107 func (*SocketDetachFilterOption) isSettableSocketOption() {} 1108 1109 // OriginalDestinationOption is used to get the original destination address 1110 // and port of a redirected packet. 1111 type OriginalDestinationOption FullAddress 1112 1113 func (*OriginalDestinationOption) isGettableSocketOption() {} 1114 1115 // TCPTimeWaitReuseOption is used stack.(*Stack).TransportProtocolOption to 1116 // specify if the stack can reuse the port bound by an endpoint in TIME-WAIT for 1117 // new connections when it is safe from protocol viewpoint. 1118 type TCPTimeWaitReuseOption uint8 1119 1120 func (*TCPTimeWaitReuseOption) isGettableSocketOption() {} 1121 1122 func (*TCPTimeWaitReuseOption) isSettableSocketOption() {} 1123 1124 func (*TCPTimeWaitReuseOption) isGettableTransportProtocolOption() {} 1125 1126 func (*TCPTimeWaitReuseOption) isSettableTransportProtocolOption() {} 1127 1128 const ( 1129 // TCPTimeWaitReuseDisabled indicates reuse of port bound by endponts in TIME-WAIT cannot 1130 // be reused for new connections. 1131 TCPTimeWaitReuseDisabled TCPTimeWaitReuseOption = iota 1132 1133 // TCPTimeWaitReuseGlobal indicates reuse of port bound by endponts in TIME-WAIT can 1134 // be reused for new connections irrespective of the src/dest addresses. 1135 TCPTimeWaitReuseGlobal 1136 1137 // TCPTimeWaitReuseLoopbackOnly indicates reuse of port bound by endpoint in TIME-WAIT can 1138 // only be reused if the connection was a connection over loopback. i.e src/dest adddresses 1139 // are loopback addresses. 1140 TCPTimeWaitReuseLoopbackOnly 1141 ) 1142 1143 // LingerOption is used by SetSockOpt/GetSockOpt to set/get the 1144 // duration for which a socket lingers before returning from Close. 1145 // 1146 // +marshal 1147 // +stateify savable 1148 type LingerOption struct { 1149 Enabled bool 1150 Timeout time.Duration 1151 } 1152 1153 // IPPacketInfo is the message structure for IP_PKTINFO. 1154 // 1155 // +stateify savable 1156 type IPPacketInfo struct { 1157 // NIC is the ID of the NIC to be used. 1158 NIC NICID 1159 1160 // LocalAddr is the local address. 1161 LocalAddr Address 1162 1163 // DestinationAddr is the destination address found in the IP header. 1164 DestinationAddr Address 1165 } 1166 1167 // SendBufferSizeOption is used by stack.(Stack*).Option/SetOption to 1168 // get/set the default, min and max send buffer sizes. 1169 type SendBufferSizeOption struct { 1170 // Min is the minimum size for send buffer. 1171 Min int 1172 1173 // Default is the default size for send buffer. 1174 Default int 1175 1176 // Max is the maximum size for send buffer. 1177 Max int 1178 } 1179 1180 // ReceiveBufferSizeOption is used by stack.(Stack*).Option/SetOption to 1181 // get/set the default, min and max receive buffer sizes. 1182 type ReceiveBufferSizeOption struct { 1183 // Min is the minimum size for send buffer. 1184 Min int 1185 1186 // Default is the default size for send buffer. 1187 Default int 1188 1189 // Max is the maximum size for send buffer. 1190 Max int 1191 } 1192 1193 // GetSendBufferLimits is used to get the send buffer size limits. 1194 type GetSendBufferLimits func(StackHandler) SendBufferSizeOption 1195 1196 // GetStackSendBufferLimits is used to get default, min and max send buffer size. 1197 func GetStackSendBufferLimits(so StackHandler) SendBufferSizeOption { 1198 var ss SendBufferSizeOption 1199 if err := so.Option(&ss); err != nil { 1200 panic(fmt.Sprintf("s.Option(%#v) = %s", ss, err)) 1201 } 1202 return ss 1203 } 1204 1205 // GetReceiveBufferLimits is used to get the send buffer size limits. 1206 type GetReceiveBufferLimits func(StackHandler) ReceiveBufferSizeOption 1207 1208 // GetStackReceiveBufferLimits is used to get default, min and max send buffer size. 1209 func GetStackReceiveBufferLimits(so StackHandler) ReceiveBufferSizeOption { 1210 var ss ReceiveBufferSizeOption 1211 if err := so.Option(&ss); err != nil { 1212 panic(fmt.Sprintf("s.Option(%#v) = %s", ss, err)) 1213 } 1214 return ss 1215 } 1216 1217 // Route is a row in the routing table. It specifies through which NIC (and 1218 // gateway) sets of packets should be routed. A row is considered viable if the 1219 // masked target address matches the destination address in the row. 1220 type Route struct { 1221 // Destination must contain the target address for this row to be viable. 1222 Destination Subnet 1223 1224 // Gateway is the gateway to be used if this row is viable. 1225 Gateway Address 1226 1227 // NIC is the id of the nic to be used if this row is viable. 1228 NIC NICID 1229 } 1230 1231 // String implements the fmt.Stringer interface. 1232 func (r Route) String() string { 1233 var out strings.Builder 1234 fmt.Fprintf(&out, "%s", r.Destination) 1235 if len(r.Gateway) > 0 { 1236 fmt.Fprintf(&out, " via %s", r.Gateway) 1237 } 1238 fmt.Fprintf(&out, " nic %d", r.NIC) 1239 return out.String() 1240 } 1241 1242 // Equal returns true if the given Route is equal to this Route. 1243 func (r Route) Equal(to Route) bool { 1244 // NOTE: This relies on the fact that r.Destination == to.Destination 1245 return r == to 1246 } 1247 1248 // TransportProtocolNumber is the number of a transport protocol. 1249 type TransportProtocolNumber uint32 1250 1251 // NetworkProtocolNumber is the EtherType of a network protocol in an Ethernet 1252 // frame. 1253 // 1254 // See: https://www.iana.org/assignments/ieee-802-numbers/ieee-802-numbers.xhtml 1255 type NetworkProtocolNumber uint32 1256 1257 // A StatCounter keeps track of a statistic. 1258 type StatCounter struct { 1259 count atomicbitops.AlignedAtomicUint64 1260 } 1261 1262 // Increment adds one to the counter. 1263 func (s *StatCounter) Increment() { 1264 s.IncrementBy(1) 1265 } 1266 1267 // Decrement minuses one to the counter. 1268 func (s *StatCounter) Decrement() { 1269 s.IncrementBy(^uint64(0)) 1270 } 1271 1272 // Value returns the current value of the counter. 1273 func (s *StatCounter) Value(name ...string) uint64 { 1274 return s.count.Load() 1275 } 1276 1277 // IncrementBy increments the counter by v. 1278 func (s *StatCounter) IncrementBy(v uint64) { 1279 s.count.Add(v) 1280 } 1281 1282 func (s *StatCounter) String() string { 1283 return strconv.FormatUint(s.Value(), 10) 1284 } 1285 1286 // A MultiCounterStat keeps track of two counters at once. 1287 type MultiCounterStat struct { 1288 a, b *StatCounter 1289 } 1290 1291 // Init sets both internal counters to point to a and b. 1292 func (m *MultiCounterStat) Init(a, b *StatCounter) { 1293 m.a = a 1294 m.b = b 1295 } 1296 1297 // Increment adds one to the counters. 1298 func (m *MultiCounterStat) Increment() { 1299 m.a.Increment() 1300 m.b.Increment() 1301 } 1302 1303 // IncrementBy increments the counters by v. 1304 func (m *MultiCounterStat) IncrementBy(v uint64) { 1305 m.a.IncrementBy(v) 1306 m.b.IncrementBy(v) 1307 } 1308 1309 // ICMPv4PacketStats enumerates counts for all ICMPv4 packet types. 1310 type ICMPv4PacketStats struct { 1311 // LINT.IfChange(ICMPv4PacketStats) 1312 1313 // EchoRequest is the number of ICMPv4 echo packets counted. 1314 EchoRequest *StatCounter 1315 1316 // EchoReply is the number of ICMPv4 echo reply packets counted. 1317 EchoReply *StatCounter 1318 1319 // DstUnreachable is the number of ICMPv4 destination unreachable packets 1320 // counted. 1321 DstUnreachable *StatCounter 1322 1323 // SrcQuench is the number of ICMPv4 source quench packets counted. 1324 SrcQuench *StatCounter 1325 1326 // Redirect is the number of ICMPv4 redirect packets counted. 1327 Redirect *StatCounter 1328 1329 // TimeExceeded is the number of ICMPv4 time exceeded packets counted. 1330 TimeExceeded *StatCounter 1331 1332 // ParamProblem is the number of ICMPv4 parameter problem packets counted. 1333 ParamProblem *StatCounter 1334 1335 // Timestamp is the number of ICMPv4 timestamp packets counted. 1336 Timestamp *StatCounter 1337 1338 // TimestampReply is the number of ICMPv4 timestamp reply packets counted. 1339 TimestampReply *StatCounter 1340 1341 // InfoRequest is the number of ICMPv4 information request packets counted. 1342 InfoRequest *StatCounter 1343 1344 // InfoReply is the number of ICMPv4 information reply packets counted. 1345 InfoReply *StatCounter 1346 1347 // LINT.ThenChange(network/ipv4/stats.go:multiCounterICMPv4PacketStats) 1348 } 1349 1350 // ICMPv4SentPacketStats collects outbound ICMPv4-specific stats. 1351 type ICMPv4SentPacketStats struct { 1352 // LINT.IfChange(ICMPv4SentPacketStats) 1353 1354 ICMPv4PacketStats 1355 1356 // Dropped is the number of ICMPv4 packets dropped due to link layer errors. 1357 Dropped *StatCounter 1358 1359 // RateLimited is the number of ICMPv4 packets dropped due to rate limit being 1360 // exceeded. 1361 RateLimited *StatCounter 1362 1363 // LINT.ThenChange(network/ipv4/stats.go:multiCounterICMPv4SentPacketStats) 1364 } 1365 1366 // ICMPv4ReceivedPacketStats collects inbound ICMPv4-specific stats. 1367 type ICMPv4ReceivedPacketStats struct { 1368 // LINT.IfChange(ICMPv4ReceivedPacketStats) 1369 1370 ICMPv4PacketStats 1371 1372 // Invalid is the number of invalid ICMPv4 packets received. 1373 Invalid *StatCounter 1374 1375 // LINT.ThenChange(network/ipv4/stats.go:multiCounterICMPv4ReceivedPacketStats) 1376 } 1377 1378 // ICMPv4Stats collects ICMPv4-specific stats. 1379 type ICMPv4Stats struct { 1380 // LINT.IfChange(ICMPv4Stats) 1381 1382 // PacketsSent contains statistics about sent packets. 1383 PacketsSent ICMPv4SentPacketStats 1384 1385 // PacketsReceived contains statistics about received packets. 1386 PacketsReceived ICMPv4ReceivedPacketStats 1387 1388 // LINT.ThenChange(network/ipv4/stats.go:multiCounterICMPv4Stats) 1389 } 1390 1391 // ICMPv6PacketStats enumerates counts for all ICMPv6 packet types. 1392 type ICMPv6PacketStats struct { 1393 // LINT.IfChange(ICMPv6PacketStats) 1394 1395 // EchoRequest is the number of ICMPv6 echo request packets counted. 1396 EchoRequest *StatCounter 1397 1398 // EchoReply is the number of ICMPv6 echo reply packets counted. 1399 EchoReply *StatCounter 1400 1401 // DstUnreachable is the number of ICMPv6 destination unreachable packets 1402 // counted. 1403 DstUnreachable *StatCounter 1404 1405 // PacketTooBig is the number of ICMPv6 packet too big packets counted. 1406 PacketTooBig *StatCounter 1407 1408 // TimeExceeded is the number of ICMPv6 time exceeded packets counted. 1409 TimeExceeded *StatCounter 1410 1411 // ParamProblem is the number of ICMPv6 parameter problem packets counted. 1412 ParamProblem *StatCounter 1413 1414 // RouterSolicit is the number of ICMPv6 router solicit packets counted. 1415 RouterSolicit *StatCounter 1416 1417 // RouterAdvert is the number of ICMPv6 router advert packets counted. 1418 RouterAdvert *StatCounter 1419 1420 // NeighborSolicit is the number of ICMPv6 neighbor solicit packets counted. 1421 NeighborSolicit *StatCounter 1422 1423 // NeighborAdvert is the number of ICMPv6 neighbor advert packets counted. 1424 NeighborAdvert *StatCounter 1425 1426 // RedirectMsg is the number of ICMPv6 redirect message packets counted. 1427 RedirectMsg *StatCounter 1428 1429 // MulticastListenerQuery is the number of Multicast Listener Query messages 1430 // counted. 1431 MulticastListenerQuery *StatCounter 1432 1433 // MulticastListenerReport is the number of Multicast Listener Report messages 1434 // counted. 1435 MulticastListenerReport *StatCounter 1436 1437 // MulticastListenerDone is the number of Multicast Listener Done messages 1438 // counted. 1439 MulticastListenerDone *StatCounter 1440 1441 // LINT.ThenChange(network/ipv6/stats.go:multiCounterICMPv6PacketStats) 1442 } 1443 1444 // ICMPv6SentPacketStats collects outbound ICMPv6-specific stats. 1445 type ICMPv6SentPacketStats struct { 1446 // LINT.IfChange(ICMPv6SentPacketStats) 1447 1448 ICMPv6PacketStats 1449 1450 // Dropped is the number of ICMPv6 packets dropped due to link layer errors. 1451 Dropped *StatCounter 1452 1453 // RateLimited is the number of ICMPv6 packets dropped due to rate limit being 1454 // exceeded. 1455 RateLimited *StatCounter 1456 1457 // LINT.ThenChange(network/ipv6/stats.go:multiCounterICMPv6SentPacketStats) 1458 } 1459 1460 // ICMPv6ReceivedPacketStats collects inbound ICMPv6-specific stats. 1461 type ICMPv6ReceivedPacketStats struct { 1462 // LINT.IfChange(ICMPv6ReceivedPacketStats) 1463 1464 ICMPv6PacketStats 1465 1466 // Unrecognized is the number of ICMPv6 packets received that the transport 1467 // layer does not know how to parse. 1468 Unrecognized *StatCounter 1469 1470 // Invalid is the number of invalid ICMPv6 packets received. 1471 Invalid *StatCounter 1472 1473 // RouterOnlyPacketsDroppedByHost is the number of ICMPv6 packets dropped due 1474 // to being router-specific packets. 1475 RouterOnlyPacketsDroppedByHost *StatCounter 1476 1477 // LINT.ThenChange(network/ipv6/stats.go:multiCounterICMPv6ReceivedPacketStats) 1478 } 1479 1480 // ICMPv6Stats collects ICMPv6-specific stats. 1481 type ICMPv6Stats struct { 1482 // LINT.IfChange(ICMPv6Stats) 1483 1484 // PacketsSent contains statistics about sent packets. 1485 PacketsSent ICMPv6SentPacketStats 1486 1487 // PacketsReceived contains statistics about received packets. 1488 PacketsReceived ICMPv6ReceivedPacketStats 1489 1490 // LINT.ThenChange(network/ipv6/stats.go:multiCounterICMPv6Stats) 1491 } 1492 1493 // ICMPStats collects ICMP-specific stats (both v4 and v6). 1494 type ICMPStats struct { 1495 // V4 contains the ICMPv4-specifics stats. 1496 V4 ICMPv4Stats 1497 1498 // V6 contains the ICMPv4-specifics stats. 1499 V6 ICMPv6Stats 1500 } 1501 1502 // IGMPPacketStats enumerates counts for all IGMP packet types. 1503 type IGMPPacketStats struct { 1504 // LINT.IfChange(IGMPPacketStats) 1505 1506 // MembershipQuery is the number of Membership Query messages counted. 1507 MembershipQuery *StatCounter 1508 1509 // V1MembershipReport is the number of Version 1 Membership Report messages 1510 // counted. 1511 V1MembershipReport *StatCounter 1512 1513 // V2MembershipReport is the number of Version 2 Membership Report messages 1514 // counted. 1515 V2MembershipReport *StatCounter 1516 1517 // LeaveGroup is the number of Leave Group messages counted. 1518 LeaveGroup *StatCounter 1519 1520 // LINT.ThenChange(network/ipv4/stats.go:multiCounterIGMPPacketStats) 1521 } 1522 1523 // IGMPSentPacketStats collects outbound IGMP-specific stats. 1524 type IGMPSentPacketStats struct { 1525 // LINT.IfChange(IGMPSentPacketStats) 1526 1527 IGMPPacketStats 1528 1529 // Dropped is the number of IGMP packets dropped. 1530 Dropped *StatCounter 1531 1532 // LINT.ThenChange(network/ipv4/stats.go:multiCounterIGMPSentPacketStats) 1533 } 1534 1535 // IGMPReceivedPacketStats collects inbound IGMP-specific stats. 1536 type IGMPReceivedPacketStats struct { 1537 // LINT.IfChange(IGMPReceivedPacketStats) 1538 1539 IGMPPacketStats 1540 1541 // Invalid is the number of invalid IGMP packets received. 1542 Invalid *StatCounter 1543 1544 // ChecksumErrors is the number of IGMP packets dropped due to bad checksums. 1545 ChecksumErrors *StatCounter 1546 1547 // Unrecognized is the number of unrecognized messages counted, these are 1548 // silently ignored for forward-compatibilty. 1549 Unrecognized *StatCounter 1550 1551 // LINT.ThenChange(network/ipv4/stats.go:multiCounterIGMPReceivedPacketStats) 1552 } 1553 1554 // IGMPStats collects IGMP-specific stats. 1555 type IGMPStats struct { 1556 // LINT.IfChange(IGMPStats) 1557 1558 // PacketsSent contains statistics about sent packets. 1559 PacketsSent IGMPSentPacketStats 1560 1561 // PacketsReceived contains statistics about received packets. 1562 PacketsReceived IGMPReceivedPacketStats 1563 1564 // LINT.ThenChange(network/ipv4/stats.go:multiCounterIGMPStats) 1565 } 1566 1567 // IPForwardingStats collects stats related to IP forwarding (both v4 and v6). 1568 type IPForwardingStats struct { 1569 // LINT.IfChange(IPForwardingStats) 1570 1571 // Unrouteable is the number of IP packets received which were dropped 1572 // because a route to their destination could not be constructed. 1573 Unrouteable *StatCounter 1574 1575 // ExhaustedTTL is the number of IP packets received which were dropped 1576 // because their TTL was exhausted. 1577 ExhaustedTTL *StatCounter 1578 1579 // LinkLocalSource is the number of IP packets which were dropped 1580 // because they contained a link-local source address. 1581 LinkLocalSource *StatCounter 1582 1583 // LinkLocalDestination is the number of IP packets which were dropped 1584 // because they contained a link-local destination address. 1585 LinkLocalDestination *StatCounter 1586 1587 // PacketTooBig is the number of IP packets which were dropped because they 1588 // were too big for the outgoing MTU. 1589 PacketTooBig *StatCounter 1590 1591 // HostUnreachable is the number of IP packets received which could not be 1592 // successfully forwarded due to an unresolvable next hop. 1593 HostUnreachable *StatCounter 1594 1595 // ExtensionHeaderProblem is the number of IP packets which were dropped 1596 // because of a problem encountered when processing an IPv6 extension 1597 // header. 1598 ExtensionHeaderProblem *StatCounter 1599 1600 // Errors is the number of IP packets received which could not be 1601 // successfully forwarded. 1602 Errors *StatCounter 1603 1604 // LINT.ThenChange(network/internal/ip/stats.go:multiCounterIPForwardingStats) 1605 } 1606 1607 // IPStats collects IP-specific stats (both v4 and v6). 1608 type IPStats struct { 1609 // LINT.IfChange(IPStats) 1610 1611 // PacketsReceived is the number of IP packets received from the link layer. 1612 PacketsReceived *StatCounter 1613 1614 // ValidPacketsReceived is the number of valid IP packets that reached the IP 1615 // layer. 1616 ValidPacketsReceived *StatCounter 1617 1618 // DisabledPacketsReceived is the number of IP packets received from the link 1619 // layer when the IP layer is disabled. 1620 DisabledPacketsReceived *StatCounter 1621 1622 // InvalidDestinationAddressesReceived is the number of IP packets received 1623 // with an unknown or invalid destination address. 1624 InvalidDestinationAddressesReceived *StatCounter 1625 1626 // InvalidSourceAddressesReceived is the number of IP packets received with a 1627 // source address that should never have been received on the wire. 1628 InvalidSourceAddressesReceived *StatCounter 1629 1630 // PacketsDelivered is the number of incoming IP packets that are successfully 1631 // delivered to the transport layer. 1632 PacketsDelivered *StatCounter 1633 1634 // PacketsSent is the number of IP packets sent via WritePacket. 1635 PacketsSent *StatCounter 1636 1637 // OutgoingPacketErrors is the number of IP packets which failed to write to a 1638 // link-layer endpoint. 1639 OutgoingPacketErrors *StatCounter 1640 1641 // MalformedPacketsReceived is the number of IP Packets that were dropped due 1642 // to the IP packet header failing validation checks. 1643 MalformedPacketsReceived *StatCounter 1644 1645 // MalformedFragmentsReceived is the number of IP Fragments that were dropped 1646 // due to the fragment failing validation checks. 1647 MalformedFragmentsReceived *StatCounter 1648 1649 // IPTablesPreroutingDropped is the number of IP packets dropped in the 1650 // Prerouting chain. 1651 IPTablesPreroutingDropped *StatCounter 1652 1653 // IPTablesInputDropped is the number of IP packets dropped in the Input 1654 // chain. 1655 IPTablesInputDropped *StatCounter 1656 1657 // IPTablesForwardDropped is the number of IP packets dropped in the Forward 1658 // chain. 1659 IPTablesForwardDropped *StatCounter 1660 1661 // IPTablesOutputDropped is the number of IP packets dropped in the Output 1662 // chain. 1663 IPTablesOutputDropped *StatCounter 1664 1665 // IPTablesPostroutingDropped is the number of IP packets dropped in the 1666 // Postrouting chain. 1667 IPTablesPostroutingDropped *StatCounter 1668 1669 // TODO(https://github.com/SagerNet/issues/5529): Move the IPv4-only option stats out 1670 // of IPStats. 1671 // OptionTimestampReceived is the number of Timestamp options seen. 1672 OptionTimestampReceived *StatCounter 1673 1674 // OptionRecordRouteReceived is the number of Record Route options seen. 1675 OptionRecordRouteReceived *StatCounter 1676 1677 // OptionRouterAlertReceived is the number of Router Alert options seen. 1678 OptionRouterAlertReceived *StatCounter 1679 1680 // OptionUnknownReceived is the number of unknown IP options seen. 1681 OptionUnknownReceived *StatCounter 1682 1683 // Forwarding collects stats related to IP forwarding. 1684 Forwarding IPForwardingStats 1685 1686 // LINT.ThenChange(network/internal/ip/stats.go:MultiCounterIPStats) 1687 } 1688 1689 // ARPStats collects ARP-specific stats. 1690 type ARPStats struct { 1691 // LINT.IfChange(ARPStats) 1692 1693 // PacketsReceived is the number of ARP packets received from the link layer. 1694 PacketsReceived *StatCounter 1695 1696 // DisabledPacketsReceived is the number of ARP packets received from the link 1697 // layer when the ARP layer is disabled. 1698 DisabledPacketsReceived *StatCounter 1699 1700 // MalformedPacketsReceived is the number of ARP packets that were dropped due 1701 // to being malformed. 1702 MalformedPacketsReceived *StatCounter 1703 1704 // RequestsReceived is the number of ARP requests received. 1705 RequestsReceived *StatCounter 1706 1707 // RequestsReceivedUnknownTargetAddress is the number of ARP requests that 1708 // were targeted to an interface different from the one it was received on. 1709 RequestsReceivedUnknownTargetAddress *StatCounter 1710 1711 // OutgoingRequestInterfaceHasNoLocalAddressErrors is the number of failures 1712 // to send an ARP request because the interface has no network address 1713 // assigned to it. 1714 OutgoingRequestInterfaceHasNoLocalAddressErrors *StatCounter 1715 1716 // OutgoingRequestBadLocalAddressErrors is the number of failures to send an 1717 // ARP request with a bad local address. 1718 OutgoingRequestBadLocalAddressErrors *StatCounter 1719 1720 // OutgoingRequestsDropped is the number of ARP requests which failed to write 1721 // to a link-layer endpoint. 1722 OutgoingRequestsDropped *StatCounter 1723 1724 // OutgoingRequestSent is the number of ARP requests successfully written to a 1725 // link-layer endpoint. 1726 OutgoingRequestsSent *StatCounter 1727 1728 // RepliesReceived is the number of ARP replies received. 1729 RepliesReceived *StatCounter 1730 1731 // OutgoingRepliesDropped is the number of ARP replies which failed to write 1732 // to a link-layer endpoint. 1733 OutgoingRepliesDropped *StatCounter 1734 1735 // OutgoingRepliesSent is the number of ARP replies successfully written to a 1736 // link-layer endpoint. 1737 OutgoingRepliesSent *StatCounter 1738 1739 // LINT.ThenChange(network/arp/stats.go:multiCounterARPStats) 1740 } 1741 1742 // TCPStats collects TCP-specific stats. 1743 type TCPStats struct { 1744 // ActiveConnectionOpenings is the number of connections opened 1745 // successfully via Connect. 1746 ActiveConnectionOpenings *StatCounter 1747 1748 // PassiveConnectionOpenings is the number of connections opened 1749 // successfully via Listen. 1750 PassiveConnectionOpenings *StatCounter 1751 1752 // CurrentEstablished is the number of TCP connections for which the 1753 // current state is ESTABLISHED. 1754 CurrentEstablished *StatCounter 1755 1756 // CurrentConnected is the number of TCP connections that 1757 // are in connected state. 1758 CurrentConnected *StatCounter 1759 1760 // EstablishedResets is the number of times TCP connections have made 1761 // a direct transition to the CLOSED state from either the 1762 // ESTABLISHED state or the CLOSE-WAIT state. 1763 EstablishedResets *StatCounter 1764 1765 // EstablishedClosed is the number of times established TCP connections 1766 // made a transition to CLOSED state. 1767 EstablishedClosed *StatCounter 1768 1769 // EstablishedTimedout is the number of times an established connection 1770 // was reset because of keep-alive time out. 1771 EstablishedTimedout *StatCounter 1772 1773 // ListenOverflowSynDrop is the number of times the listen queue overflowed 1774 // and a SYN was dropped. 1775 ListenOverflowSynDrop *StatCounter 1776 1777 // ListenOverflowAckDrop is the number of times the final ACK 1778 // in the handshake was dropped due to overflow. 1779 ListenOverflowAckDrop *StatCounter 1780 1781 // ListenOverflowCookieSent is the number of times a SYN cookie was sent. 1782 ListenOverflowSynCookieSent *StatCounter 1783 1784 // ListenOverflowSynCookieRcvd is the number of times a valid SYN 1785 // cookie was received. 1786 ListenOverflowSynCookieRcvd *StatCounter 1787 1788 // ListenOverflowInvalidSynCookieRcvd is the number of times an invalid SYN cookie 1789 // was received. 1790 ListenOverflowInvalidSynCookieRcvd *StatCounter 1791 1792 // FailedConnectionAttempts is the number of calls to Connect or Listen 1793 // (active and passive openings, respectively) that end in an error. 1794 FailedConnectionAttempts *StatCounter 1795 1796 // ValidSegmentsReceived is the number of TCP segments received that 1797 // the transport layer successfully parsed. 1798 ValidSegmentsReceived *StatCounter 1799 1800 // InvalidSegmentsReceived is the number of TCP segments received that 1801 // the transport layer could not parse. 1802 InvalidSegmentsReceived *StatCounter 1803 1804 // SegmentsSent is the number of TCP segments sent. 1805 SegmentsSent *StatCounter 1806 1807 // SegmentSendErrors is the number of TCP segments failed to be sent. 1808 SegmentSendErrors *StatCounter 1809 1810 // ResetsSent is the number of TCP resets sent. 1811 ResetsSent *StatCounter 1812 1813 // ResetsReceived is the number of TCP resets received. 1814 ResetsReceived *StatCounter 1815 1816 // Retransmits is the number of TCP segments retransmitted. 1817 Retransmits *StatCounter 1818 1819 // FastRecovery is the number of times Fast Recovery was used to 1820 // recover from packet loss. 1821 FastRecovery *StatCounter 1822 1823 // SACKRecovery is the number of times SACK Recovery was used to 1824 // recover from packet loss. 1825 SACKRecovery *StatCounter 1826 1827 // TLPRecovery is the number of times recovery was accomplished by the tail 1828 // loss probe. 1829 TLPRecovery *StatCounter 1830 1831 // SlowStartRetransmits is the number of segments retransmitted in slow 1832 // start. 1833 SlowStartRetransmits *StatCounter 1834 1835 // FastRetransmit is the number of segments retransmitted in fast 1836 // recovery. 1837 FastRetransmit *StatCounter 1838 1839 // Timeouts is the number of times the RTO expired. 1840 Timeouts *StatCounter 1841 1842 // ChecksumErrors is the number of segments dropped due to bad checksums. 1843 ChecksumErrors *StatCounter 1844 1845 // FailedPortReservations is the number of times TCP failed to reserve 1846 // a port. 1847 FailedPortReservations *StatCounter 1848 } 1849 1850 // UDPStats collects UDP-specific stats. 1851 type UDPStats struct { 1852 // PacketsReceived is the number of UDP datagrams received via 1853 // HandlePacket. 1854 PacketsReceived *StatCounter 1855 1856 // UnknownPortErrors is the number of incoming UDP datagrams dropped 1857 // because they did not have a known destination port. 1858 UnknownPortErrors *StatCounter 1859 1860 // ReceiveBufferErrors is the number of incoming UDP datagrams dropped 1861 // due to the receiving buffer being in an invalid state. 1862 ReceiveBufferErrors *StatCounter 1863 1864 // MalformedPacketsReceived is the number of incoming UDP datagrams 1865 // dropped due to the UDP header being in a malformed state. 1866 MalformedPacketsReceived *StatCounter 1867 1868 // PacketsSent is the number of UDP datagrams sent via sendUDP. 1869 PacketsSent *StatCounter 1870 1871 // PacketSendErrors is the number of datagrams failed to be sent. 1872 PacketSendErrors *StatCounter 1873 1874 // ChecksumErrors is the number of datagrams dropped due to bad checksums. 1875 ChecksumErrors *StatCounter 1876 } 1877 1878 // NICNeighborStats holds metrics for the neighbor table. 1879 type NICNeighborStats struct { 1880 // LINT.IfChange(NICNeighborStats) 1881 1882 // UnreachableEntryLookups counts the number of lookups performed on an 1883 // entry in Unreachable state. 1884 UnreachableEntryLookups *StatCounter 1885 1886 // LINT.ThenChange(stack/nic_stats.go:multiCounterNICNeighborStats) 1887 } 1888 1889 // NICPacketStats holds basic packet statistics. 1890 type NICPacketStats struct { 1891 // LINT.IfChange(NICPacketStats) 1892 1893 // Packets is the number of packets counted. 1894 Packets *StatCounter 1895 1896 // Bytes is the number of bytes counted. 1897 Bytes *StatCounter 1898 1899 // LINT.ThenChange(stack/nic_stats.go:multiCounterNICPacketStats) 1900 } 1901 1902 // NICStats holds NIC statistics. 1903 type NICStats struct { 1904 // LINT.IfChange(NICStats) 1905 1906 // UnknownL3ProtocolRcvdPackets is the number of packets received that were 1907 // for an unknown or unsupported network protocol. 1908 UnknownL3ProtocolRcvdPackets *StatCounter 1909 1910 // UnknownL4ProtocolRcvdPackets is the number of packets received that were 1911 // for an unknown or unsupported transport protocol. 1912 UnknownL4ProtocolRcvdPackets *StatCounter 1913 1914 // MalformedL4RcvdPackets is the number of packets received by a NIC that 1915 // could not be delivered to a transport endpoint because the L4 header could 1916 // not be parsed. 1917 MalformedL4RcvdPackets *StatCounter 1918 1919 // Tx contains statistics about transmitted packets. 1920 Tx NICPacketStats 1921 1922 // Rx contains statistics about received packets. 1923 Rx NICPacketStats 1924 1925 // DisabledRx contains statistics about received packets on disabled NICs. 1926 DisabledRx NICPacketStats 1927 1928 // Neighbor contains statistics about neighbor entries. 1929 Neighbor NICNeighborStats 1930 1931 // LINT.ThenChange(stack/nic_stats.go:multiCounterNICStats) 1932 } 1933 1934 // FillIn returns a copy of s with nil fields initialized to new StatCounters. 1935 func (s NICStats) FillIn() NICStats { 1936 InitStatCounters(reflect.ValueOf(&s).Elem()) 1937 return s 1938 } 1939 1940 // Stats holds statistics about the networking stack. 1941 type Stats struct { 1942 // TODO(https://github.com/SagerNet/issues/5986): Make the DroppedPackets stat less 1943 // ambiguous. 1944 1945 // DroppedPackets is the number of packets dropped at the transport layer. 1946 DroppedPackets *StatCounter 1947 1948 // NICs is an aggregation of every NIC's statistics. These should not be 1949 // incremented using this field, but using the relevant NIC multicounters. 1950 NICs NICStats 1951 1952 // ICMP is an aggregation of every NetworkEndpoint's ICMP statistics (both v4 1953 // and v6). These should not be incremented using this field, but using the 1954 // relevant NetworkEndpoint ICMP multicounters. 1955 ICMP ICMPStats 1956 1957 // IGMP is an aggregation of every NetworkEndpoint's IGMP statistics. These 1958 // should not be incremented using this field, but using the relevant 1959 // NetworkEndpoint IGMP multicounters. 1960 IGMP IGMPStats 1961 1962 // IP is an aggregation of every NetworkEndpoint's IP statistics. These should 1963 // not be incremented using this field, but using the relevant NetworkEndpoint 1964 // IP multicounters. 1965 IP IPStats 1966 1967 // ARP is an aggregation of every NetworkEndpoint's ARP statistics. These 1968 // should not be incremented using this field, but using the relevant 1969 // NetworkEndpoint ARP multicounters. 1970 ARP ARPStats 1971 1972 // TCP holds TCP-specific stats. 1973 TCP TCPStats 1974 1975 // UDP holds UDP-specific stats. 1976 UDP UDPStats 1977 } 1978 1979 // ReceiveErrors collects packet receive errors within transport endpoint. 1980 type ReceiveErrors struct { 1981 // ReceiveBufferOverflow is the number of received packets dropped 1982 // due to the receive buffer being full. 1983 ReceiveBufferOverflow StatCounter 1984 1985 // MalformedPacketsReceived is the number of incoming packets 1986 // dropped due to the packet header being in a malformed state. 1987 MalformedPacketsReceived StatCounter 1988 1989 // ClosedReceiver is the number of received packets dropped because 1990 // of receiving endpoint state being closed. 1991 ClosedReceiver StatCounter 1992 1993 // ChecksumErrors is the number of packets dropped due to bad checksums. 1994 ChecksumErrors StatCounter 1995 } 1996 1997 // SendErrors collects packet send errors within the transport layer for 1998 // an endpoint. 1999 type SendErrors struct { 2000 // SendToNetworkFailed is the number of packets failed to be written to 2001 // the network endpoint. 2002 SendToNetworkFailed StatCounter 2003 2004 // NoRoute is the number of times we failed to resolve IP route. 2005 NoRoute StatCounter 2006 } 2007 2008 // ReadErrors collects segment read errors from an endpoint read call. 2009 type ReadErrors struct { 2010 // ReadClosed is the number of received packet drops because the endpoint 2011 // was shutdown for read. 2012 ReadClosed StatCounter 2013 2014 // InvalidEndpointState is the number of times we found the endpoint state 2015 // to be unexpected. 2016 InvalidEndpointState StatCounter 2017 2018 // NotConnected is the number of times we tried to read but found that the 2019 // endpoint was not connected. 2020 NotConnected StatCounter 2021 } 2022 2023 // WriteErrors collects packet write errors from an endpoint write call. 2024 type WriteErrors struct { 2025 // WriteClosed is the number of packet drops because the endpoint 2026 // was shutdown for write. 2027 WriteClosed StatCounter 2028 2029 // InvalidEndpointState is the number of times we found the endpoint state 2030 // to be unexpected. 2031 InvalidEndpointState StatCounter 2032 2033 // InvalidArgs is the number of times invalid input arguments were 2034 // provided for endpoint Write call. 2035 InvalidArgs StatCounter 2036 } 2037 2038 // TransportEndpointStats collects statistics about the endpoint. 2039 type TransportEndpointStats struct { 2040 // PacketsReceived is the number of successful packet receives. 2041 PacketsReceived StatCounter 2042 2043 // PacketsSent is the number of successful packet sends. 2044 PacketsSent StatCounter 2045 2046 // ReceiveErrors collects packet receive errors within transport layer. 2047 ReceiveErrors ReceiveErrors 2048 2049 // ReadErrors collects packet read errors from an endpoint read call. 2050 ReadErrors ReadErrors 2051 2052 // SendErrors collects packet send errors within the transport layer. 2053 SendErrors SendErrors 2054 2055 // WriteErrors collects packet write errors from an endpoint write call. 2056 WriteErrors WriteErrors 2057 } 2058 2059 // IsEndpointStats is an empty method to implement the tcpip.EndpointStats 2060 // marker interface. 2061 func (*TransportEndpointStats) IsEndpointStats() {} 2062 2063 // InitStatCounters initializes v's fields with nil StatCounter fields to new 2064 // StatCounters. 2065 func InitStatCounters(v reflect.Value) { 2066 for i := 0; i < v.NumField(); i++ { 2067 v := v.Field(i) 2068 if s, ok := v.Addr().Interface().(**StatCounter); ok { 2069 if *s == nil { 2070 *s = new(StatCounter) 2071 } 2072 } else { 2073 InitStatCounters(v) 2074 } 2075 } 2076 } 2077 2078 // FillIn returns a copy of s with nil fields initialized to new StatCounters. 2079 func (s Stats) FillIn() Stats { 2080 InitStatCounters(reflect.ValueOf(&s).Elem()) 2081 return s 2082 } 2083 2084 // Clone returns a copy of the TransportEndpointStats by atomically reading 2085 // each field. 2086 func (src *TransportEndpointStats) Clone() TransportEndpointStats { 2087 var dst TransportEndpointStats 2088 clone(reflect.ValueOf(&dst).Elem(), reflect.ValueOf(src).Elem()) 2089 return dst 2090 } 2091 2092 func clone(dst reflect.Value, src reflect.Value) { 2093 for i := 0; i < dst.NumField(); i++ { 2094 d := dst.Field(i) 2095 s := src.Field(i) 2096 if c, ok := s.Addr().Interface().(*StatCounter); ok { 2097 d.Addr().Interface().(*StatCounter).IncrementBy(c.Value()) 2098 } else { 2099 clone(d, s) 2100 } 2101 } 2102 } 2103 2104 // String implements the fmt.Stringer interface. 2105 func (a Address) String() string { 2106 switch len(a) { 2107 case 4: 2108 return fmt.Sprintf("%d.%d.%d.%d", int(a[0]), int(a[1]), int(a[2]), int(a[3])) 2109 case 16: 2110 // Find the longest subsequence of hexadecimal zeros. 2111 start, end := -1, -1 2112 for i := 0; i < len(a); i += 2 { 2113 j := i 2114 for j < len(a) && a[j] == 0 && a[j+1] == 0 { 2115 j += 2 2116 } 2117 if j > i+2 && j-i > end-start { 2118 start, end = i, j 2119 } 2120 } 2121 2122 var b strings.Builder 2123 for i := 0; i < len(a); i += 2 { 2124 if i == start { 2125 b.WriteString("::") 2126 i = end 2127 if end >= len(a) { 2128 break 2129 } 2130 } else if i > 0 { 2131 b.WriteByte(':') 2132 } 2133 v := uint16(a[i+0])<<8 | uint16(a[i+1]) 2134 if v == 0 { 2135 b.WriteByte('0') 2136 } else { 2137 const digits = "0123456789abcdef" 2138 for i := uint(3); i < 4; i-- { 2139 if v := v >> (i * 4); v != 0 { 2140 b.WriteByte(digits[v&0xf]) 2141 } 2142 } 2143 } 2144 } 2145 return b.String() 2146 default: 2147 return fmt.Sprintf("%x", []byte(a)) 2148 } 2149 } 2150 2151 // To4 converts the IPv4 address to a 4-byte representation. 2152 // If the address is not an IPv4 address, To4 returns "". 2153 func (a Address) To4() Address { 2154 const ( 2155 ipv4len = 4 2156 ipv6len = 16 2157 ) 2158 if len(a) == ipv4len { 2159 return a 2160 } 2161 if len(a) == ipv6len && 2162 isZeros(a[0:10]) && 2163 a[10] == 0xff && 2164 a[11] == 0xff { 2165 return a[12:16] 2166 } 2167 return "" 2168 } 2169 2170 // isZeros reports whether a is all zeros. 2171 func isZeros(a Address) bool { 2172 for i := 0; i < len(a); i++ { 2173 if a[i] != 0 { 2174 return false 2175 } 2176 } 2177 return true 2178 } 2179 2180 // LinkAddress is a byte slice cast as a string that represents a link address. 2181 // It is typically a 6-byte MAC address. 2182 type LinkAddress string 2183 2184 // String implements the fmt.Stringer interface. 2185 func (a LinkAddress) String() string { 2186 switch len(a) { 2187 case 6: 2188 return fmt.Sprintf("%02x:%02x:%02x:%02x:%02x:%02x", a[0], a[1], a[2], a[3], a[4], a[5]) 2189 default: 2190 return fmt.Sprintf("%x", []byte(a)) 2191 } 2192 } 2193 2194 // ParseMACAddress parses an IEEE 802 address. 2195 // 2196 // It must be in the format aa:bb:cc:dd:ee:ff or aa-bb-cc-dd-ee-ff. 2197 func ParseMACAddress(s string) (LinkAddress, error) { 2198 parts := strings.FieldsFunc(s, func(c rune) bool { 2199 return c == ':' || c == '-' 2200 }) 2201 if len(parts) != 6 { 2202 return "", fmt.Errorf("inconsistent parts: %s", s) 2203 } 2204 addr := make([]byte, 0, len(parts)) 2205 for _, part := range parts { 2206 u, err := strconv.ParseUint(part, 16, 8) 2207 if err != nil { 2208 return "", fmt.Errorf("invalid hex digits: %s", s) 2209 } 2210 addr = append(addr, byte(u)) 2211 } 2212 return LinkAddress(addr), nil 2213 } 2214 2215 // AddressWithPrefix is an address with its subnet prefix length. 2216 type AddressWithPrefix struct { 2217 // Address is a network address. 2218 Address Address 2219 2220 // PrefixLen is the subnet prefix length. 2221 PrefixLen int 2222 } 2223 2224 // String implements the fmt.Stringer interface. 2225 func (a AddressWithPrefix) String() string { 2226 return fmt.Sprintf("%s/%d", a.Address, a.PrefixLen) 2227 } 2228 2229 // Subnet converts the address and prefix into a Subnet value and returns it. 2230 func (a AddressWithPrefix) Subnet() Subnet { 2231 addrLen := len(a.Address) 2232 if a.PrefixLen <= 0 { 2233 return Subnet{ 2234 address: Address(strings.Repeat("\x00", addrLen)), 2235 mask: AddressMask(strings.Repeat("\x00", addrLen)), 2236 } 2237 } 2238 if a.PrefixLen >= addrLen*8 { 2239 return Subnet{ 2240 address: a.Address, 2241 mask: AddressMask(strings.Repeat("\xff", addrLen)), 2242 } 2243 } 2244 2245 sa := make([]byte, addrLen) 2246 sm := make([]byte, addrLen) 2247 n := uint(a.PrefixLen) 2248 for i := 0; i < addrLen; i++ { 2249 if n >= 8 { 2250 sa[i] = a.Address[i] 2251 sm[i] = 0xff 2252 n -= 8 2253 continue 2254 } 2255 sm[i] = ^byte(0xff >> n) 2256 sa[i] = a.Address[i] & sm[i] 2257 n = 0 2258 } 2259 2260 // For extra caution, call NewSubnet rather than directly creating the Subnet 2261 // value. If that fails it indicates a serious bug in this code, so panic is 2262 // in order. 2263 s, err := NewSubnet(Address(sa), AddressMask(sm)) 2264 if err != nil { 2265 panic("invalid subnet: " + err.Error()) 2266 } 2267 return s 2268 } 2269 2270 // ProtocolAddress is an address and the network protocol it is associated 2271 // with. 2272 type ProtocolAddress struct { 2273 // Protocol is the protocol of the address. 2274 Protocol NetworkProtocolNumber 2275 2276 // AddressWithPrefix is a network address with its subnet prefix length. 2277 AddressWithPrefix AddressWithPrefix 2278 } 2279 2280 var ( 2281 // danglingEndpointsMu protects access to danglingEndpoints. 2282 danglingEndpointsMu sync.Mutex 2283 2284 // danglingEndpoints tracks all dangling endpoints no longer owned by the app. 2285 danglingEndpoints = make(map[Endpoint]struct{}) 2286 ) 2287 2288 // GetDanglingEndpoints returns all dangling endpoints. 2289 func GetDanglingEndpoints() []Endpoint { 2290 danglingEndpointsMu.Lock() 2291 es := make([]Endpoint, 0, len(danglingEndpoints)) 2292 for e := range danglingEndpoints { 2293 es = append(es, e) 2294 } 2295 danglingEndpointsMu.Unlock() 2296 return es 2297 } 2298 2299 // AddDanglingEndpoint adds a dangling endpoint. 2300 func AddDanglingEndpoint(e Endpoint) { 2301 danglingEndpointsMu.Lock() 2302 danglingEndpoints[e] = struct{}{} 2303 danglingEndpointsMu.Unlock() 2304 } 2305 2306 // DeleteDanglingEndpoint removes a dangling endpoint. 2307 func DeleteDanglingEndpoint(e Endpoint) { 2308 danglingEndpointsMu.Lock() 2309 delete(danglingEndpoints, e) 2310 danglingEndpointsMu.Unlock() 2311 } 2312 2313 // AsyncLoading is the global barrier for asynchronous endpoint loading 2314 // activities. 2315 var AsyncLoading sync.WaitGroup