github.com/SagerNet/gvisor@v0.0.0-20210707092255-7731c139d75c/pkg/tcpip/transport/tcp/rack.go (about)

     1  // Copyright 2020 The gVisor Authors.
     2  //
     3  // Licensed under the Apache License, Version 2.0 (the "License");
     4  // you may not use this file except in compliance with the License.
     5  // You may obtain a copy of the License at
     6  //
     7  //     http://www.apache.org/licenses/LICENSE-2.0
     8  //
     9  // Unless required by applicable law or agreed to in writing, software
    10  // distributed under the License is distributed on an "AS IS" BASIS,
    11  // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    12  // See the License for the specific language governing permissions and
    13  // limitations under the License.
    14  
    15  package tcp
    16  
    17  import (
    18  	"time"
    19  
    20  	"github.com/SagerNet/gvisor/pkg/tcpip"
    21  	"github.com/SagerNet/gvisor/pkg/tcpip/seqnum"
    22  	"github.com/SagerNet/gvisor/pkg/tcpip/stack"
    23  )
    24  
    25  const (
    26  	// wcDelayedACKTimeout is the recommended maximum delayed ACK timer
    27  	// value as defined in the RFC. It stands for worst case delayed ACK
    28  	// timer (WCDelAckT). When FlightSize is 1, PTO is inflated by
    29  	// WCDelAckT time to compensate for a potential long delayed ACK timer
    30  	// at the receiver.
    31  	// See: https://tools.ietf.org/html/draft-ietf-tcpm-rack-08#section-7.5.
    32  	wcDelayedACKTimeout = 200 * time.Millisecond
    33  
    34  	// tcpRACKRecoveryThreshold is the number of loss recoveries for which
    35  	// the reorder window is inflated and after that the reorder window is
    36  	// reset to its initial value of minRTT/4.
    37  	// See: https://tools.ietf.org/html/draft-ietf-tcpm-rack-08#section-7.2.
    38  	tcpRACKRecoveryThreshold = 16
    39  )
    40  
    41  // RACK is a loss detection algorithm used in TCP to detect packet loss and
    42  // reordering using transmission timestamp of the packets instead of packet or
    43  // sequence counts. To use RACK, SACK should be enabled on the connection.
    44  
    45  // rackControl stores the rack related fields.
    46  // See: https://tools.ietf.org/html/draft-ietf-tcpm-rack-08#section-6.1
    47  //
    48  // +stateify savable
    49  type rackControl struct {
    50  	stack.TCPRACKState
    51  
    52  	// exitedRecovery indicates if the connection is exiting loss recovery.
    53  	// This flag is set if the sender is leaving the recovery after
    54  	// receiving an ACK and is reset during updating of reorder window.
    55  	exitedRecovery bool
    56  
    57  	// minRTT is the estimated minimum RTT of the connection.
    58  	minRTT time.Duration
    59  
    60  	// tlpRxtOut indicates whether there is an unacknowledged
    61  	// TLP retransmission.
    62  	tlpRxtOut bool
    63  
    64  	// tlpHighRxt the value of sender.sndNxt at the time of sending
    65  	// a TLP retransmission.
    66  	tlpHighRxt seqnum.Value
    67  
    68  	// snd is a reference to the sender.
    69  	snd *sender
    70  }
    71  
    72  // init initializes RACK specific fields.
    73  func (rc *rackControl) init(snd *sender, iss seqnum.Value) {
    74  	rc.FACK = iss
    75  	rc.ReoWndIncr = 1
    76  	rc.snd = snd
    77  }
    78  
    79  // update will update the RACK related fields when an ACK has been received.
    80  // See: https://tools.ietf.org/html/draft-ietf-tcpm-rack-09#section-6.2
    81  func (rc *rackControl) update(seg *segment, ackSeg *segment) {
    82  	rtt := rc.snd.ep.stack.Clock().NowMonotonic().Sub(seg.xmitTime)
    83  	tsOffset := rc.snd.ep.TSOffset
    84  
    85  	// If the ACK is for a retransmitted packet, do not update if it is a
    86  	// spurious inference which is determined by below checks:
    87  	// 1. When Timestamping option is available, if the TSVal is less than
    88  	// the transmit time of the most recent retransmitted packet.
    89  	// 2. When RTT calculated for the packet is less than the smoothed RTT
    90  	// for the connection.
    91  	// See: https://tools.ietf.org/html/draft-ietf-tcpm-rack-08#section-7.2
    92  	// step 2
    93  	if seg.xmitCount > 1 {
    94  		if ackSeg.parsedOptions.TS && ackSeg.parsedOptions.TSEcr != 0 {
    95  			if ackSeg.parsedOptions.TSEcr < tcpTimeStamp(seg.xmitTime, tsOffset) {
    96  				return
    97  			}
    98  		}
    99  		if rtt < rc.minRTT {
   100  			return
   101  		}
   102  	}
   103  
   104  	rc.RTT = rtt
   105  
   106  	// The sender can either track a simple global minimum of all RTT
   107  	// measurements from the connection, or a windowed min-filtered value
   108  	// of recent RTT measurements. This implementation keeps track of the
   109  	// simple global minimum of all RTTs for the connection.
   110  	if rtt < rc.minRTT || rc.minRTT == 0 {
   111  		rc.minRTT = rtt
   112  	}
   113  
   114  	// Update rc.xmitTime and rc.endSequence to the transmit time and
   115  	// ending sequence number of the packet which has been acknowledged
   116  	// most recently.
   117  	endSeq := seg.sequenceNumber.Add(seqnum.Size(seg.data.Size()))
   118  	if rc.XmitTime.Before(seg.xmitTime) || (seg.xmitTime == rc.XmitTime && rc.EndSequence.LessThan(endSeq)) {
   119  		rc.XmitTime = seg.xmitTime
   120  		rc.EndSequence = endSeq
   121  	}
   122  }
   123  
   124  // detectReorder detects if packet reordering has been observed.
   125  // See: https://tools.ietf.org/html/draft-ietf-tcpm-rack-08#section-7.2
   126  // * Step 3: Detect data segment reordering.
   127  //   To detect reordering, the sender looks for original data segments being
   128  //   delivered out of order. To detect such cases, the sender tracks the
   129  //   highest sequence selectively or cumulatively acknowledged in the RACK.fack
   130  //   variable. The name "fack" stands for the most "Forward ACK" (this term is
   131  //   adopted from [FACK]). If a never retransmitted segment that's below
   132  //   RACK.fack is (selectively or cumulatively) acknowledged, it has been
   133  //   delivered out of order. The sender sets RACK.reord to TRUE if such segment
   134  //   is identified.
   135  func (rc *rackControl) detectReorder(seg *segment) {
   136  	endSeq := seg.sequenceNumber.Add(seqnum.Size(seg.data.Size()))
   137  	if rc.FACK.LessThan(endSeq) {
   138  		rc.FACK = endSeq
   139  		return
   140  	}
   141  
   142  	if endSeq.LessThan(rc.FACK) && seg.xmitCount == 1 {
   143  		rc.Reord = true
   144  	}
   145  }
   146  
   147  func (rc *rackControl) setDSACKSeen(dsackSeen bool) {
   148  	rc.DSACKSeen = dsackSeen
   149  }
   150  
   151  // shouldSchedulePTO dictates whether we should schedule a PTO or not.
   152  // See https://tools.ietf.org/html/draft-ietf-tcpm-rack-08#section-7.5.1.
   153  func (s *sender) shouldSchedulePTO() bool {
   154  	// Schedule PTO only if RACK loss detection is enabled.
   155  	return s.ep.tcpRecovery&tcpip.TCPRACKLossDetection != 0 &&
   156  		// The connection supports SACK.
   157  		s.ep.SACKPermitted &&
   158  		// The connection is not in loss recovery.
   159  		(s.state != tcpip.RTORecovery && s.state != tcpip.SACKRecovery) &&
   160  		// The connection has no SACKed sequences in the SACK scoreboard.
   161  		s.ep.scoreboard.Sacked() == 0
   162  }
   163  
   164  // schedulePTO schedules the probe timeout as defined in
   165  // https://tools.ietf.org/html/draft-ietf-tcpm-rack-08#section-7.5.1.
   166  func (s *sender) schedulePTO() {
   167  	pto := time.Second
   168  	s.rtt.Lock()
   169  	if s.rtt.TCPRTTState.SRTTInited && s.rtt.TCPRTTState.SRTT > 0 {
   170  		pto = s.rtt.TCPRTTState.SRTT * 2
   171  		if s.Outstanding == 1 {
   172  			pto += wcDelayedACKTimeout
   173  		}
   174  	}
   175  	s.rtt.Unlock()
   176  
   177  	now := s.ep.stack.Clock().NowMonotonic()
   178  	if s.resendTimer.enabled() {
   179  		if now.Add(pto).After(s.resendTimer.target) {
   180  			pto = s.resendTimer.target.Sub(now)
   181  		}
   182  		s.resendTimer.disable()
   183  	}
   184  
   185  	s.probeTimer.enable(pto)
   186  }
   187  
   188  // probeTimerExpired is the same as TLP_send_probe() as defined in
   189  // https://tools.ietf.org/html/draft-ietf-tcpm-rack-08#section-7.5.2.
   190  func (s *sender) probeTimerExpired() tcpip.Error {
   191  	if !s.probeTimer.checkExpiration() {
   192  		return nil
   193  	}
   194  
   195  	var dataSent bool
   196  	if s.writeNext != nil && s.writeNext.xmitCount == 0 && s.Outstanding < s.SndCwnd {
   197  		dataSent = s.maybeSendSegment(s.writeNext, int(s.ep.scoreboard.SMSS()), s.SndUna.Add(s.SndWnd))
   198  		if dataSent {
   199  			s.Outstanding += s.pCount(s.writeNext, s.MaxPayloadSize)
   200  			s.writeNext = s.writeNext.Next()
   201  		}
   202  	}
   203  
   204  	if !dataSent && !s.rc.tlpRxtOut {
   205  		var highestSeqXmit *segment
   206  		for highestSeqXmit = s.writeList.Front(); highestSeqXmit != nil; highestSeqXmit = highestSeqXmit.Next() {
   207  			if highestSeqXmit.xmitCount == 0 {
   208  				// Nothing in writeList is transmitted, no need to send a probe.
   209  				highestSeqXmit = nil
   210  				break
   211  			}
   212  			if highestSeqXmit.Next() == nil || highestSeqXmit.Next().xmitCount == 0 {
   213  				// Either everything in writeList has been transmitted or the next
   214  				// sequence has not been transmitted. Either way this is the highest
   215  				// sequence segment that was transmitted.
   216  				break
   217  			}
   218  		}
   219  
   220  		if highestSeqXmit != nil {
   221  			dataSent = s.maybeSendSegment(highestSeqXmit, int(s.ep.scoreboard.SMSS()), s.SndUna.Add(s.SndWnd))
   222  			if dataSent {
   223  				s.rc.tlpRxtOut = true
   224  				s.rc.tlpHighRxt = s.SndNxt
   225  			}
   226  		}
   227  	}
   228  
   229  	// Whether or not the probe was sent, the sender must arm the resend timer,
   230  	// not the probe timer. This ensures that the sender does not send repeated,
   231  	// back-to-back tail loss probes.
   232  	s.postXmit(dataSent, false /* shouldScheduleProbe */)
   233  	return nil
   234  }
   235  
   236  // detectTLPRecovery detects if recovery was accomplished by the loss probes
   237  // and updates TLP state accordingly.
   238  // See https://tools.ietf.org/html/draft-ietf-tcpm-rack-08#section-7.6.3.
   239  func (s *sender) detectTLPRecovery(ack seqnum.Value, rcvdSeg *segment) {
   240  	if !(s.ep.SACKPermitted && s.rc.tlpRxtOut) {
   241  		return
   242  	}
   243  
   244  	// Step 1.
   245  	if s.isDupAck(rcvdSeg) && ack == s.rc.tlpHighRxt {
   246  		var sbAboveTLPHighRxt bool
   247  		for _, sb := range rcvdSeg.parsedOptions.SACKBlocks {
   248  			if s.rc.tlpHighRxt.LessThan(sb.End) {
   249  				sbAboveTLPHighRxt = true
   250  				break
   251  			}
   252  		}
   253  		if !sbAboveTLPHighRxt {
   254  			// TLP episode is complete.
   255  			s.rc.tlpRxtOut = false
   256  		}
   257  	}
   258  
   259  	if s.rc.tlpRxtOut && s.rc.tlpHighRxt.LessThanEq(ack) {
   260  		// TLP episode is complete.
   261  		s.rc.tlpRxtOut = false
   262  		if !checkDSACK(rcvdSeg) {
   263  			// Step 2. Either the original packet or the retransmission (in the
   264  			// form of a probe) was lost. Invoke a congestion control response
   265  			// equivalent to fast recovery.
   266  			s.cc.HandleLossDetected()
   267  			s.enterRecovery()
   268  			s.leaveRecovery()
   269  		}
   270  	}
   271  }
   272  
   273  // updateRACKReorderWindow updates the reorder window.
   274  // See: https://tools.ietf.org/html/draft-ietf-tcpm-rack-08#section-7.2
   275  // * Step 4: Update RACK reordering window
   276  //   To handle the prevalent small degree of reordering, RACK.reo_wnd serves as
   277  //   an allowance for settling time before marking a packet lost. RACK starts
   278  //   initially with a conservative window of min_RTT/4. If no reordering has
   279  //   been observed RACK uses reo_wnd of zero during loss recovery, in order to
   280  //   retransmit quickly, or when the number of DUPACKs exceeds the classic
   281  //   DUPACKthreshold.
   282  func (rc *rackControl) updateRACKReorderWindow() {
   283  	dsackSeen := rc.DSACKSeen
   284  	snd := rc.snd
   285  
   286  	// React to DSACK once per round trip.
   287  	// If SND.UNA < RACK.rtt_seq:
   288  	//   RACK.dsack = false
   289  	if snd.SndUna.LessThan(rc.RTTSeq) {
   290  		dsackSeen = false
   291  	}
   292  
   293  	// If RACK.dsack:
   294  	//   RACK.reo_wnd_incr += 1
   295  	//   RACK.dsack = false
   296  	//   RACK.rtt_seq = SND.NXT
   297  	//   RACK.reo_wnd_persist = 16
   298  	if dsackSeen {
   299  		rc.ReoWndIncr++
   300  		dsackSeen = false
   301  		rc.RTTSeq = snd.SndNxt
   302  		rc.ReoWndPersist = tcpRACKRecoveryThreshold
   303  	} else if rc.exitedRecovery {
   304  		// Else if exiting loss recovery:
   305  		//   RACK.reo_wnd_persist -= 1
   306  		//   If RACK.reo_wnd_persist <= 0:
   307  		//      RACK.reo_wnd_incr = 1
   308  		rc.ReoWndPersist--
   309  		if rc.ReoWndPersist <= 0 {
   310  			rc.ReoWndIncr = 1
   311  		}
   312  		rc.exitedRecovery = false
   313  	}
   314  
   315  	// Reorder window is zero during loss recovery, or when the number of
   316  	// DUPACKs exceeds the classic DUPACKthreshold.
   317  	// If RACK.reord is FALSE:
   318  	//   If in loss recovery:  (If in fast or timeout recovery)
   319  	//      RACK.reo_wnd = 0
   320  	//      Return
   321  	//   Else if RACK.pkts_sacked >= RACK.dupthresh:
   322  	//     RACK.reo_wnd = 0
   323  	//     return
   324  	if !rc.Reord {
   325  		if snd.state == tcpip.RTORecovery || snd.state == tcpip.SACKRecovery {
   326  			rc.ReoWnd = 0
   327  			return
   328  		}
   329  
   330  		if snd.SackedOut >= nDupAckThreshold {
   331  			rc.ReoWnd = 0
   332  			return
   333  		}
   334  	}
   335  
   336  	// Calculate reorder window.
   337  	// RACK.reo_wnd = RACK.min_RTT / 4 * RACK.reo_wnd_incr
   338  	// RACK.reo_wnd = min(RACK.reo_wnd, SRTT)
   339  	snd.rtt.Lock()
   340  	srtt := snd.rtt.TCPRTTState.SRTT
   341  	snd.rtt.Unlock()
   342  	rc.ReoWnd = time.Duration((int64(rc.minRTT) / 4) * int64(rc.ReoWndIncr))
   343  	if srtt < rc.ReoWnd {
   344  		rc.ReoWnd = srtt
   345  	}
   346  }
   347  
   348  func (rc *rackControl) exitRecovery() {
   349  	rc.exitedRecovery = true
   350  }
   351  
   352  // detectLoss marks the segment as lost if the reordering window has elapsed
   353  // and the ACK is not received. It will also arm the reorder timer.
   354  // See: https://tools.ietf.org/html/draft-ietf-tcpm-rack-08#section-7.2 Step 5.
   355  func (rc *rackControl) detectLoss(rcvTime tcpip.MonotonicTime) int {
   356  	var timeout time.Duration
   357  	numLost := 0
   358  	for seg := rc.snd.writeList.Front(); seg != nil && seg.xmitCount != 0; seg = seg.Next() {
   359  		if rc.snd.ep.scoreboard.IsSACKED(seg.sackBlock()) {
   360  			continue
   361  		}
   362  
   363  		if seg.lost && seg.xmitCount == 1 {
   364  			numLost++
   365  			continue
   366  		}
   367  
   368  		endSeq := seg.sequenceNumber.Add(seqnum.Size(seg.data.Size()))
   369  		if seg.xmitTime.Before(rc.XmitTime) || (seg.xmitTime == rc.XmitTime && rc.EndSequence.LessThan(endSeq)) {
   370  			timeRemaining := seg.xmitTime.Sub(rcvTime) + rc.RTT + rc.ReoWnd
   371  			if timeRemaining <= 0 {
   372  				seg.lost = true
   373  				numLost++
   374  			} else if timeRemaining > timeout {
   375  				timeout = timeRemaining
   376  			}
   377  		}
   378  	}
   379  
   380  	if timeout != 0 && !rc.snd.reorderTimer.enabled() {
   381  		rc.snd.reorderTimer.enable(timeout)
   382  	}
   383  	return numLost
   384  }
   385  
   386  // reorderTimerExpired will retransmit the segments which have not been acked
   387  // before the reorder timer expired.
   388  func (rc *rackControl) reorderTimerExpired() tcpip.Error {
   389  	// Check if the timer actually expired or if it's a spurious wake due
   390  	// to a previously orphaned runtime timer.
   391  	if !rc.snd.reorderTimer.checkExpiration() {
   392  		return nil
   393  	}
   394  
   395  	numLost := rc.detectLoss(rc.snd.ep.stack.Clock().NowMonotonic())
   396  	if numLost == 0 {
   397  		return nil
   398  	}
   399  
   400  	fastRetransmit := false
   401  	if !rc.snd.FastRecovery.Active {
   402  		rc.snd.cc.HandleLossDetected()
   403  		rc.snd.enterRecovery()
   404  		fastRetransmit = true
   405  	}
   406  
   407  	rc.DoRecovery(nil, fastRetransmit)
   408  	return nil
   409  }
   410  
   411  // DoRecovery implements lossRecovery.DoRecovery.
   412  func (rc *rackControl) DoRecovery(_ *segment, fastRetransmit bool) {
   413  	snd := rc.snd
   414  	if fastRetransmit {
   415  		snd.resendSegment()
   416  	}
   417  
   418  	var dataSent bool
   419  	// Iterate the writeList and retransmit the segments which are marked
   420  	// as lost by RACK.
   421  	for seg := snd.writeList.Front(); seg != nil && seg.xmitCount > 0; seg = seg.Next() {
   422  		if seg == snd.writeNext {
   423  			break
   424  		}
   425  
   426  		if !seg.lost {
   427  			continue
   428  		}
   429  
   430  		// Reset seg.lost as it is already SACKed.
   431  		if snd.ep.scoreboard.IsSACKED(seg.sackBlock()) {
   432  			seg.lost = false
   433  			continue
   434  		}
   435  
   436  		// Check the congestion window after entering recovery.
   437  		if snd.Outstanding >= snd.SndCwnd {
   438  			break
   439  		}
   440  
   441  		if sent := snd.maybeSendSegment(seg, int(snd.ep.scoreboard.SMSS()), snd.SndUna.Add(snd.SndWnd)); !sent {
   442  			break
   443  		}
   444  		dataSent = true
   445  		snd.Outstanding += snd.pCount(seg, snd.MaxPayloadSize)
   446  	}
   447  
   448  	snd.postXmit(dataSent, true /* shouldScheduleProbe */)
   449  }