github.com/SmartMeshFoundation/Spectrum@v0.0.0-20220621030607-452a266fee1e/trie/trie.go (about) 1 // Copyright 2014 The Spectrum Authors 2 // This file is part of the Spectrum library. 3 // 4 // The Spectrum library is free software: you can redistribute it and/or modify 5 // it under the terms of the GNU Lesser General Public License as published by 6 // the Free Software Foundation, either version 3 of the License, or 7 // (at your option) any later version. 8 // 9 // The Spectrum library is distributed in the hope that it will be useful, 10 // but WITHOUT ANY WARRANTY; without even the implied warranty of 11 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 // GNU Lesser General Public License for more details. 13 // 14 // You should have received a copy of the GNU Lesser General Public License 15 // along with the Spectrum library. If not, see <http://www.gnu.org/licenses/>. 16 17 // Package trie implements Merkle Patricia Tries. 18 package trie 19 20 import ( 21 "bytes" 22 "fmt" 23 24 "github.com/SmartMeshFoundation/Spectrum/common" 25 "github.com/SmartMeshFoundation/Spectrum/crypto/sha3" 26 "github.com/SmartMeshFoundation/Spectrum/log" 27 "github.com/rcrowley/go-metrics" 28 ) 29 30 var ( 31 // This is the known root hash of an empty trie. 32 emptyRoot = common.HexToHash("56e81f171bcc55a6ff8345e692c0f86e5b48e01b996cadc001622fb5e363b421") 33 // This is the known hash of an empty state trie entry. 34 emptyState common.Hash 35 ) 36 37 var ( 38 cacheMissCounter = metrics.NewRegisteredCounter("trie/cachemiss", nil) 39 cacheUnloadCounter = metrics.NewRegisteredCounter("trie/cacheunload", nil) 40 ) 41 42 // CacheMisses retrieves a global counter measuring the number of cache misses 43 // the trie had since process startup. This isn't useful for anything apart from 44 // trie debugging purposes. 45 func CacheMisses() int64 { 46 return cacheMissCounter.Count() 47 } 48 49 // CacheUnloads retrieves a global counter measuring the number of cache unloads 50 // the trie did since process startup. This isn't useful for anything apart from 51 // trie debugging purposes. 52 func CacheUnloads() int64 { 53 return cacheUnloadCounter.Count() 54 } 55 56 func init() { 57 sha3.NewKeccak256().Sum(emptyState[:0]) 58 } 59 60 // Database must be implemented by backing stores for the trie. 61 type Database interface { 62 DatabaseReader 63 DatabaseWriter 64 } 65 66 // DatabaseReader wraps the Get method of a backing store for the trie. 67 type DatabaseReader interface { 68 Get(key []byte) (value []byte, err error) 69 Has(key []byte) (bool, error) 70 } 71 72 // DatabaseWriter wraps the Put method of a backing store for the trie. 73 type DatabaseWriter interface { 74 // Put stores the mapping key->value in the database. 75 // Implementations must not hold onto the value bytes, the trie 76 // will reuse the slice across calls to Put. 77 Put(key, value []byte) error 78 } 79 80 // Trie is a Merkle Patricia Trie. 81 // The zero value is an empty trie with no database. 82 // Use New to create a trie that sits on top of a database. 83 // 84 // Trie is not safe for concurrent use. 85 type Trie struct { 86 root node 87 db Database 88 originalRoot common.Hash 89 90 // Cache generation values. 91 // cachegen increases by one with each commit operation. 92 // new nodes are tagged with the current generation and unloaded 93 // when their generation is older than than cachegen-cachelimit. 94 cachegen, cachelimit uint16 95 } 96 97 // SetCacheLimit sets the number of 'cache generations' to keep. 98 // A cache generation is created by a call to Commit. 99 func (t *Trie) SetCacheLimit(l uint16) { 100 t.cachelimit = l 101 } 102 103 // newFlag returns the cache flag value for a newly created node. 104 func (t *Trie) newFlag() nodeFlag { 105 return nodeFlag{dirty: true, gen: t.cachegen} 106 } 107 108 // New creates a trie with an existing root node from db. 109 // 110 // If root is the zero hash or the sha3 hash of an empty string, the 111 // trie is initially empty and does not require a database. Otherwise, 112 // New will panic if db is nil and returns a MissingNodeError if root does 113 // not exist in the database. Accessing the trie loads nodes from db on demand. 114 func New(root common.Hash, db Database) (*Trie, error) { 115 trie := &Trie{db: db, originalRoot: root} 116 if (root != common.Hash{}) && root != emptyRoot { 117 if db == nil { 118 panic("trie.New: cannot use existing root without a database") 119 } 120 rootnode, err := trie.resolveHash(root[:], nil) 121 if err != nil { 122 return nil, err 123 } 124 trie.root = rootnode 125 } 126 return trie, nil 127 } 128 129 // NodeIterator returns an iterator that returns nodes of the trie. Iteration starts at 130 // the key after the given start key. 131 func (t *Trie) NodeIterator(start []byte) NodeIterator { 132 return newNodeIterator(t, start) 133 } 134 135 // Get returns the value for key stored in the trie. 136 // The value bytes must not be modified by the caller. 137 func (t *Trie) Get(key []byte) []byte { 138 res, err := t.TryGet(key) 139 if err != nil { 140 log.Error(fmt.Sprintf("Unhandled trie error: %v", err)) 141 } 142 return res 143 } 144 145 // TryGet returns the value for key stored in the trie. 146 // The value bytes must not be modified by the caller. 147 // If a node was not found in the database, a MissingNodeError is returned. 148 func (t *Trie) TryGet(key []byte) ([]byte, error) { 149 key = keybytesToHex(key) 150 value, newroot, didResolve, err := t.tryGet(t.root, key, 0) 151 if err == nil && didResolve { 152 t.root = newroot 153 } 154 return value, err 155 } 156 157 func (t *Trie) tryGet(origNode node, key []byte, pos int) (value []byte, newnode node, didResolve bool, err error) { 158 switch n := (origNode).(type) { 159 case nil: 160 return nil, nil, false, nil 161 case valueNode: 162 return n, n, false, nil 163 case *shortNode: 164 if len(key)-pos < len(n.Key) || !bytes.Equal(n.Key, key[pos:pos+len(n.Key)]) { 165 // key not found in trie 166 return nil, n, false, nil 167 } 168 value, newnode, didResolve, err = t.tryGet(n.Val, key, pos+len(n.Key)) 169 if err == nil && didResolve { 170 n = n.copy() 171 n.Val = newnode 172 n.flags.gen = t.cachegen 173 } 174 return value, n, didResolve, err 175 case *fullNode: 176 value, newnode, didResolve, err = t.tryGet(n.Children[key[pos]], key, pos+1) 177 if err == nil && didResolve { 178 n = n.copy() 179 n.flags.gen = t.cachegen 180 n.Children[key[pos]] = newnode 181 } 182 return value, n, didResolve, err 183 case hashNode: 184 child, err := t.resolveHash(n, key[:pos]) 185 if err != nil { 186 return nil, n, true, err 187 } 188 value, newnode, _, err := t.tryGet(child, key, pos) 189 return value, newnode, true, err 190 default: 191 panic(fmt.Sprintf("%T: invalid node: %v", origNode, origNode)) 192 } 193 } 194 195 // Update associates key with value in the trie. Subsequent calls to 196 // Get will return value. If value has length zero, any existing value 197 // is deleted from the trie and calls to Get will return nil. 198 // 199 // The value bytes must not be modified by the caller while they are 200 // stored in the trie. 201 func (t *Trie) Update(key, value []byte) { 202 if err := t.TryUpdate(key, value); err != nil { 203 log.Error(fmt.Sprintf("Unhandled trie error: %v", err)) 204 } 205 } 206 207 // TryUpdate associates key with value in the trie. Subsequent calls to 208 // Get will return value. If value has length zero, any existing value 209 // is deleted from the trie and calls to Get will return nil. 210 // 211 // The value bytes must not be modified by the caller while they are 212 // stored in the trie. 213 // 214 // If a node was not found in the database, a MissingNodeError is returned. 215 func (t *Trie) TryUpdate(key, value []byte) error { 216 k := keybytesToHex(key) 217 if len(value) != 0 { 218 _, n, err := t.insert(t.root, nil, k, valueNode(value)) 219 if err != nil { 220 return err 221 } 222 t.root = n 223 } else { 224 _, n, err := t.delete(t.root, nil, k) 225 if err != nil { 226 return err 227 } 228 t.root = n 229 } 230 return nil 231 } 232 233 func (t *Trie) insert(n node, prefix, key []byte, value node) (bool, node, error) { 234 if len(key) == 0 { 235 if v, ok := n.(valueNode); ok { 236 return !bytes.Equal(v, value.(valueNode)), value, nil 237 } 238 return true, value, nil 239 } 240 switch n := n.(type) { 241 case *shortNode: 242 matchlen := prefixLen(key, n.Key) 243 // If the whole key matches, keep this short node as is 244 // and only update the value. 245 if matchlen == len(n.Key) { 246 dirty, nn, err := t.insert(n.Val, append(prefix, key[:matchlen]...), key[matchlen:], value) 247 if !dirty || err != nil { 248 return false, n, err 249 } 250 return true, &shortNode{n.Key, nn, t.newFlag()}, nil 251 } 252 // Otherwise branch out at the index where they differ. 253 branch := &fullNode{flags: t.newFlag()} 254 var err error 255 _, branch.Children[n.Key[matchlen]], err = t.insert(nil, append(prefix, n.Key[:matchlen+1]...), n.Key[matchlen+1:], n.Val) 256 if err != nil { 257 return false, nil, err 258 } 259 _, branch.Children[key[matchlen]], err = t.insert(nil, append(prefix, key[:matchlen+1]...), key[matchlen+1:], value) 260 if err != nil { 261 return false, nil, err 262 } 263 // Replace this shortNode with the branch if it occurs at index 0. 264 if matchlen == 0 { 265 return true, branch, nil 266 } 267 // Otherwise, replace it with a short node leading up to the branch. 268 return true, &shortNode{key[:matchlen], branch, t.newFlag()}, nil 269 270 case *fullNode: 271 dirty, nn, err := t.insert(n.Children[key[0]], append(prefix, key[0]), key[1:], value) 272 if !dirty || err != nil { 273 return false, n, err 274 } 275 n = n.copy() 276 n.flags = t.newFlag() 277 n.Children[key[0]] = nn 278 return true, n, nil 279 280 case nil: 281 return true, &shortNode{key, value, t.newFlag()}, nil 282 283 case hashNode: 284 // We've hit a part of the trie that isn't loaded yet. Load 285 // the node and insert into it. This leaves all child nodes on 286 // the path to the value in the trie. 287 rn, err := t.resolveHash(n, prefix) 288 if err != nil { 289 return false, nil, err 290 } 291 dirty, nn, err := t.insert(rn, prefix, key, value) 292 if !dirty || err != nil { 293 return false, rn, err 294 } 295 return true, nn, nil 296 297 default: 298 panic(fmt.Sprintf("%T: invalid node: %v", n, n)) 299 } 300 } 301 302 // Delete removes any existing value for key from the trie. 303 func (t *Trie) Delete(key []byte) { 304 if err := t.TryDelete(key); err != nil { 305 log.Error(fmt.Sprintf("Unhandled trie error: %v", err)) 306 } 307 } 308 309 // TryDelete removes any existing value for key from the trie. 310 // If a node was not found in the database, a MissingNodeError is returned. 311 func (t *Trie) TryDelete(key []byte) error { 312 k := keybytesToHex(key) 313 _, n, err := t.delete(t.root, nil, k) 314 if err != nil { 315 return err 316 } 317 t.root = n 318 return nil 319 } 320 321 // delete returns the new root of the trie with key deleted. 322 // It reduces the trie to minimal form by simplifying 323 // nodes on the way up after deleting recursively. 324 func (t *Trie) delete(n node, prefix, key []byte) (bool, node, error) { 325 switch n := n.(type) { 326 case *shortNode: 327 matchlen := prefixLen(key, n.Key) 328 if matchlen < len(n.Key) { 329 return false, n, nil // don't replace n on mismatch 330 } 331 if matchlen == len(key) { 332 return true, nil, nil // remove n entirely for whole matches 333 } 334 // The key is longer than n.Key. Remove the remaining suffix 335 // from the subtrie. Child can never be nil here since the 336 // subtrie must contain at least two other values with keys 337 // longer than n.Key. 338 dirty, child, err := t.delete(n.Val, append(prefix, key[:len(n.Key)]...), key[len(n.Key):]) 339 if !dirty || err != nil { 340 return false, n, err 341 } 342 switch child := child.(type) { 343 case *shortNode: 344 // Deleting from the subtrie reduced it to another 345 // short node. Merge the nodes to avoid creating a 346 // shortNode{..., shortNode{...}}. Use concat (which 347 // always creates a new slice) instead of append to 348 // avoid modifying n.Key since it might be shared with 349 // other nodes. 350 return true, &shortNode{concat(n.Key, child.Key...), child.Val, t.newFlag()}, nil 351 default: 352 return true, &shortNode{n.Key, child, t.newFlag()}, nil 353 } 354 355 case *fullNode: 356 dirty, nn, err := t.delete(n.Children[key[0]], append(prefix, key[0]), key[1:]) 357 if !dirty || err != nil { 358 return false, n, err 359 } 360 n = n.copy() 361 n.flags = t.newFlag() 362 n.Children[key[0]] = nn 363 364 // Check how many non-nil entries are left after deleting and 365 // reduce the full node to a short node if only one entry is 366 // left. Since n must've contained at least two children 367 // before deletion (otherwise it would not be a full node) n 368 // can never be reduced to nil. 369 // 370 // When the loop is done, pos contains the index of the single 371 // value that is left in n or -2 if n contains at least two 372 // values. 373 pos := -1 374 for i, cld := range n.Children { 375 if cld != nil { 376 if pos == -1 { 377 pos = i 378 } else { 379 pos = -2 380 break 381 } 382 } 383 } 384 if pos >= 0 { 385 if pos != 16 { 386 // If the remaining entry is a short node, it replaces 387 // n and its key gets the missing nibble tacked to the 388 // front. This avoids creating an invalid 389 // shortNode{..., shortNode{...}}. Since the entry 390 // might not be loaded yet, resolve it just for this 391 // check. 392 cnode, err := t.resolve(n.Children[pos], prefix) 393 if err != nil { 394 return false, nil, err 395 } 396 if cnode, ok := cnode.(*shortNode); ok { 397 k := append([]byte{byte(pos)}, cnode.Key...) 398 return true, &shortNode{k, cnode.Val, t.newFlag()}, nil 399 } 400 } 401 // Otherwise, n is replaced by a one-nibble short node 402 // containing the child. 403 return true, &shortNode{[]byte{byte(pos)}, n.Children[pos], t.newFlag()}, nil 404 } 405 // n still contains at least two values and cannot be reduced. 406 return true, n, nil 407 408 case valueNode: 409 return true, nil, nil 410 411 case nil: 412 return false, nil, nil 413 414 case hashNode: 415 // We've hit a part of the trie that isn't loaded yet. Load 416 // the node and delete from it. This leaves all child nodes on 417 // the path to the value in the trie. 418 rn, err := t.resolveHash(n, prefix) 419 if err != nil { 420 return false, nil, err 421 } 422 dirty, nn, err := t.delete(rn, prefix, key) 423 if !dirty || err != nil { 424 return false, rn, err 425 } 426 return true, nn, nil 427 428 default: 429 panic(fmt.Sprintf("%T: invalid node: %v (%v)", n, n, key)) 430 } 431 } 432 433 func concat(s1 []byte, s2 ...byte) []byte { 434 r := make([]byte, len(s1)+len(s2)) 435 copy(r, s1) 436 copy(r[len(s1):], s2) 437 return r 438 } 439 440 func (t *Trie) resolve(n node, prefix []byte) (node, error) { 441 if n, ok := n.(hashNode); ok { 442 return t.resolveHash(n, prefix) 443 } 444 return n, nil 445 } 446 447 func (t *Trie) resolveHash(n hashNode, prefix []byte) (node, error) { 448 cacheMissCounter.Inc(1) 449 450 enc, err := t.db.Get(n) 451 if err != nil || enc == nil { 452 return nil, &MissingNodeError{NodeHash: common.BytesToHash(n), Path: prefix} 453 } 454 dec := mustDecodeNode(n, enc, t.cachegen) 455 return dec, nil 456 } 457 458 // Root returns the root hash of the trie. 459 // Deprecated: use Hash instead. 460 func (t *Trie) Root() []byte { return t.Hash().Bytes() } 461 462 // Hash returns the root hash of the trie. It does not write to the 463 // database and can be used even if the trie doesn't have one. 464 func (t *Trie) Hash() common.Hash { 465 hash, cached, _ := t.hashRoot(nil) 466 t.root = cached 467 return common.BytesToHash(hash.(hashNode)) 468 } 469 470 // Commit writes all nodes to the trie's database. 471 // Nodes are stored with their sha3 hash as the key. 472 // 473 // Committing flushes nodes from memory. 474 // Subsequent Get calls will load nodes from the database. 475 func (t *Trie) Commit() (root common.Hash, err error) { 476 if t.db == nil { 477 panic("Commit called on trie with nil database") 478 } 479 return t.CommitTo(t.db) 480 } 481 482 // CommitTo writes all nodes to the given database. 483 // Nodes are stored with their sha3 hash as the key. 484 // 485 // Committing flushes nodes from memory. Subsequent Get calls will 486 // load nodes from the trie's database. Calling code must ensure that 487 // the changes made to db are written back to the trie's attached 488 // database before using the trie. 489 func (t *Trie) CommitTo(db DatabaseWriter) (root common.Hash, err error) { 490 hash, cached, err := t.hashRoot(db) 491 if err != nil { 492 return (common.Hash{}), err 493 } 494 t.root = cached 495 t.cachegen++ 496 return common.BytesToHash(hash.(hashNode)), nil 497 } 498 499 func (t *Trie) hashRoot(db DatabaseWriter) (node, node, error) { 500 if t.root == nil { 501 return hashNode(emptyRoot.Bytes()), nil, nil 502 } 503 h := newHasher(t.cachegen, t.cachelimit) 504 return h.hash(t.root, db, true) 505 }