github.com/SaurabhDubey-Groww/go-cloud@v0.0.0-20221124105541-b26c29285fd8/docstore/driver/util.go (about)

     1  // Copyright 2019 The Go Cloud Development Kit Authors
     2  //
     3  // Licensed under the Apache License, Version 2.0 (the "License");
     4  // you may not use this file except in compliance with the License.
     5  // You may obtain a copy of the License at
     6  //
     7  //     https://www.apache.org/licenses/LICENSE-2.0
     8  //
     9  // Unless required by applicable law or agreed to in writing, software
    10  // distributed under the License is distributed on an "AS IS" BASIS,
    11  // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    12  // See the License for the specific language governing permissions and
    13  // limitations under the License.
    14  
    15  package driver
    16  
    17  import (
    18  	"reflect"
    19  	"sort"
    20  	"sync"
    21  
    22  	"github.com/google/uuid"
    23  )
    24  
    25  // UniqueString generates a string that is unique with high probability.
    26  // Driver implementations can use it to generate keys for Create actions.
    27  func UniqueString() string { return uuid.New().String() }
    28  
    29  // SplitActions divides the actions slice into sub-slices much like strings.Split.
    30  // The split function should report whether two consecutive actions should be split,
    31  // that is, should be in different sub-slices. The first argument to split is the
    32  // last action of the sub-slice currently under construction; the second argument is
    33  // the action being considered for addition to that sub-slice.
    34  // SplitActions doesn't change the order of the input slice.
    35  func SplitActions(actions []*Action, split func(a, b *Action) bool) [][]*Action {
    36  	var (
    37  		groups [][]*Action // the actions, split; the return value
    38  		cur    []*Action   // the group currently being constructed
    39  	)
    40  	collect := func() { // called when the current group is known to be finished
    41  		if len(cur) > 0 {
    42  			groups = append(groups, cur)
    43  			cur = nil
    44  		}
    45  	}
    46  	for _, a := range actions {
    47  		if len(cur) > 0 && split(cur[len(cur)-1], a) {
    48  			collect()
    49  		}
    50  		cur = append(cur, a)
    51  	}
    52  	collect()
    53  	return groups
    54  }
    55  
    56  // GroupActions separates actions into four sets: writes, gets that must happen before the writes,
    57  // gets that must happen after the writes, and gets that can happen concurrently with the writes.
    58  func GroupActions(actions []*Action) (beforeGets, getList, writeList, afterGets []*Action) {
    59  	// maps from key to action
    60  	bgets := map[interface{}]*Action{}
    61  	agets := map[interface{}]*Action{}
    62  	cgets := map[interface{}]*Action{}
    63  	writes := map[interface{}]*Action{}
    64  	var nilkeys []*Action
    65  	for _, a := range actions {
    66  		if a.Key == nil {
    67  			// Probably a Create.
    68  			nilkeys = append(nilkeys, a)
    69  		} else if a.Kind == Get {
    70  			// If there was a prior write with this key, make sure this get
    71  			// happens after the writes.
    72  			if _, ok := writes[a.Key]; ok {
    73  				agets[a.Key] = a
    74  			} else {
    75  				cgets[a.Key] = a
    76  			}
    77  		} else {
    78  			// This is a write. A prior get on the same key was put into cgets; move
    79  			// it to bgets because it has to happen before writes.
    80  			if g, ok := cgets[a.Key]; ok {
    81  				delete(cgets, a.Key)
    82  				bgets[a.Key] = g
    83  			}
    84  			writes[a.Key] = a
    85  		}
    86  	}
    87  
    88  	vals := func(m map[interface{}]*Action) []*Action {
    89  		var as []*Action
    90  		for _, v := range m {
    91  			as = append(as, v)
    92  		}
    93  		// Sort so the order is always the same for replay.
    94  		sort.Slice(as, func(i, j int) bool { return as[i].Index < as[j].Index })
    95  		return as
    96  	}
    97  
    98  	return vals(bgets), vals(cgets), append(vals(writes), nilkeys...), vals(agets)
    99  }
   100  
   101  // AsFunc creates and returns an "as function" that behaves as follows:
   102  // If its argument is a pointer to the same type as val, the argument is set to val
   103  // and the function returns true. Otherwise, the function returns false.
   104  func AsFunc(val interface{}) func(interface{}) bool {
   105  	rval := reflect.ValueOf(val)
   106  	wantType := reflect.PtrTo(rval.Type())
   107  	return func(i interface{}) bool {
   108  		if i == nil {
   109  			return false
   110  		}
   111  		ri := reflect.ValueOf(i)
   112  		if ri.Type() != wantType {
   113  			return false
   114  		}
   115  		ri.Elem().Set(rval)
   116  		return true
   117  	}
   118  }
   119  
   120  // GroupByFieldPath collect the Get actions into groups with the same set of
   121  // field paths.
   122  func GroupByFieldPath(gets []*Action) [][]*Action {
   123  	// This is quadratic in the worst case, but it's unlikely that there would be
   124  	// many Gets with different field paths.
   125  	var groups [][]*Action
   126  	seen := map[*Action]bool{}
   127  	for len(seen) < len(gets) {
   128  		var g []*Action
   129  		for _, a := range gets {
   130  			if !seen[a] {
   131  				if len(g) == 0 || fpsEqual(g[0].FieldPaths, a.FieldPaths) {
   132  					g = append(g, a)
   133  					seen[a] = true
   134  				}
   135  			}
   136  		}
   137  		groups = append(groups, g)
   138  	}
   139  	return groups
   140  }
   141  
   142  // Report whether two lists of field paths are equal.
   143  func fpsEqual(fps1, fps2 [][]string) bool {
   144  	// TODO?: We really care about sets of field paths, but that's too tedious to determine.
   145  	if len(fps1) != len(fps2) {
   146  		return false
   147  	}
   148  	for i, fp1 := range fps1 {
   149  		if !FieldPathsEqual(fp1, fps2[i]) {
   150  			return false
   151  		}
   152  	}
   153  	return true
   154  }
   155  
   156  // FieldPathsEqual reports whether two field paths are equal.
   157  func FieldPathsEqual(fp1, fp2 []string) bool {
   158  	if len(fp1) != len(fp2) {
   159  		return false
   160  	}
   161  	for i, s1 := range fp1 {
   162  		if s1 != fp2[i] {
   163  			return false
   164  		}
   165  	}
   166  	return true
   167  }
   168  
   169  // FieldPathEqualsField reports whether a field path equals a field.
   170  // This is a convenience for FieldPathsEqual(fp, []string{s}).
   171  func FieldPathEqualsField(fp []string, s string) bool {
   172  	return len(fp) == 1 && fp[0] == s
   173  }
   174  
   175  // Throttle is used to limit the number of outstanding activities, like RPCs.
   176  // It acts like a combination of a semaphore and a WaitGroup.
   177  type Throttle struct {
   178  	c  chan struct{} // token semaphore
   179  	wg sync.WaitGroup
   180  }
   181  
   182  // NewThrottle returns a Throttle that will allow max calls to Acquire that
   183  // are not matched with Release calls before blocking.
   184  // If max is <= 0, there is no throttling: Acquire always returns immediately.
   185  func NewThrottle(max int) *Throttle {
   186  	t := &Throttle{}
   187  	if max > 0 {
   188  		t.c = make(chan struct{}, max)
   189  	}
   190  	return t
   191  }
   192  
   193  // Acquire blocks until a token is available, then acquires it and returns.
   194  // Acquire is deliberately not sensitive to context.Context, because it assumes
   195  // that whatever acquires a token will be context-sensitive, and thus will release
   196  // the token when the context is done.
   197  func (t *Throttle) Acquire() {
   198  	t.wg.Add(1)
   199  	if t.c != nil {
   200  		t.c <- struct{}{}
   201  	}
   202  }
   203  
   204  // Release releases a token obtained by Acquire.
   205  func (t *Throttle) Release() {
   206  	if t.c != nil {
   207  		<-t.c
   208  	}
   209  	t.wg.Done()
   210  }
   211  
   212  // Wait blocks goroutine until the number of calls to Release matches the number of
   213  // calls to Acquire.
   214  func (t *Throttle) Wait() {
   215  	t.wg.Wait()
   216  }