github.com/Tenderly/zkevm-erigon@v1.9.7/eth/sync.go (about)

     1  // Copyright 2015 The go-ethereum Authors
     2  // This file is part of the go-ethereum library.
     3  //
     4  // The go-ethereum library is free software: you can redistribute it and/or modify
     5  // it under the terms of the GNU Lesser General Public License as published by
     6  // the Free Software Foundation, either version 3 of the License, or
     7  // (at your option) any later version.
     8  //
     9  // The go-ethereum library is distributed in the hope that it will be useful,
    10  // but WITHOUT ANY WARRANTY; without even the implied warranty of
    11  // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
    12  // GNU Lesser General Public License for more details.
    13  //
    14  // You should have received a copy of the GNU Lesser General Public License
    15  // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
    16  
    17  package eth
    18  
    19  import (
    20  	"math/rand"
    21  	"sync/atomic"
    22  	"time"
    23  
    24  	"github.com/ethereum/go-ethereum/common"
    25  	"github.com/ethereum/go-ethereum/core/types"
    26  	"github.com/ethereum/go-ethereum/eth/downloader"
    27  	"github.com/ethereum/go-ethereum/log"
    28  	"github.com/ethereum/go-ethereum/p2p/enode"
    29  )
    30  
    31  const (
    32  	forceSyncCycle      = 10 * time.Second // Time interval to force syncs, even if few peers are available
    33  	minDesiredPeerCount = 5                // Amount of peers desired to start syncing
    34  
    35  	// This is the target size for the packs of transactions sent by txsyncLoop.
    36  	// A pack can get larger than this if a single transactions exceeds this size.
    37  	txsyncPackSize = 100 * 1024
    38  )
    39  
    40  type txsync struct {
    41  	p   *peer
    42  	txs []*types.Transaction
    43  }
    44  
    45  // syncTransactions starts sending all currently pending transactions to the given peer.
    46  func (pm *ProtocolManager) syncTransactions(p *peer) {
    47  	var txs types.Transactions
    48  	pending, _ := pm.txpool.Pending()
    49  	for _, batch := range pending {
    50  		txs = append(txs, batch...)
    51  	}
    52  	if len(txs) == 0 {
    53  		return
    54  	}
    55  	select {
    56  	case pm.txsyncCh <- &txsync{p, txs}:
    57  	case <-pm.quitSync:
    58  	}
    59  }
    60  
    61  // txsyncLoop takes care of the initial transaction sync for each new
    62  // connection. When a new peer appears, we relay all currently pending
    63  // transactions. In order to minimise egress bandwidth usage, we send
    64  // the transactions in small packs to one peer at a time.
    65  func (pm *ProtocolManager) txsyncLoop() {
    66  	var (
    67  		pending = make(map[enode.ID]*txsync)
    68  		sending = false               // whether a send is active
    69  		pack    = new(txsync)         // the pack that is being sent
    70  		done    = make(chan error, 1) // result of the send
    71  	)
    72  
    73  	// send starts a sending a pack of transactions from the sync.
    74  	send := func(s *txsync) {
    75  		// Fill pack with transactions up to the target size.
    76  		size := common.StorageSize(0)
    77  		pack.p = s.p
    78  		pack.txs = pack.txs[:0]
    79  		for i := 0; i < len(s.txs) && size < txsyncPackSize; i++ {
    80  			pack.txs = append(pack.txs, s.txs[i])
    81  			size += s.txs[i].Size()
    82  		}
    83  		// Remove the transactions that will be sent.
    84  		s.txs = s.txs[:copy(s.txs, s.txs[len(pack.txs):])]
    85  		if len(s.txs) == 0 {
    86  			delete(pending, s.p.ID())
    87  		}
    88  		// Send the pack in the background.
    89  		s.p.Log().Trace("Sending batch of transactions", "count", len(pack.txs), "bytes", size)
    90  		sending = true
    91  		go func() { done <- pack.p.SendTransactions(pack.txs) }()
    92  	}
    93  
    94  	// pick chooses the next pending sync.
    95  	pick := func() *txsync {
    96  		if len(pending) == 0 {
    97  			return nil
    98  		}
    99  		n := rand.Intn(len(pending)) + 1
   100  		for _, s := range pending {
   101  			if n--; n == 0 {
   102  				return s
   103  			}
   104  		}
   105  		return nil
   106  	}
   107  
   108  	for {
   109  		select {
   110  		case s := <-pm.txsyncCh:
   111  			pending[s.p.ID()] = s
   112  			if !sending {
   113  				send(s)
   114  			}
   115  		case err := <-done:
   116  			sending = false
   117  			// Stop tracking peers that cause send failures.
   118  			if err != nil {
   119  				pack.p.Log().Debug("Transaction send failed", "err", err)
   120  				delete(pending, pack.p.ID())
   121  			}
   122  			// Schedule the next send.
   123  			if s := pick(); s != nil {
   124  				send(s)
   125  			}
   126  		case <-pm.quitSync:
   127  			return
   128  		}
   129  	}
   130  }
   131  
   132  // syncer is responsible for periodically synchronising with the network, both
   133  // downloading hashes and blocks as well as handling the announcement handler.
   134  func (pm *ProtocolManager) syncer() {
   135  	// Start and ensure cleanup of sync mechanisms
   136  	pm.fetcher.Start()
   137  	defer pm.fetcher.Stop()
   138  	defer pm.downloader.Terminate()
   139  
   140  	// Wait for different events to fire synchronisation operations
   141  	forceSync := time.NewTicker(forceSyncCycle)
   142  	defer forceSync.Stop()
   143  
   144  	for {
   145  		select {
   146  		case <-pm.newPeerCh:
   147  			// Make sure we have peers to select from, then sync
   148  			if pm.peers.Len() < minDesiredPeerCount {
   149  				break
   150  			}
   151  			go pm.synchronise(pm.peers.BestPeer())
   152  
   153  		case <-forceSync.C:
   154  			// Force a sync even if not enough peers are present
   155  			go pm.synchronise(pm.peers.BestPeer())
   156  
   157  		case <-pm.noMorePeers:
   158  			return
   159  		}
   160  	}
   161  }
   162  
   163  // synchronise tries to sync up our local block chain with a remote peer.
   164  func (pm *ProtocolManager) synchronise(peer *peer) {
   165  	// Short circuit if no peers are available
   166  	if peer == nil {
   167  		return
   168  	}
   169  	// Make sure the peer's TD is higher than our own
   170  	currentBlock := pm.blockchain.CurrentBlock()
   171  	td := pm.blockchain.GetTd(currentBlock.Hash(), currentBlock.NumberU64())
   172  
   173  	pHead, pTd := peer.Head()
   174  	if pTd.Cmp(td) <= 0 {
   175  		return
   176  	}
   177  	// Otherwise try to sync with the downloader
   178  	mode := downloader.FullSync
   179  	if atomic.LoadUint32(&pm.fastSync) == 1 {
   180  		// Fast sync was explicitly requested, and explicitly granted
   181  		mode = downloader.FastSync
   182  	}
   183  	if mode == downloader.FastSync {
   184  		// Make sure the peer's total difficulty we are synchronizing is higher.
   185  		if pm.blockchain.GetTdByHash(pm.blockchain.CurrentFastBlock().Hash()).Cmp(pTd) >= 0 {
   186  			return
   187  		}
   188  	}
   189  	// Run the sync cycle, and disable fast sync if we've went past the pivot block
   190  	if err := pm.downloader.Synchronise(peer.id, pHead, pTd, mode); err != nil {
   191  		return
   192  	}
   193  	if atomic.LoadUint32(&pm.fastSync) == 1 {
   194  		log.Info("Fast sync complete, auto disabling")
   195  		atomic.StoreUint32(&pm.fastSync, 0)
   196  	}
   197  	// If we've successfully finished a sync cycle and passed any required checkpoint,
   198  	// enable accepting transactions from the network.
   199  	head := pm.blockchain.CurrentBlock()
   200  	if head.NumberU64() >= pm.checkpointNumber {
   201  		// Checkpoint passed, sanity check the timestamp to have a fallback mechanism
   202  		// for non-checkpointed (number = 0) private networks.
   203  		if head.Time() >= uint64(time.Now().AddDate(0, -1, 0).Unix()) {
   204  			atomic.StoreUint32(&pm.acceptTxs, 1)
   205  		}
   206  	}
   207  	if head.NumberU64() > 0 {
   208  		// We've completed a sync cycle, notify all peers of new state. This path is
   209  		// essential in star-topology networks where a gateway node needs to notify
   210  		// all its out-of-date peers of the availability of a new block. This failure
   211  		// scenario will most often crop up in private and hackathon networks with
   212  		// degenerate connectivity, but it should be healthy for the mainnet too to
   213  		// more reliably update peers or the local TD state.
   214  		go pm.BroadcastBlock(head, false)
   215  	}
   216  }