github.com/aaa256/atlantis@v0.0.0-20210707112435-42ee889287a2/core/tx_pool_test.go (about) 1 // Copyright 2015 The go-athereum Authors 2 // This file is part of the go-athereum library. 3 // 4 // The go-athereum library is free software: you can redistribute it and/or modify 5 // it under the terms of the GNU Lesser General Public License as published by 6 // the Free Software Foundation, either version 3 of the License, or 7 // (at your option) any later version. 8 // 9 // The go-athereum library is distributed in the hope that it will be useful, 10 // but WITHOUT ANY WARRANTY; without even the implied warranty of 11 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 // GNU Lesser General Public License for more details. 13 // 14 // You should have received a copy of the GNU Lesser General Public License 15 // along with the go-athereum library. If not, see <http://www.gnu.org/licenses/>. 16 17 package core 18 19 import ( 20 "crypto/ecdsa" 21 "fmt" 22 "io/ioutil" 23 "math/big" 24 "math/rand" 25 "os" 26 "testing" 27 "time" 28 29 "github.com/athereum/go-athereum/common" 30 "github.com/athereum/go-athereum/core/state" 31 "github.com/athereum/go-athereum/core/types" 32 "github.com/athereum/go-athereum/crypto" 33 "github.com/athereum/go-athereum/athdb" 34 "github.com/athereum/go-athereum/event" 35 "github.com/athereum/go-athereum/params" 36 ) 37 38 // testTxPoolConfig is a transaction pool configuration without stateful disk 39 // sideeffects used during testing. 40 var testTxPoolConfig TxPoolConfig 41 42 func init() { 43 testTxPoolConfig = DefaultTxPoolConfig 44 testTxPoolConfig.Journal = "" 45 } 46 47 type testBlockChain struct { 48 statedb *state.StateDB 49 gasLimit uint64 50 chainHeadFeed *event.Feed 51 } 52 53 func (bc *testBlockChain) CurrentBlock() *types.Block { 54 return types.NewBlock(&types.Header{ 55 GasLimit: bc.gasLimit, 56 }, nil, nil, nil) 57 } 58 59 func (bc *testBlockChain) GetBlock(hash common.Hash, number uint64) *types.Block { 60 return bc.CurrentBlock() 61 } 62 63 func (bc *testBlockChain) StateAt(common.Hash) (*state.StateDB, error) { 64 return bc.statedb, nil 65 } 66 67 func (bc *testBlockChain) SubscribeChainHeadEvent(ch chan<- ChainHeadEvent) event.Subscription { 68 return bc.chainHeadFeed.Subscribe(ch) 69 } 70 71 func transaction(nonce uint64, gaslimit uint64, key *ecdsa.PrivateKey) *types.Transaction { 72 return pricedTransaction(nonce, gaslimit, big.NewInt(1), key) 73 } 74 75 func pricedTransaction(nonce uint64, gaslimit uint64, gasprice *big.Int, key *ecdsa.PrivateKey) *types.Transaction { 76 tx, _ := types.SignTx(types.NewTransaction(nonce, common.Address{}, big.NewInt(100), gaslimit, gasprice, nil), types.HomesteadSigner{}, key) 77 return tx 78 } 79 80 func setupTxPool() (*TxPool, *ecdsa.PrivateKey) { 81 statedb, _ := state.New(common.Hash{}, state.NewDatabase(athdb.NewMemDatabase())) 82 blockchain := &testBlockChain{statedb, 1000000, new(event.Feed)} 83 84 key, _ := crypto.GenerateKey() 85 pool := NewTxPool(testTxPoolConfig, params.TestChainConfig, blockchain) 86 87 return pool, key 88 } 89 90 // validateTxPoolInternals checks various consistency invariants within the pool. 91 func validateTxPoolInternals(pool *TxPool) error { 92 pool.mu.RLock() 93 defer pool.mu.RUnlock() 94 95 // Ensure the total transaction set is consistent with pending + queued 96 pending, queued := pool.stats() 97 if total := pool.all.Count(); total != pending+queued { 98 return fmt.Errorf("total transaction count %d != %d pending + %d queued", total, pending, queued) 99 } 100 if priced := pool.priced.items.Len() - pool.priced.stales; priced != pending+queued { 101 return fmt.Errorf("total priced transaction count %d != %d pending + %d queued", priced, pending, queued) 102 } 103 // Ensure the next nonce to assign is the correct one 104 for addr, txs := range pool.pending { 105 // Find the last transaction 106 var last uint64 107 for nonce := range txs.txs.items { 108 if last < nonce { 109 last = nonce 110 } 111 } 112 if nonce := pool.pendingState.GetNonce(addr); nonce != last+1 { 113 return fmt.Errorf("pending nonce mismatch: have %v, want %v", nonce, last+1) 114 } 115 } 116 return nil 117 } 118 119 // validateEvents checks that the correct number of transaction addition events 120 // were fired on the pool's event feed. 121 func validateEvents(events chan NewTxsEvent, count int) error { 122 var received []*types.Transaction 123 124 for len(received) < count { 125 select { 126 case ev := <-events: 127 received = append(received, ev.Txs...) 128 case <-time.After(time.Second): 129 return fmt.Errorf("event #%d not fired", received) 130 } 131 } 132 if len(received) > count { 133 return fmt.Errorf("more than %d events fired: %v", count, received[count:]) 134 } 135 select { 136 case ev := <-events: 137 return fmt.Errorf("more than %d events fired: %v", count, ev.Txs) 138 139 case <-time.After(50 * time.Millisecond): 140 // This branch should be "default", but it's a data race between goroutines, 141 // reading the event channel and pushing into it, so better wait a bit ensuring 142 // really nothing gets injected. 143 } 144 return nil 145 } 146 147 func deriveSender(tx *types.Transaction) (common.Address, error) { 148 return types.Sender(types.HomesteadSigner{}, tx) 149 } 150 151 type testChain struct { 152 *testBlockChain 153 address common.Address 154 trigger *bool 155 } 156 157 // testChain.State() is used multiple times to reset the pending state. 158 // when simulate is true it will create a state that indicates 159 // that tx0 and tx1 are included in the chain. 160 func (c *testChain) State() (*state.StateDB, error) { 161 // delay "state change" by one. The tx pool fetches the 162 // state multiple times and by delaying it a bit we simulate 163 // a state change between those fetches. 164 stdb := c.statedb 165 if *c.trigger { 166 c.statedb, _ = state.New(common.Hash{}, state.NewDatabase(athdb.NewMemDatabase())) 167 // simulate that the new head block included tx0 and tx1 168 c.statedb.SetNonce(c.address, 2) 169 c.statedb.SetBalance(c.address, new(big.Int).SetUint64(params.Atlantis)) 170 *c.trigger = false 171 } 172 return stdb, nil 173 } 174 175 // This test simulates a scenario where a new block is imported during a 176 // state reset and tests whather the pending state is in sync with the 177 // block head event that initiated the resetState(). 178 func TestStateChangeDuringTransactionPoolReset(t *testing.T) { 179 t.Parallel() 180 181 var ( 182 key, _ = crypto.GenerateKey() 183 address = crypto.PubkeyToAddress(key.PublicKey) 184 statedb, _ = state.New(common.Hash{}, state.NewDatabase(athdb.NewMemDatabase())) 185 trigger = false 186 ) 187 188 // setup pool with 2 transaction in it 189 statedb.SetBalance(address, new(big.Int).SetUint64(params.Atlantis)) 190 blockchain := &testChain{&testBlockChain{statedb, 1000000000, new(event.Feed)}, address, &trigger} 191 192 tx0 := transaction(0, 100000, key) 193 tx1 := transaction(1, 100000, key) 194 195 pool := NewTxPool(testTxPoolConfig, params.TestChainConfig, blockchain) 196 defer pool.Stop() 197 198 nonce := pool.State().GetNonce(address) 199 if nonce != 0 { 200 t.Fatalf("Invalid nonce, want 0, got %d", nonce) 201 } 202 203 pool.AddRemotes(types.Transactions{tx0, tx1}) 204 205 nonce = pool.State().GetNonce(address) 206 if nonce != 2 { 207 t.Fatalf("Invalid nonce, want 2, got %d", nonce) 208 } 209 210 // trigger state change in the background 211 trigger = true 212 213 pool.lockedReset(nil, nil) 214 215 _, err := pool.Pending() 216 if err != nil { 217 t.Fatalf("Could not fetch pending transactions: %v", err) 218 } 219 nonce = pool.State().GetNonce(address) 220 if nonce != 2 { 221 t.Fatalf("Invalid nonce, want 2, got %d", nonce) 222 } 223 } 224 225 func TestInvalidTransactions(t *testing.T) { 226 t.Parallel() 227 228 pool, key := setupTxPool() 229 defer pool.Stop() 230 231 tx := transaction(0, 100, key) 232 from, _ := deriveSender(tx) 233 234 pool.currentState.AddBalance(from, big.NewInt(1)) 235 if err := pool.AddRemote(tx); err != ErrInsufficientFunds { 236 t.Error("expected", ErrInsufficientFunds) 237 } 238 239 balance := new(big.Int).Add(tx.Value(), new(big.Int).Mul(new(big.Int).SetUint64(tx.Gas()), tx.GasPrice())) 240 pool.currentState.AddBalance(from, balance) 241 if err := pool.AddRemote(tx); err != ErrIntrinsicGas { 242 t.Error("expected", ErrIntrinsicGas, "got", err) 243 } 244 245 pool.currentState.SetNonce(from, 1) 246 pool.currentState.AddBalance(from, big.NewInt(0xffffffffffffff)) 247 tx = transaction(0, 100000, key) 248 if err := pool.AddRemote(tx); err != ErrNonceTooLow { 249 t.Error("expected", ErrNonceTooLow) 250 } 251 252 tx = transaction(1, 100000, key) 253 pool.gasPrice = big.NewInt(1000) 254 if err := pool.AddRemote(tx); err != ErrUnderpriced { 255 t.Error("expected", ErrUnderpriced, "got", err) 256 } 257 if err := pool.AddLocal(tx); err != nil { 258 t.Error("expected", nil, "got", err) 259 } 260 } 261 262 func TestTransactionQueue(t *testing.T) { 263 t.Parallel() 264 265 pool, key := setupTxPool() 266 defer pool.Stop() 267 268 tx := transaction(0, 100, key) 269 from, _ := deriveSender(tx) 270 pool.currentState.AddBalance(from, big.NewInt(1000)) 271 pool.lockedReset(nil, nil) 272 pool.enqueueTx(tx.Hash(), tx) 273 274 pool.promoteExecutables([]common.Address{from}) 275 if len(pool.pending) != 1 { 276 t.Error("expected valid txs to be 1 is", len(pool.pending)) 277 } 278 279 tx = transaction(1, 100, key) 280 from, _ = deriveSender(tx) 281 pool.currentState.SetNonce(from, 2) 282 pool.enqueueTx(tx.Hash(), tx) 283 pool.promoteExecutables([]common.Address{from}) 284 if _, ok := pool.pending[from].txs.items[tx.Nonce()]; ok { 285 t.Error("expected transaction to be in tx pool") 286 } 287 288 if len(pool.queue) > 0 { 289 t.Error("expected transaction queue to be empty. is", len(pool.queue)) 290 } 291 292 pool, key = setupTxPool() 293 defer pool.Stop() 294 295 tx1 := transaction(0, 100, key) 296 tx2 := transaction(10, 100, key) 297 tx3 := transaction(11, 100, key) 298 from, _ = deriveSender(tx1) 299 pool.currentState.AddBalance(from, big.NewInt(1000)) 300 pool.lockedReset(nil, nil) 301 302 pool.enqueueTx(tx1.Hash(), tx1) 303 pool.enqueueTx(tx2.Hash(), tx2) 304 pool.enqueueTx(tx3.Hash(), tx3) 305 306 pool.promoteExecutables([]common.Address{from}) 307 308 if len(pool.pending) != 1 { 309 t.Error("expected tx pool to be 1, got", len(pool.pending)) 310 } 311 if pool.queue[from].Len() != 2 { 312 t.Error("expected len(queue) == 2, got", pool.queue[from].Len()) 313 } 314 } 315 316 func TestTransactionNegativeValue(t *testing.T) { 317 t.Parallel() 318 319 pool, key := setupTxPool() 320 defer pool.Stop() 321 322 tx, _ := types.SignTx(types.NewTransaction(0, common.Address{}, big.NewInt(-1), 100, big.NewInt(1), nil), types.HomesteadSigner{}, key) 323 from, _ := deriveSender(tx) 324 pool.currentState.AddBalance(from, big.NewInt(1)) 325 if err := pool.AddRemote(tx); err != ErrNegativeValue { 326 t.Error("expected", ErrNegativeValue, "got", err) 327 } 328 } 329 330 func TestTransactionChainFork(t *testing.T) { 331 t.Parallel() 332 333 pool, key := setupTxPool() 334 defer pool.Stop() 335 336 addr := crypto.PubkeyToAddress(key.PublicKey) 337 resetState := func() { 338 statedb, _ := state.New(common.Hash{}, state.NewDatabase(athdb.NewMemDatabase())) 339 statedb.AddBalance(addr, big.NewInt(100000000000000)) 340 341 pool.chain = &testBlockChain{statedb, 1000000, new(event.Feed)} 342 pool.lockedReset(nil, nil) 343 } 344 resetState() 345 346 tx := transaction(0, 100000, key) 347 if _, err := pool.add(tx, false); err != nil { 348 t.Error("didn't expect error", err) 349 } 350 pool.removeTx(tx.Hash(), true) 351 352 // reset the pool's internal state 353 resetState() 354 if _, err := pool.add(tx, false); err != nil { 355 t.Error("didn't expect error", err) 356 } 357 } 358 359 func TestTransactionDoubleNonce(t *testing.T) { 360 t.Parallel() 361 362 pool, key := setupTxPool() 363 defer pool.Stop() 364 365 addr := crypto.PubkeyToAddress(key.PublicKey) 366 resetState := func() { 367 statedb, _ := state.New(common.Hash{}, state.NewDatabase(athdb.NewMemDatabase())) 368 statedb.AddBalance(addr, big.NewInt(100000000000000)) 369 370 pool.chain = &testBlockChain{statedb, 1000000, new(event.Feed)} 371 pool.lockedReset(nil, nil) 372 } 373 resetState() 374 375 signer := types.HomesteadSigner{} 376 tx1, _ := types.SignTx(types.NewTransaction(0, common.Address{}, big.NewInt(100), 100000, big.NewInt(1), nil), signer, key) 377 tx2, _ := types.SignTx(types.NewTransaction(0, common.Address{}, big.NewInt(100), 1000000, big.NewInt(2), nil), signer, key) 378 tx3, _ := types.SignTx(types.NewTransaction(0, common.Address{}, big.NewInt(100), 1000000, big.NewInt(1), nil), signer, key) 379 380 // Add the first two transaction, ensure higher priced stays only 381 if replace, err := pool.add(tx1, false); err != nil || replace { 382 t.Errorf("first transaction insert failed (%v) or reported replacement (%v)", err, replace) 383 } 384 if replace, err := pool.add(tx2, false); err != nil || !replace { 385 t.Errorf("second transaction insert failed (%v) or not reported replacement (%v)", err, replace) 386 } 387 pool.promoteExecutables([]common.Address{addr}) 388 if pool.pending[addr].Len() != 1 { 389 t.Error("expected 1 pending transactions, got", pool.pending[addr].Len()) 390 } 391 if tx := pool.pending[addr].txs.items[0]; tx.Hash() != tx2.Hash() { 392 t.Errorf("transaction mismatch: have %x, want %x", tx.Hash(), tx2.Hash()) 393 } 394 // Add the third transaction and ensure it's not saved (smaller price) 395 pool.add(tx3, false) 396 pool.promoteExecutables([]common.Address{addr}) 397 if pool.pending[addr].Len() != 1 { 398 t.Error("expected 1 pending transactions, got", pool.pending[addr].Len()) 399 } 400 if tx := pool.pending[addr].txs.items[0]; tx.Hash() != tx2.Hash() { 401 t.Errorf("transaction mismatch: have %x, want %x", tx.Hash(), tx2.Hash()) 402 } 403 // Ensure the total transaction count is correct 404 if pool.all.Count() != 1 { 405 t.Error("expected 1 total transactions, got", pool.all.Count()) 406 } 407 } 408 409 func TestTransactionMissingNonce(t *testing.T) { 410 t.Parallel() 411 412 pool, key := setupTxPool() 413 defer pool.Stop() 414 415 addr := crypto.PubkeyToAddress(key.PublicKey) 416 pool.currentState.AddBalance(addr, big.NewInt(100000000000000)) 417 tx := transaction(1, 100000, key) 418 if _, err := pool.add(tx, false); err != nil { 419 t.Error("didn't expect error", err) 420 } 421 if len(pool.pending) != 0 { 422 t.Error("expected 0 pending transactions, got", len(pool.pending)) 423 } 424 if pool.queue[addr].Len() != 1 { 425 t.Error("expected 1 queued transaction, got", pool.queue[addr].Len()) 426 } 427 if pool.all.Count() != 1 { 428 t.Error("expected 1 total transactions, got", pool.all.Count()) 429 } 430 } 431 432 func TestTransactionNonceRecovery(t *testing.T) { 433 t.Parallel() 434 435 const n = 10 436 pool, key := setupTxPool() 437 defer pool.Stop() 438 439 addr := crypto.PubkeyToAddress(key.PublicKey) 440 pool.currentState.SetNonce(addr, n) 441 pool.currentState.AddBalance(addr, big.NewInt(100000000000000)) 442 pool.lockedReset(nil, nil) 443 444 tx := transaction(n, 100000, key) 445 if err := pool.AddRemote(tx); err != nil { 446 t.Error(err) 447 } 448 // simulate some weird re-order of transactions and missing nonce(s) 449 pool.currentState.SetNonce(addr, n-1) 450 pool.lockedReset(nil, nil) 451 if fn := pool.pendingState.GetNonce(addr); fn != n-1 { 452 t.Errorf("expected nonce to be %d, got %d", n-1, fn) 453 } 454 } 455 456 // Tests that if an account runs out of funds, any pending and queued transactions 457 // are dropped. 458 func TestTransactionDropping(t *testing.T) { 459 t.Parallel() 460 461 // Create a test account and fund it 462 pool, key := setupTxPool() 463 defer pool.Stop() 464 465 account, _ := deriveSender(transaction(0, 0, key)) 466 pool.currentState.AddBalance(account, big.NewInt(1000)) 467 468 // Add some pending and some queued transactions 469 var ( 470 tx0 = transaction(0, 100, key) 471 tx1 = transaction(1, 200, key) 472 tx2 = transaction(2, 300, key) 473 tx10 = transaction(10, 100, key) 474 tx11 = transaction(11, 200, key) 475 tx12 = transaction(12, 300, key) 476 ) 477 pool.promoteTx(account, tx0.Hash(), tx0) 478 pool.promoteTx(account, tx1.Hash(), tx1) 479 pool.promoteTx(account, tx2.Hash(), tx2) 480 pool.enqueueTx(tx10.Hash(), tx10) 481 pool.enqueueTx(tx11.Hash(), tx11) 482 pool.enqueueTx(tx12.Hash(), tx12) 483 484 // Check that pre and post validations leave the pool as is 485 if pool.pending[account].Len() != 3 { 486 t.Errorf("pending transaction mismatch: have %d, want %d", pool.pending[account].Len(), 3) 487 } 488 if pool.queue[account].Len() != 3 { 489 t.Errorf("queued transaction mismatch: have %d, want %d", pool.queue[account].Len(), 3) 490 } 491 if pool.all.Count() != 6 { 492 t.Errorf("total transaction mismatch: have %d, want %d", pool.all.Count(), 6) 493 } 494 pool.lockedReset(nil, nil) 495 if pool.pending[account].Len() != 3 { 496 t.Errorf("pending transaction mismatch: have %d, want %d", pool.pending[account].Len(), 3) 497 } 498 if pool.queue[account].Len() != 3 { 499 t.Errorf("queued transaction mismatch: have %d, want %d", pool.queue[account].Len(), 3) 500 } 501 if pool.all.Count() != 6 { 502 t.Errorf("total transaction mismatch: have %d, want %d", pool.all.Count(), 6) 503 } 504 // Reduce the balance of the account, and check that invalidated transactions are dropped 505 pool.currentState.AddBalance(account, big.NewInt(-650)) 506 pool.lockedReset(nil, nil) 507 508 if _, ok := pool.pending[account].txs.items[tx0.Nonce()]; !ok { 509 t.Errorf("funded pending transaction missing: %v", tx0) 510 } 511 if _, ok := pool.pending[account].txs.items[tx1.Nonce()]; !ok { 512 t.Errorf("funded pending transaction missing: %v", tx0) 513 } 514 if _, ok := pool.pending[account].txs.items[tx2.Nonce()]; ok { 515 t.Errorf("out-of-fund pending transaction present: %v", tx1) 516 } 517 if _, ok := pool.queue[account].txs.items[tx10.Nonce()]; !ok { 518 t.Errorf("funded queued transaction missing: %v", tx10) 519 } 520 if _, ok := pool.queue[account].txs.items[tx11.Nonce()]; !ok { 521 t.Errorf("funded queued transaction missing: %v", tx10) 522 } 523 if _, ok := pool.queue[account].txs.items[tx12.Nonce()]; ok { 524 t.Errorf("out-of-fund queued transaction present: %v", tx11) 525 } 526 if pool.all.Count() != 4 { 527 t.Errorf("total transaction mismatch: have %d, want %d", pool.all.Count(), 4) 528 } 529 // Reduce the block gas limit, check that invalidated transactions are dropped 530 pool.chain.(*testBlockChain).gasLimit = 100 531 pool.lockedReset(nil, nil) 532 533 if _, ok := pool.pending[account].txs.items[tx0.Nonce()]; !ok { 534 t.Errorf("funded pending transaction missing: %v", tx0) 535 } 536 if _, ok := pool.pending[account].txs.items[tx1.Nonce()]; ok { 537 t.Errorf("over-gased pending transaction present: %v", tx1) 538 } 539 if _, ok := pool.queue[account].txs.items[tx10.Nonce()]; !ok { 540 t.Errorf("funded queued transaction missing: %v", tx10) 541 } 542 if _, ok := pool.queue[account].txs.items[tx11.Nonce()]; ok { 543 t.Errorf("over-gased queued transaction present: %v", tx11) 544 } 545 if pool.all.Count() != 2 { 546 t.Errorf("total transaction mismatch: have %d, want %d", pool.all.Count(), 2) 547 } 548 } 549 550 // Tests that if a transaction is dropped from the current pending pool (e.g. out 551 // of fund), all consecutive (still valid, but not executable) transactions are 552 // postponed back into the future queue to prevent broadcasting them. 553 func TestTransactionPostponing(t *testing.T) { 554 t.Parallel() 555 556 // Create the pool to test the postponing with 557 statedb, _ := state.New(common.Hash{}, state.NewDatabase(athdb.NewMemDatabase())) 558 blockchain := &testBlockChain{statedb, 1000000, new(event.Feed)} 559 560 pool := NewTxPool(testTxPoolConfig, params.TestChainConfig, blockchain) 561 defer pool.Stop() 562 563 // Create two test accounts to produce different gap profiles with 564 keys := make([]*ecdsa.PrivateKey, 2) 565 accs := make([]common.Address, len(keys)) 566 567 for i := 0; i < len(keys); i++ { 568 keys[i], _ = crypto.GenerateKey() 569 accs[i] = crypto.PubkeyToAddress(keys[i].PublicKey) 570 571 pool.currentState.AddBalance(crypto.PubkeyToAddress(keys[i].PublicKey), big.NewInt(50100)) 572 } 573 // Add a batch consecutive pending transactions for validation 574 txs := []*types.Transaction{} 575 for i, key := range keys { 576 577 for j := 0; j < 100; j++ { 578 var tx *types.Transaction 579 if (i+j)%2 == 0 { 580 tx = transaction(uint64(j), 25000, key) 581 } else { 582 tx = transaction(uint64(j), 50000, key) 583 } 584 txs = append(txs, tx) 585 } 586 } 587 for i, err := range pool.AddRemotes(txs) { 588 if err != nil { 589 t.Fatalf("tx %d: failed to add transactions: %v", i, err) 590 } 591 } 592 // Check that pre and post validations leave the pool as is 593 if pending := pool.pending[accs[0]].Len() + pool.pending[accs[1]].Len(); pending != len(txs) { 594 t.Errorf("pending transaction mismatch: have %d, want %d", pending, len(txs)) 595 } 596 if len(pool.queue) != 0 { 597 t.Errorf("queued accounts mismatch: have %d, want %d", len(pool.queue), 0) 598 } 599 if pool.all.Count() != len(txs) { 600 t.Errorf("total transaction mismatch: have %d, want %d", pool.all.Count(), len(txs)) 601 } 602 pool.lockedReset(nil, nil) 603 if pending := pool.pending[accs[0]].Len() + pool.pending[accs[1]].Len(); pending != len(txs) { 604 t.Errorf("pending transaction mismatch: have %d, want %d", pending, len(txs)) 605 } 606 if len(pool.queue) != 0 { 607 t.Errorf("queued accounts mismatch: have %d, want %d", len(pool.queue), 0) 608 } 609 if pool.all.Count() != len(txs) { 610 t.Errorf("total transaction mismatch: have %d, want %d", pool.all.Count(), len(txs)) 611 } 612 // Reduce the balance of the account, and check that transactions are reorganised 613 for _, addr := range accs { 614 pool.currentState.AddBalance(addr, big.NewInt(-1)) 615 } 616 pool.lockedReset(nil, nil) 617 618 // The first account's first transaction remains valid, check that subsequent 619 // ones are either filtered out, or queued up for later. 620 if _, ok := pool.pending[accs[0]].txs.items[txs[0].Nonce()]; !ok { 621 t.Errorf("tx %d: valid and funded transaction missing from pending pool: %v", 0, txs[0]) 622 } 623 if _, ok := pool.queue[accs[0]].txs.items[txs[0].Nonce()]; ok { 624 t.Errorf("tx %d: valid and funded transaction present in future queue: %v", 0, txs[0]) 625 } 626 for i, tx := range txs[1:100] { 627 if i%2 == 1 { 628 if _, ok := pool.pending[accs[0]].txs.items[tx.Nonce()]; ok { 629 t.Errorf("tx %d: valid but future transaction present in pending pool: %v", i+1, tx) 630 } 631 if _, ok := pool.queue[accs[0]].txs.items[tx.Nonce()]; !ok { 632 t.Errorf("tx %d: valid but future transaction missing from future queue: %v", i+1, tx) 633 } 634 } else { 635 if _, ok := pool.pending[accs[0]].txs.items[tx.Nonce()]; ok { 636 t.Errorf("tx %d: out-of-fund transaction present in pending pool: %v", i+1, tx) 637 } 638 if _, ok := pool.queue[accs[0]].txs.items[tx.Nonce()]; ok { 639 t.Errorf("tx %d: out-of-fund transaction present in future queue: %v", i+1, tx) 640 } 641 } 642 } 643 // The second account's first transaction got invalid, check that all transactions 644 // are either filtered out, or queued up for later. 645 if pool.pending[accs[1]] != nil { 646 t.Errorf("invalidated account still has pending transactions") 647 } 648 for i, tx := range txs[100:] { 649 if i%2 == 1 { 650 if _, ok := pool.queue[accs[1]].txs.items[tx.Nonce()]; !ok { 651 t.Errorf("tx %d: valid but future transaction missing from future queue: %v", 100+i, tx) 652 } 653 } else { 654 if _, ok := pool.queue[accs[1]].txs.items[tx.Nonce()]; ok { 655 t.Errorf("tx %d: out-of-fund transaction present in future queue: %v", 100+i, tx) 656 } 657 } 658 } 659 if pool.all.Count() != len(txs)/2 { 660 t.Errorf("total transaction mismatch: have %d, want %d", pool.all.Count(), len(txs)/2) 661 } 662 } 663 664 // Tests that if the transaction pool has both executable and non-executable 665 // transactions from an origin account, filling the nonce gap moves all queued 666 // ones into the pending pool. 667 func TestTransactionGapFilling(t *testing.T) { 668 t.Parallel() 669 670 // Create a test account and fund it 671 pool, key := setupTxPool() 672 defer pool.Stop() 673 674 account, _ := deriveSender(transaction(0, 0, key)) 675 pool.currentState.AddBalance(account, big.NewInt(1000000)) 676 677 // Keep track of transaction events to ensure all executables get announced 678 events := make(chan NewTxsEvent, testTxPoolConfig.AccountQueue+5) 679 sub := pool.txFeed.Subscribe(events) 680 defer sub.Unsubscribe() 681 682 // Create a pending and a queued transaction with a nonce-gap in between 683 if err := pool.AddRemote(transaction(0, 100000, key)); err != nil { 684 t.Fatalf("failed to add pending transaction: %v", err) 685 } 686 if err := pool.AddRemote(transaction(2, 100000, key)); err != nil { 687 t.Fatalf("failed to add queued transaction: %v", err) 688 } 689 pending, queued := pool.Stats() 690 if pending != 1 { 691 t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 1) 692 } 693 if queued != 1 { 694 t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 1) 695 } 696 if err := validateEvents(events, 1); err != nil { 697 t.Fatalf("original event firing failed: %v", err) 698 } 699 if err := validateTxPoolInternals(pool); err != nil { 700 t.Fatalf("pool internal state corrupted: %v", err) 701 } 702 // Fill the nonce gap and ensure all transactions become pending 703 if err := pool.AddRemote(transaction(1, 100000, key)); err != nil { 704 t.Fatalf("failed to add gapped transaction: %v", err) 705 } 706 pending, queued = pool.Stats() 707 if pending != 3 { 708 t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 3) 709 } 710 if queued != 0 { 711 t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 0) 712 } 713 if err := validateEvents(events, 2); err != nil { 714 t.Fatalf("gap-filling event firing failed: %v", err) 715 } 716 if err := validateTxPoolInternals(pool); err != nil { 717 t.Fatalf("pool internal state corrupted: %v", err) 718 } 719 } 720 721 // Tests that if the transaction count belonging to a single account goes above 722 // some threshold, the higher transactions are dropped to prevent DOS attacks. 723 func TestTransactionQueueAccountLimiting(t *testing.T) { 724 t.Parallel() 725 726 // Create a test account and fund it 727 pool, key := setupTxPool() 728 defer pool.Stop() 729 730 account, _ := deriveSender(transaction(0, 0, key)) 731 pool.currentState.AddBalance(account, big.NewInt(1000000)) 732 733 // Keep queuing up transactions and make sure all above a limit are dropped 734 for i := uint64(1); i <= testTxPoolConfig.AccountQueue+5; i++ { 735 if err := pool.AddRemote(transaction(i, 100000, key)); err != nil { 736 t.Fatalf("tx %d: failed to add transaction: %v", i, err) 737 } 738 if len(pool.pending) != 0 { 739 t.Errorf("tx %d: pending pool size mismatch: have %d, want %d", i, len(pool.pending), 0) 740 } 741 if i <= testTxPoolConfig.AccountQueue { 742 if pool.queue[account].Len() != int(i) { 743 t.Errorf("tx %d: queue size mismatch: have %d, want %d", i, pool.queue[account].Len(), i) 744 } 745 } else { 746 if pool.queue[account].Len() != int(testTxPoolConfig.AccountQueue) { 747 t.Errorf("tx %d: queue limit mismatch: have %d, want %d", i, pool.queue[account].Len(), testTxPoolConfig.AccountQueue) 748 } 749 } 750 } 751 if pool.all.Count() != int(testTxPoolConfig.AccountQueue) { 752 t.Errorf("total transaction mismatch: have %d, want %d", pool.all.Count(), testTxPoolConfig.AccountQueue) 753 } 754 } 755 756 // Tests that if the transaction count belonging to multiple accounts go above 757 // some threshold, the higher transactions are dropped to prevent DOS attacks. 758 // 759 // This logic should not hold for local transactions, unless the local tracking 760 // mechanism is disabled. 761 func TestTransactionQueueGlobalLimiting(t *testing.T) { 762 testTransactionQueueGlobalLimiting(t, false) 763 } 764 func TestTransactionQueueGlobalLimitingNoLocals(t *testing.T) { 765 testTransactionQueueGlobalLimiting(t, true) 766 } 767 768 func testTransactionQueueGlobalLimiting(t *testing.T, nolocals bool) { 769 t.Parallel() 770 771 // Create the pool to test the limit enforcement with 772 statedb, _ := state.New(common.Hash{}, state.NewDatabase(athdb.NewMemDatabase())) 773 blockchain := &testBlockChain{statedb, 1000000, new(event.Feed)} 774 775 config := testTxPoolConfig 776 config.NoLocals = nolocals 777 config.GlobalQueue = config.AccountQueue*3 - 1 // reduce the queue limits to shorten test time (-1 to make it non divisible) 778 779 pool := NewTxPool(config, params.TestChainConfig, blockchain) 780 defer pool.Stop() 781 782 // Create a number of test accounts and fund them (last one will be the local) 783 keys := make([]*ecdsa.PrivateKey, 5) 784 for i := 0; i < len(keys); i++ { 785 keys[i], _ = crypto.GenerateKey() 786 pool.currentState.AddBalance(crypto.PubkeyToAddress(keys[i].PublicKey), big.NewInt(1000000)) 787 } 788 local := keys[len(keys)-1] 789 790 // Generate and queue a batch of transactions 791 nonces := make(map[common.Address]uint64) 792 793 txs := make(types.Transactions, 0, 3*config.GlobalQueue) 794 for len(txs) < cap(txs) { 795 key := keys[rand.Intn(len(keys)-1)] // skip adding transactions with the local account 796 addr := crypto.PubkeyToAddress(key.PublicKey) 797 798 txs = append(txs, transaction(nonces[addr]+1, 100000, key)) 799 nonces[addr]++ 800 } 801 // Import the batch and verify that limits have been enforced 802 pool.AddRemotes(txs) 803 804 queued := 0 805 for addr, list := range pool.queue { 806 if list.Len() > int(config.AccountQueue) { 807 t.Errorf("addr %x: queued accounts overflown allowance: %d > %d", addr, list.Len(), config.AccountQueue) 808 } 809 queued += list.Len() 810 } 811 if queued > int(config.GlobalQueue) { 812 t.Fatalf("total transactions overflow allowance: %d > %d", queued, config.GlobalQueue) 813 } 814 // Generate a batch of transactions from the local account and import them 815 txs = txs[:0] 816 for i := uint64(0); i < 3*config.GlobalQueue; i++ { 817 txs = append(txs, transaction(i+1, 100000, local)) 818 } 819 pool.AddLocals(txs) 820 821 // If locals are disabled, the previous eviction algorithm should apply here too 822 if nolocals { 823 queued := 0 824 for addr, list := range pool.queue { 825 if list.Len() > int(config.AccountQueue) { 826 t.Errorf("addr %x: queued accounts overflown allowance: %d > %d", addr, list.Len(), config.AccountQueue) 827 } 828 queued += list.Len() 829 } 830 if queued > int(config.GlobalQueue) { 831 t.Fatalf("total transactions overflow allowance: %d > %d", queued, config.GlobalQueue) 832 } 833 } else { 834 // Local exemptions are enabled, make sure the local account owned the queue 835 if len(pool.queue) != 1 { 836 t.Errorf("multiple accounts in queue: have %v, want %v", len(pool.queue), 1) 837 } 838 // Also ensure no local transactions are ever dropped, even if above global limits 839 if queued := pool.queue[crypto.PubkeyToAddress(local.PublicKey)].Len(); uint64(queued) != 3*config.GlobalQueue { 840 t.Fatalf("local account queued transaction count mismatch: have %v, want %v", queued, 3*config.GlobalQueue) 841 } 842 } 843 } 844 845 // Tests that if an account remains idle for a prolonged amount of time, any 846 // non-executable transactions queued up are dropped to prevent wasting resources 847 // on shuffling them around. 848 // 849 // This logic should not hold for local transactions, unless the local tracking 850 // mechanism is disabled. 851 func TestTransactionQueueTimeLimiting(t *testing.T) { testTransactionQueueTimeLimiting(t, false) } 852 func TestTransactionQueueTimeLimitingNoLocals(t *testing.T) { testTransactionQueueTimeLimiting(t, true) } 853 854 func testTransactionQueueTimeLimiting(t *testing.T, nolocals bool) { 855 // Reduce the eviction interval to a testable amount 856 defer func(old time.Duration) { evictionInterval = old }(evictionInterval) 857 evictionInterval = time.Second 858 859 // Create the pool to test the non-expiration enforcement 860 statedb, _ := state.New(common.Hash{}, state.NewDatabase(athdb.NewMemDatabase())) 861 blockchain := &testBlockChain{statedb, 1000000, new(event.Feed)} 862 863 config := testTxPoolConfig 864 config.Lifetime = time.Second 865 config.NoLocals = nolocals 866 867 pool := NewTxPool(config, params.TestChainConfig, blockchain) 868 defer pool.Stop() 869 870 // Create two test accounts to ensure remotes expire but locals do not 871 local, _ := crypto.GenerateKey() 872 remote, _ := crypto.GenerateKey() 873 874 pool.currentState.AddBalance(crypto.PubkeyToAddress(local.PublicKey), big.NewInt(1000000000)) 875 pool.currentState.AddBalance(crypto.PubkeyToAddress(remote.PublicKey), big.NewInt(1000000000)) 876 877 // Add the two transactions and ensure they both are queued up 878 if err := pool.AddLocal(pricedTransaction(1, 100000, big.NewInt(1), local)); err != nil { 879 t.Fatalf("failed to add local transaction: %v", err) 880 } 881 if err := pool.AddRemote(pricedTransaction(1, 100000, big.NewInt(1), remote)); err != nil { 882 t.Fatalf("failed to add remote transaction: %v", err) 883 } 884 pending, queued := pool.Stats() 885 if pending != 0 { 886 t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 0) 887 } 888 if queued != 2 { 889 t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 2) 890 } 891 if err := validateTxPoolInternals(pool); err != nil { 892 t.Fatalf("pool internal state corrupted: %v", err) 893 } 894 // Wait a bit for eviction to run and clean up any leftovers, and ensure only the local remains 895 time.Sleep(2 * config.Lifetime) 896 897 pending, queued = pool.Stats() 898 if pending != 0 { 899 t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 0) 900 } 901 if nolocals { 902 if queued != 0 { 903 t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 0) 904 } 905 } else { 906 if queued != 1 { 907 t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 1) 908 } 909 } 910 if err := validateTxPoolInternals(pool); err != nil { 911 t.Fatalf("pool internal state corrupted: %v", err) 912 } 913 } 914 915 // Tests that even if the transaction count belonging to a single account goes 916 // above some threshold, as long as the transactions are executable, they are 917 // accepted. 918 func TestTransactionPendingLimiting(t *testing.T) { 919 t.Parallel() 920 921 // Create a test account and fund it 922 pool, key := setupTxPool() 923 defer pool.Stop() 924 925 account, _ := deriveSender(transaction(0, 0, key)) 926 pool.currentState.AddBalance(account, big.NewInt(1000000)) 927 928 // Keep track of transaction events to ensure all executables get announced 929 events := make(chan NewTxsEvent, testTxPoolConfig.AccountQueue+5) 930 sub := pool.txFeed.Subscribe(events) 931 defer sub.Unsubscribe() 932 933 // Keep queuing up transactions and make sure all above a limit are dropped 934 for i := uint64(0); i < testTxPoolConfig.AccountQueue+5; i++ { 935 if err := pool.AddRemote(transaction(i, 100000, key)); err != nil { 936 t.Fatalf("tx %d: failed to add transaction: %v", i, err) 937 } 938 if pool.pending[account].Len() != int(i)+1 { 939 t.Errorf("tx %d: pending pool size mismatch: have %d, want %d", i, pool.pending[account].Len(), i+1) 940 } 941 if len(pool.queue) != 0 { 942 t.Errorf("tx %d: queue size mismatch: have %d, want %d", i, pool.queue[account].Len(), 0) 943 } 944 } 945 if pool.all.Count() != int(testTxPoolConfig.AccountQueue+5) { 946 t.Errorf("total transaction mismatch: have %d, want %d", pool.all.Count(), testTxPoolConfig.AccountQueue+5) 947 } 948 if err := validateEvents(events, int(testTxPoolConfig.AccountQueue+5)); err != nil { 949 t.Fatalf("event firing failed: %v", err) 950 } 951 if err := validateTxPoolInternals(pool); err != nil { 952 t.Fatalf("pool internal state corrupted: %v", err) 953 } 954 } 955 956 // Tests that the transaction limits are enforced the same way irrelevant whather 957 // the transactions are added one by one or in batches. 958 func TestTransactionQueueLimitingEquivalency(t *testing.T) { testTransactionLimitingEquivalency(t, 1) } 959 func TestTransactionPendingLimitingEquivalency(t *testing.T) { testTransactionLimitingEquivalency(t, 0) } 960 961 func testTransactionLimitingEquivalency(t *testing.T, origin uint64) { 962 t.Parallel() 963 964 // Add a batch of transactions to a pool one by one 965 pool1, key1 := setupTxPool() 966 defer pool1.Stop() 967 968 account1, _ := deriveSender(transaction(0, 0, key1)) 969 pool1.currentState.AddBalance(account1, big.NewInt(1000000)) 970 971 for i := uint64(0); i < testTxPoolConfig.AccountQueue+5; i++ { 972 if err := pool1.AddRemote(transaction(origin+i, 100000, key1)); err != nil { 973 t.Fatalf("tx %d: failed to add transaction: %v", i, err) 974 } 975 } 976 // Add a batch of transactions to a pool in one big batch 977 pool2, key2 := setupTxPool() 978 defer pool2.Stop() 979 980 account2, _ := deriveSender(transaction(0, 0, key2)) 981 pool2.currentState.AddBalance(account2, big.NewInt(1000000)) 982 983 txs := []*types.Transaction{} 984 for i := uint64(0); i < testTxPoolConfig.AccountQueue+5; i++ { 985 txs = append(txs, transaction(origin+i, 100000, key2)) 986 } 987 pool2.AddRemotes(txs) 988 989 // Ensure the batch optimization honors the same pool mechanics 990 if len(pool1.pending) != len(pool2.pending) { 991 t.Errorf("pending transaction count mismatch: one-by-one algo: %d, batch algo: %d", len(pool1.pending), len(pool2.pending)) 992 } 993 if len(pool1.queue) != len(pool2.queue) { 994 t.Errorf("queued transaction count mismatch: one-by-one algo: %d, batch algo: %d", len(pool1.queue), len(pool2.queue)) 995 } 996 if pool1.all.Count() != pool2.all.Count() { 997 t.Errorf("total transaction count mismatch: one-by-one algo %d, batch algo %d", pool1.all.Count(), pool2.all.Count()) 998 } 999 if err := validateTxPoolInternals(pool1); err != nil { 1000 t.Errorf("pool 1 internal state corrupted: %v", err) 1001 } 1002 if err := validateTxPoolInternals(pool2); err != nil { 1003 t.Errorf("pool 2 internal state corrupted: %v", err) 1004 } 1005 } 1006 1007 // Tests that if the transaction count belonging to multiple accounts go above 1008 // some hard threshold, the higher transactions are dropped to prevent DOS 1009 // attacks. 1010 func TestTransactionPendingGlobalLimiting(t *testing.T) { 1011 t.Parallel() 1012 1013 // Create the pool to test the limit enforcement with 1014 statedb, _ := state.New(common.Hash{}, state.NewDatabase(athdb.NewMemDatabase())) 1015 blockchain := &testBlockChain{statedb, 1000000, new(event.Feed)} 1016 1017 config := testTxPoolConfig 1018 config.GlobalSlots = config.AccountSlots * 10 1019 1020 pool := NewTxPool(config, params.TestChainConfig, blockchain) 1021 defer pool.Stop() 1022 1023 // Create a number of test accounts and fund them 1024 keys := make([]*ecdsa.PrivateKey, 5) 1025 for i := 0; i < len(keys); i++ { 1026 keys[i], _ = crypto.GenerateKey() 1027 pool.currentState.AddBalance(crypto.PubkeyToAddress(keys[i].PublicKey), big.NewInt(1000000)) 1028 } 1029 // Generate and queue a batch of transactions 1030 nonces := make(map[common.Address]uint64) 1031 1032 txs := types.Transactions{} 1033 for _, key := range keys { 1034 addr := crypto.PubkeyToAddress(key.PublicKey) 1035 for j := 0; j < int(config.GlobalSlots)/len(keys)*2; j++ { 1036 txs = append(txs, transaction(nonces[addr], 100000, key)) 1037 nonces[addr]++ 1038 } 1039 } 1040 // Import the batch and verify that limits have been enforced 1041 pool.AddRemotes(txs) 1042 1043 pending := 0 1044 for _, list := range pool.pending { 1045 pending += list.Len() 1046 } 1047 if pending > int(config.GlobalSlots) { 1048 t.Fatalf("total pending transactions overflow allowance: %d > %d", pending, config.GlobalSlots) 1049 } 1050 if err := validateTxPoolInternals(pool); err != nil { 1051 t.Fatalf("pool internal state corrupted: %v", err) 1052 } 1053 } 1054 1055 // Tests that if transactions start being capped, transactions are also removed from 'all' 1056 func TestTransactionCapClearsFromAll(t *testing.T) { 1057 t.Parallel() 1058 1059 // Create the pool to test the limit enforcement with 1060 statedb, _ := state.New(common.Hash{}, state.NewDatabase(athdb.NewMemDatabase())) 1061 blockchain := &testBlockChain{statedb, 1000000, new(event.Feed)} 1062 1063 config := testTxPoolConfig 1064 config.AccountSlots = 2 1065 config.AccountQueue = 2 1066 config.GlobalSlots = 8 1067 1068 pool := NewTxPool(config, params.TestChainConfig, blockchain) 1069 defer pool.Stop() 1070 1071 // Create a number of test accounts and fund them 1072 key, _ := crypto.GenerateKey() 1073 addr := crypto.PubkeyToAddress(key.PublicKey) 1074 pool.currentState.AddBalance(addr, big.NewInt(1000000)) 1075 1076 txs := types.Transactions{} 1077 for j := 0; j < int(config.GlobalSlots)*2; j++ { 1078 txs = append(txs, transaction(uint64(j), 100000, key)) 1079 } 1080 // Import the batch and verify that limits have been enforced 1081 pool.AddRemotes(txs) 1082 if err := validateTxPoolInternals(pool); err != nil { 1083 t.Fatalf("pool internal state corrupted: %v", err) 1084 } 1085 } 1086 1087 // Tests that if the transaction count belonging to multiple accounts go above 1088 // some hard threshold, if they are under the minimum guaranteed slot count then 1089 // the transactions are still kept. 1090 func TestTransactionPendingMinimumAllowance(t *testing.T) { 1091 t.Parallel() 1092 1093 // Create the pool to test the limit enforcement with 1094 statedb, _ := state.New(common.Hash{}, state.NewDatabase(athdb.NewMemDatabase())) 1095 blockchain := &testBlockChain{statedb, 1000000, new(event.Feed)} 1096 1097 config := testTxPoolConfig 1098 config.GlobalSlots = 0 1099 1100 pool := NewTxPool(config, params.TestChainConfig, blockchain) 1101 defer pool.Stop() 1102 1103 // Create a number of test accounts and fund them 1104 keys := make([]*ecdsa.PrivateKey, 5) 1105 for i := 0; i < len(keys); i++ { 1106 keys[i], _ = crypto.GenerateKey() 1107 pool.currentState.AddBalance(crypto.PubkeyToAddress(keys[i].PublicKey), big.NewInt(1000000)) 1108 } 1109 // Generate and queue a batch of transactions 1110 nonces := make(map[common.Address]uint64) 1111 1112 txs := types.Transactions{} 1113 for _, key := range keys { 1114 addr := crypto.PubkeyToAddress(key.PublicKey) 1115 for j := 0; j < int(config.AccountSlots)*2; j++ { 1116 txs = append(txs, transaction(nonces[addr], 100000, key)) 1117 nonces[addr]++ 1118 } 1119 } 1120 // Import the batch and verify that limits have been enforced 1121 pool.AddRemotes(txs) 1122 1123 for addr, list := range pool.pending { 1124 if list.Len() != int(config.AccountSlots) { 1125 t.Errorf("addr %x: total pending transactions mismatch: have %d, want %d", addr, list.Len(), config.AccountSlots) 1126 } 1127 } 1128 if err := validateTxPoolInternals(pool); err != nil { 1129 t.Fatalf("pool internal state corrupted: %v", err) 1130 } 1131 } 1132 1133 // Tests that setting the transaction pool gas price to a higher value correctly 1134 // discards everything cheaper than that and moves any gapped transactions back 1135 // from the pending pool to the queue. 1136 // 1137 // Note, local transactions are never allowed to be dropped. 1138 func TestTransactionPoolRepricing(t *testing.T) { 1139 t.Parallel() 1140 1141 // Create the pool to test the pricing enforcement with 1142 statedb, _ := state.New(common.Hash{}, state.NewDatabase(athdb.NewMemDatabase())) 1143 blockchain := &testBlockChain{statedb, 1000000, new(event.Feed)} 1144 1145 pool := NewTxPool(testTxPoolConfig, params.TestChainConfig, blockchain) 1146 defer pool.Stop() 1147 1148 // Keep track of transaction events to ensure all executables get announced 1149 events := make(chan NewTxsEvent, 32) 1150 sub := pool.txFeed.Subscribe(events) 1151 defer sub.Unsubscribe() 1152 1153 // Create a number of test accounts and fund them 1154 keys := make([]*ecdsa.PrivateKey, 4) 1155 for i := 0; i < len(keys); i++ { 1156 keys[i], _ = crypto.GenerateKey() 1157 pool.currentState.AddBalance(crypto.PubkeyToAddress(keys[i].PublicKey), big.NewInt(1000000)) 1158 } 1159 // Generate and queue a batch of transactions, both pending and queued 1160 txs := types.Transactions{} 1161 1162 txs = append(txs, pricedTransaction(0, 100000, big.NewInt(2), keys[0])) 1163 txs = append(txs, pricedTransaction(1, 100000, big.NewInt(1), keys[0])) 1164 txs = append(txs, pricedTransaction(2, 100000, big.NewInt(2), keys[0])) 1165 1166 txs = append(txs, pricedTransaction(0, 100000, big.NewInt(1), keys[1])) 1167 txs = append(txs, pricedTransaction(1, 100000, big.NewInt(2), keys[1])) 1168 txs = append(txs, pricedTransaction(2, 100000, big.NewInt(2), keys[1])) 1169 1170 txs = append(txs, pricedTransaction(1, 100000, big.NewInt(2), keys[2])) 1171 txs = append(txs, pricedTransaction(2, 100000, big.NewInt(1), keys[2])) 1172 txs = append(txs, pricedTransaction(3, 100000, big.NewInt(2), keys[2])) 1173 1174 ltx := pricedTransaction(0, 100000, big.NewInt(1), keys[3]) 1175 1176 // Import the batch and that both pending and queued transactions match up 1177 pool.AddRemotes(txs) 1178 pool.AddLocal(ltx) 1179 1180 pending, queued := pool.Stats() 1181 if pending != 7 { 1182 t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 7) 1183 } 1184 if queued != 3 { 1185 t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 3) 1186 } 1187 if err := validateEvents(events, 7); err != nil { 1188 t.Fatalf("original event firing failed: %v", err) 1189 } 1190 if err := validateTxPoolInternals(pool); err != nil { 1191 t.Fatalf("pool internal state corrupted: %v", err) 1192 } 1193 // Reprice the pool and check that underpriced transactions get dropped 1194 pool.SetGasPrice(big.NewInt(2)) 1195 1196 pending, queued = pool.Stats() 1197 if pending != 2 { 1198 t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 2) 1199 } 1200 if queued != 5 { 1201 t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 5) 1202 } 1203 if err := validateEvents(events, 0); err != nil { 1204 t.Fatalf("reprice event firing failed: %v", err) 1205 } 1206 if err := validateTxPoolInternals(pool); err != nil { 1207 t.Fatalf("pool internal state corrupted: %v", err) 1208 } 1209 // Check that we can't add the old transactions back 1210 if err := pool.AddRemote(pricedTransaction(1, 100000, big.NewInt(1), keys[0])); err != ErrUnderpriced { 1211 t.Fatalf("adding underpriced pending transaction error mismatch: have %v, want %v", err, ErrUnderpriced) 1212 } 1213 if err := pool.AddRemote(pricedTransaction(0, 100000, big.NewInt(1), keys[1])); err != ErrUnderpriced { 1214 t.Fatalf("adding underpriced pending transaction error mismatch: have %v, want %v", err, ErrUnderpriced) 1215 } 1216 if err := pool.AddRemote(pricedTransaction(2, 100000, big.NewInt(1), keys[2])); err != ErrUnderpriced { 1217 t.Fatalf("adding underpriced queued transaction error mismatch: have %v, want %v", err, ErrUnderpriced) 1218 } 1219 if err := validateEvents(events, 0); err != nil { 1220 t.Fatalf("post-reprice event firing failed: %v", err) 1221 } 1222 if err := validateTxPoolInternals(pool); err != nil { 1223 t.Fatalf("pool internal state corrupted: %v", err) 1224 } 1225 // However we can add local underpriced transactions 1226 tx := pricedTransaction(1, 100000, big.NewInt(1), keys[3]) 1227 if err := pool.AddLocal(tx); err != nil { 1228 t.Fatalf("failed to add underpriced local transaction: %v", err) 1229 } 1230 if pending, _ = pool.Stats(); pending != 3 { 1231 t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 3) 1232 } 1233 if err := validateEvents(events, 1); err != nil { 1234 t.Fatalf("post-reprice local event firing failed: %v", err) 1235 } 1236 if err := validateTxPoolInternals(pool); err != nil { 1237 t.Fatalf("pool internal state corrupted: %v", err) 1238 } 1239 // And we can fill gaps with properly priced transactions 1240 if err := pool.AddRemote(pricedTransaction(1, 100000, big.NewInt(2), keys[0])); err != nil { 1241 t.Fatalf("failed to add pending transaction: %v", err) 1242 } 1243 if err := pool.AddRemote(pricedTransaction(0, 100000, big.NewInt(2), keys[1])); err != nil { 1244 t.Fatalf("failed to add pending transaction: %v", err) 1245 } 1246 if err := pool.AddRemote(pricedTransaction(2, 100000, big.NewInt(2), keys[2])); err != nil { 1247 t.Fatalf("failed to add queued transaction: %v", err) 1248 } 1249 if err := validateEvents(events, 5); err != nil { 1250 t.Fatalf("post-reprice event firing failed: %v", err) 1251 } 1252 if err := validateTxPoolInternals(pool); err != nil { 1253 t.Fatalf("pool internal state corrupted: %v", err) 1254 } 1255 } 1256 1257 // Tests that setting the transaction pool gas price to a higher value does not 1258 // remove local transactions. 1259 func TestTransactionPoolRepricingKeepsLocals(t *testing.T) { 1260 t.Parallel() 1261 1262 // Create the pool to test the pricing enforcement with 1263 statedb, _ := state.New(common.Hash{}, state.NewDatabase(athdb.NewMemDatabase())) 1264 blockchain := &testBlockChain{statedb, 1000000, new(event.Feed)} 1265 1266 pool := NewTxPool(testTxPoolConfig, params.TestChainConfig, blockchain) 1267 defer pool.Stop() 1268 1269 // Create a number of test accounts and fund them 1270 keys := make([]*ecdsa.PrivateKey, 3) 1271 for i := 0; i < len(keys); i++ { 1272 keys[i], _ = crypto.GenerateKey() 1273 pool.currentState.AddBalance(crypto.PubkeyToAddress(keys[i].PublicKey), big.NewInt(1000*1000000)) 1274 } 1275 // Create transaction (both pending and queued) with a linearly growing gasprice 1276 for i := uint64(0); i < 500; i++ { 1277 // Add pending 1278 p_tx := pricedTransaction(i, 100000, big.NewInt(int64(i)), keys[2]) 1279 if err := pool.AddLocal(p_tx); err != nil { 1280 t.Fatal(err) 1281 } 1282 // Add queued 1283 q_tx := pricedTransaction(i+501, 100000, big.NewInt(int64(i)), keys[2]) 1284 if err := pool.AddLocal(q_tx); err != nil { 1285 t.Fatal(err) 1286 } 1287 } 1288 pending, queued := pool.Stats() 1289 expPending, expQueued := 500, 500 1290 validate := func() { 1291 pending, queued = pool.Stats() 1292 if pending != expPending { 1293 t.Fatalf("pending transactions mismatched: have %d, want %d", pending, expPending) 1294 } 1295 if queued != expQueued { 1296 t.Fatalf("queued transactions mismatched: have %d, want %d", queued, expQueued) 1297 } 1298 1299 if err := validateTxPoolInternals(pool); err != nil { 1300 t.Fatalf("pool internal state corrupted: %v", err) 1301 } 1302 } 1303 validate() 1304 1305 // Reprice the pool and check that nothing is dropped 1306 pool.SetGasPrice(big.NewInt(2)) 1307 validate() 1308 1309 pool.SetGasPrice(big.NewInt(2)) 1310 pool.SetGasPrice(big.NewInt(4)) 1311 pool.SetGasPrice(big.NewInt(8)) 1312 pool.SetGasPrice(big.NewInt(100)) 1313 validate() 1314 } 1315 1316 // Tests that when the pool reaches its global transaction limit, underpriced 1317 // transactions are gradually shifted out for more expensive ones and any gapped 1318 // pending transactions are moved into the queue. 1319 // 1320 // Note, local transactions are never allowed to be dropped. 1321 func TestTransactionPoolUnderpricing(t *testing.T) { 1322 t.Parallel() 1323 1324 // Create the pool to test the pricing enforcement with 1325 statedb, _ := state.New(common.Hash{}, state.NewDatabase(athdb.NewMemDatabase())) 1326 blockchain := &testBlockChain{statedb, 1000000, new(event.Feed)} 1327 1328 config := testTxPoolConfig 1329 config.GlobalSlots = 2 1330 config.GlobalQueue = 2 1331 1332 pool := NewTxPool(config, params.TestChainConfig, blockchain) 1333 defer pool.Stop() 1334 1335 // Keep track of transaction events to ensure all executables get announced 1336 events := make(chan NewTxsEvent, 32) 1337 sub := pool.txFeed.Subscribe(events) 1338 defer sub.Unsubscribe() 1339 1340 // Create a number of test accounts and fund them 1341 keys := make([]*ecdsa.PrivateKey, 4) 1342 for i := 0; i < len(keys); i++ { 1343 keys[i], _ = crypto.GenerateKey() 1344 pool.currentState.AddBalance(crypto.PubkeyToAddress(keys[i].PublicKey), big.NewInt(1000000)) 1345 } 1346 // Generate and queue a batch of transactions, both pending and queued 1347 txs := types.Transactions{} 1348 1349 txs = append(txs, pricedTransaction(0, 100000, big.NewInt(1), keys[0])) 1350 txs = append(txs, pricedTransaction(1, 100000, big.NewInt(2), keys[0])) 1351 1352 txs = append(txs, pricedTransaction(1, 100000, big.NewInt(1), keys[1])) 1353 1354 ltx := pricedTransaction(0, 100000, big.NewInt(1), keys[2]) 1355 1356 // Import the batch and that both pending and queued transactions match up 1357 pool.AddRemotes(txs) 1358 pool.AddLocal(ltx) 1359 1360 pending, queued := pool.Stats() 1361 if pending != 3 { 1362 t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 3) 1363 } 1364 if queued != 1 { 1365 t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 1) 1366 } 1367 if err := validateEvents(events, 3); err != nil { 1368 t.Fatalf("original event firing failed: %v", err) 1369 } 1370 if err := validateTxPoolInternals(pool); err != nil { 1371 t.Fatalf("pool internal state corrupted: %v", err) 1372 } 1373 // Ensure that adding an underpriced transaction on block limit fails 1374 if err := pool.AddRemote(pricedTransaction(0, 100000, big.NewInt(1), keys[1])); err != ErrUnderpriced { 1375 t.Fatalf("adding underpriced pending transaction error mismatch: have %v, want %v", err, ErrUnderpriced) 1376 } 1377 // Ensure that adding high priced transactions drops cheap ones, but not own 1378 if err := pool.AddRemote(pricedTransaction(0, 100000, big.NewInt(3), keys[1])); err != nil { // +K1:0 => -K1:1 => Pend K0:0, K0:1, K1:0, K2:0; Que - 1379 t.Fatalf("failed to add well priced transaction: %v", err) 1380 } 1381 if err := pool.AddRemote(pricedTransaction(2, 100000, big.NewInt(4), keys[1])); err != nil { // +K1:2 => -K0:0 => Pend K1:0, K2:0; Que K0:1 K1:2 1382 t.Fatalf("failed to add well priced transaction: %v", err) 1383 } 1384 if err := pool.AddRemote(pricedTransaction(3, 100000, big.NewInt(5), keys[1])); err != nil { // +K1:3 => -K0:1 => Pend K1:0, K2:0; Que K1:2 K1:3 1385 t.Fatalf("failed to add well priced transaction: %v", err) 1386 } 1387 pending, queued = pool.Stats() 1388 if pending != 2 { 1389 t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 2) 1390 } 1391 if queued != 2 { 1392 t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 2) 1393 } 1394 if err := validateEvents(events, 1); err != nil { 1395 t.Fatalf("additional event firing failed: %v", err) 1396 } 1397 if err := validateTxPoolInternals(pool); err != nil { 1398 t.Fatalf("pool internal state corrupted: %v", err) 1399 } 1400 // Ensure that adding local transactions can push out even higher priced ones 1401 ltx = pricedTransaction(1, 100000, big.NewInt(0), keys[2]) 1402 if err := pool.AddLocal(ltx); err != nil { 1403 t.Fatalf("failed to append underpriced local transaction: %v", err) 1404 } 1405 ltx = pricedTransaction(0, 100000, big.NewInt(0), keys[3]) 1406 if err := pool.AddLocal(ltx); err != nil { 1407 t.Fatalf("failed to add new underpriced local transaction: %v", err) 1408 } 1409 pending, queued = pool.Stats() 1410 if pending != 3 { 1411 t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 3) 1412 } 1413 if queued != 1 { 1414 t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 1) 1415 } 1416 if err := validateEvents(events, 2); err != nil { 1417 t.Fatalf("local event firing failed: %v", err) 1418 } 1419 if err := validateTxPoolInternals(pool); err != nil { 1420 t.Fatalf("pool internal state corrupted: %v", err) 1421 } 1422 } 1423 1424 // Tests that more expensive transactions push out cheap ones from the pool, but 1425 // without producing instability by creating gaps that start jumping transactions 1426 // back and forth between queued/pending. 1427 func TestTransactionPoolStableUnderpricing(t *testing.T) { 1428 t.Parallel() 1429 1430 // Create the pool to test the pricing enforcement with 1431 statedb, _ := state.New(common.Hash{}, state.NewDatabase(athdb.NewMemDatabase())) 1432 blockchain := &testBlockChain{statedb, 1000000, new(event.Feed)} 1433 1434 config := testTxPoolConfig 1435 config.GlobalSlots = 128 1436 config.GlobalQueue = 0 1437 1438 pool := NewTxPool(config, params.TestChainConfig, blockchain) 1439 defer pool.Stop() 1440 1441 // Keep track of transaction events to ensure all executables get announced 1442 events := make(chan NewTxsEvent, 32) 1443 sub := pool.txFeed.Subscribe(events) 1444 defer sub.Unsubscribe() 1445 1446 // Create a number of test accounts and fund them 1447 keys := make([]*ecdsa.PrivateKey, 2) 1448 for i := 0; i < len(keys); i++ { 1449 keys[i], _ = crypto.GenerateKey() 1450 pool.currentState.AddBalance(crypto.PubkeyToAddress(keys[i].PublicKey), big.NewInt(1000000)) 1451 } 1452 // Fill up the entire queue with the same transaction price points 1453 txs := types.Transactions{} 1454 for i := uint64(0); i < config.GlobalSlots; i++ { 1455 txs = append(txs, pricedTransaction(i, 100000, big.NewInt(1), keys[0])) 1456 } 1457 pool.AddRemotes(txs) 1458 1459 pending, queued := pool.Stats() 1460 if pending != int(config.GlobalSlots) { 1461 t.Fatalf("pending transactions mismatched: have %d, want %d", pending, config.GlobalSlots) 1462 } 1463 if queued != 0 { 1464 t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 0) 1465 } 1466 if err := validateEvents(events, int(config.GlobalSlots)); err != nil { 1467 t.Fatalf("original event firing failed: %v", err) 1468 } 1469 if err := validateTxPoolInternals(pool); err != nil { 1470 t.Fatalf("pool internal state corrupted: %v", err) 1471 } 1472 // Ensure that adding high priced transactions drops a cheap, but doesn't produce a gap 1473 if err := pool.AddRemote(pricedTransaction(0, 100000, big.NewInt(3), keys[1])); err != nil { 1474 t.Fatalf("failed to add well priced transaction: %v", err) 1475 } 1476 pending, queued = pool.Stats() 1477 if pending != int(config.GlobalSlots) { 1478 t.Fatalf("pending transactions mismatched: have %d, want %d", pending, config.GlobalSlots) 1479 } 1480 if queued != 0 { 1481 t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 0) 1482 } 1483 if err := validateEvents(events, 1); err != nil { 1484 t.Fatalf("additional event firing failed: %v", err) 1485 } 1486 if err := validateTxPoolInternals(pool); err != nil { 1487 t.Fatalf("pool internal state corrupted: %v", err) 1488 } 1489 } 1490 1491 // Tests that the pool rejects replacement transactions that don't meet the minimum 1492 // price bump required. 1493 func TestTransactionReplacement(t *testing.T) { 1494 t.Parallel() 1495 1496 // Create the pool to test the pricing enforcement with 1497 statedb, _ := state.New(common.Hash{}, state.NewDatabase(athdb.NewMemDatabase())) 1498 blockchain := &testBlockChain{statedb, 1000000, new(event.Feed)} 1499 1500 pool := NewTxPool(testTxPoolConfig, params.TestChainConfig, blockchain) 1501 defer pool.Stop() 1502 1503 // Keep track of transaction events to ensure all executables get announced 1504 events := make(chan NewTxsEvent, 32) 1505 sub := pool.txFeed.Subscribe(events) 1506 defer sub.Unsubscribe() 1507 1508 // Create a test account to add transactions with 1509 key, _ := crypto.GenerateKey() 1510 pool.currentState.AddBalance(crypto.PubkeyToAddress(key.PublicKey), big.NewInt(1000000000)) 1511 1512 // Add pending transactions, ensuring the minimum price bump is enforced for replacement (for ultra low prices too) 1513 price := int64(100) 1514 threshold := (price * (100 + int64(testTxPoolConfig.PriceBump))) / 100 1515 1516 if err := pool.AddRemote(pricedTransaction(0, 100000, big.NewInt(1), key)); err != nil { 1517 t.Fatalf("failed to add original cheap pending transaction: %v", err) 1518 } 1519 if err := pool.AddRemote(pricedTransaction(0, 100001, big.NewInt(1), key)); err != ErrReplaceUnderpriced { 1520 t.Fatalf("original cheap pending transaction replacement error mismatch: have %v, want %v", err, ErrReplaceUnderpriced) 1521 } 1522 if err := pool.AddRemote(pricedTransaction(0, 100000, big.NewInt(2), key)); err != nil { 1523 t.Fatalf("failed to replace original cheap pending transaction: %v", err) 1524 } 1525 if err := validateEvents(events, 2); err != nil { 1526 t.Fatalf("cheap replacement event firing failed: %v", err) 1527 } 1528 1529 if err := pool.AddRemote(pricedTransaction(0, 100000, big.NewInt(price), key)); err != nil { 1530 t.Fatalf("failed to add original proper pending transaction: %v", err) 1531 } 1532 if err := pool.AddRemote(pricedTransaction(0, 100001, big.NewInt(threshold-1), key)); err != ErrReplaceUnderpriced { 1533 t.Fatalf("original proper pending transaction replacement error mismatch: have %v, want %v", err, ErrReplaceUnderpriced) 1534 } 1535 if err := pool.AddRemote(pricedTransaction(0, 100000, big.NewInt(threshold), key)); err != nil { 1536 t.Fatalf("failed to replace original proper pending transaction: %v", err) 1537 } 1538 if err := validateEvents(events, 2); err != nil { 1539 t.Fatalf("proper replacement event firing failed: %v", err) 1540 } 1541 // Add queued transactions, ensuring the minimum price bump is enforced for replacement (for ultra low prices too) 1542 if err := pool.AddRemote(pricedTransaction(2, 100000, big.NewInt(1), key)); err != nil { 1543 t.Fatalf("failed to add original cheap queued transaction: %v", err) 1544 } 1545 if err := pool.AddRemote(pricedTransaction(2, 100001, big.NewInt(1), key)); err != ErrReplaceUnderpriced { 1546 t.Fatalf("original cheap queued transaction replacement error mismatch: have %v, want %v", err, ErrReplaceUnderpriced) 1547 } 1548 if err := pool.AddRemote(pricedTransaction(2, 100000, big.NewInt(2), key)); err != nil { 1549 t.Fatalf("failed to replace original cheap queued transaction: %v", err) 1550 } 1551 1552 if err := pool.AddRemote(pricedTransaction(2, 100000, big.NewInt(price), key)); err != nil { 1553 t.Fatalf("failed to add original proper queued transaction: %v", err) 1554 } 1555 if err := pool.AddRemote(pricedTransaction(2, 100001, big.NewInt(threshold-1), key)); err != ErrReplaceUnderpriced { 1556 t.Fatalf("original proper queued transaction replacement error mismatch: have %v, want %v", err, ErrReplaceUnderpriced) 1557 } 1558 if err := pool.AddRemote(pricedTransaction(2, 100000, big.NewInt(threshold), key)); err != nil { 1559 t.Fatalf("failed to replace original proper queued transaction: %v", err) 1560 } 1561 1562 if err := validateEvents(events, 0); err != nil { 1563 t.Fatalf("queued replacement event firing failed: %v", err) 1564 } 1565 if err := validateTxPoolInternals(pool); err != nil { 1566 t.Fatalf("pool internal state corrupted: %v", err) 1567 } 1568 } 1569 1570 // Tests that local transactions are journaled to disk, but remote transactions 1571 // get discarded between restarts. 1572 func TestTransactionJournaling(t *testing.T) { testTransactionJournaling(t, false) } 1573 func TestTransactionJournalingNoLocals(t *testing.T) { testTransactionJournaling(t, true) } 1574 1575 func testTransactionJournaling(t *testing.T, nolocals bool) { 1576 t.Parallel() 1577 1578 // Create a temporary file for the journal 1579 file, err := ioutil.TempFile("", "") 1580 if err != nil { 1581 t.Fatalf("failed to create temporary journal: %v", err) 1582 } 1583 journal := file.Name() 1584 defer os.Remove(journal) 1585 1586 // Clean up the temporary file, we only need the path for now 1587 file.Close() 1588 os.Remove(journal) 1589 1590 // Create the original pool to inject transaction into the journal 1591 statedb, _ := state.New(common.Hash{}, state.NewDatabase(athdb.NewMemDatabase())) 1592 blockchain := &testBlockChain{statedb, 1000000, new(event.Feed)} 1593 1594 config := testTxPoolConfig 1595 config.NoLocals = nolocals 1596 config.Journal = journal 1597 config.Rejournal = time.Second 1598 1599 pool := NewTxPool(config, params.TestChainConfig, blockchain) 1600 1601 // Create two test accounts to ensure remotes expire but locals do not 1602 local, _ := crypto.GenerateKey() 1603 remote, _ := crypto.GenerateKey() 1604 1605 pool.currentState.AddBalance(crypto.PubkeyToAddress(local.PublicKey), big.NewInt(1000000000)) 1606 pool.currentState.AddBalance(crypto.PubkeyToAddress(remote.PublicKey), big.NewInt(1000000000)) 1607 1608 // Add three local and a remote transactions and ensure they are queued up 1609 if err := pool.AddLocal(pricedTransaction(0, 100000, big.NewInt(1), local)); err != nil { 1610 t.Fatalf("failed to add local transaction: %v", err) 1611 } 1612 if err := pool.AddLocal(pricedTransaction(1, 100000, big.NewInt(1), local)); err != nil { 1613 t.Fatalf("failed to add local transaction: %v", err) 1614 } 1615 if err := pool.AddLocal(pricedTransaction(2, 100000, big.NewInt(1), local)); err != nil { 1616 t.Fatalf("failed to add local transaction: %v", err) 1617 } 1618 if err := pool.AddRemote(pricedTransaction(0, 100000, big.NewInt(1), remote)); err != nil { 1619 t.Fatalf("failed to add remote transaction: %v", err) 1620 } 1621 pending, queued := pool.Stats() 1622 if pending != 4 { 1623 t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 4) 1624 } 1625 if queued != 0 { 1626 t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 0) 1627 } 1628 if err := validateTxPoolInternals(pool); err != nil { 1629 t.Fatalf("pool internal state corrupted: %v", err) 1630 } 1631 // Terminate the old pool, bump the local nonce, create a new pool and ensure relevant transaction survive 1632 pool.Stop() 1633 statedb.SetNonce(crypto.PubkeyToAddress(local.PublicKey), 1) 1634 blockchain = &testBlockChain{statedb, 1000000, new(event.Feed)} 1635 1636 pool = NewTxPool(config, params.TestChainConfig, blockchain) 1637 1638 pending, queued = pool.Stats() 1639 if queued != 0 { 1640 t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 0) 1641 } 1642 if nolocals { 1643 if pending != 0 { 1644 t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 0) 1645 } 1646 } else { 1647 if pending != 2 { 1648 t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 2) 1649 } 1650 } 1651 if err := validateTxPoolInternals(pool); err != nil { 1652 t.Fatalf("pool internal state corrupted: %v", err) 1653 } 1654 // Bump the nonce temporarily and ensure the newly invalidated transaction is removed 1655 statedb.SetNonce(crypto.PubkeyToAddress(local.PublicKey), 2) 1656 pool.lockedReset(nil, nil) 1657 time.Sleep(2 * config.Rejournal) 1658 pool.Stop() 1659 1660 statedb.SetNonce(crypto.PubkeyToAddress(local.PublicKey), 1) 1661 blockchain = &testBlockChain{statedb, 1000000, new(event.Feed)} 1662 pool = NewTxPool(config, params.TestChainConfig, blockchain) 1663 1664 pending, queued = pool.Stats() 1665 if pending != 0 { 1666 t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 0) 1667 } 1668 if nolocals { 1669 if queued != 0 { 1670 t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 0) 1671 } 1672 } else { 1673 if queued != 1 { 1674 t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 1) 1675 } 1676 } 1677 if err := validateTxPoolInternals(pool); err != nil { 1678 t.Fatalf("pool internal state corrupted: %v", err) 1679 } 1680 pool.Stop() 1681 } 1682 1683 // TestTransactionStatusCheck tests that the pool can correctly retrieve the 1684 // pending status of individual transactions. 1685 func TestTransactionStatusCheck(t *testing.T) { 1686 t.Parallel() 1687 1688 // Create the pool to test the status retrievals with 1689 statedb, _ := state.New(common.Hash{}, state.NewDatabase(athdb.NewMemDatabase())) 1690 blockchain := &testBlockChain{statedb, 1000000, new(event.Feed)} 1691 1692 pool := NewTxPool(testTxPoolConfig, params.TestChainConfig, blockchain) 1693 defer pool.Stop() 1694 1695 // Create the test accounts to check various transaction statuses with 1696 keys := make([]*ecdsa.PrivateKey, 3) 1697 for i := 0; i < len(keys); i++ { 1698 keys[i], _ = crypto.GenerateKey() 1699 pool.currentState.AddBalance(crypto.PubkeyToAddress(keys[i].PublicKey), big.NewInt(1000000)) 1700 } 1701 // Generate and queue a batch of transactions, both pending and queued 1702 txs := types.Transactions{} 1703 1704 txs = append(txs, pricedTransaction(0, 100000, big.NewInt(1), keys[0])) // Pending only 1705 txs = append(txs, pricedTransaction(0, 100000, big.NewInt(1), keys[1])) // Pending and queued 1706 txs = append(txs, pricedTransaction(2, 100000, big.NewInt(1), keys[1])) 1707 txs = append(txs, pricedTransaction(2, 100000, big.NewInt(1), keys[2])) // Queued only 1708 1709 // Import the transaction and ensure they are correctly added 1710 pool.AddRemotes(txs) 1711 1712 pending, queued := pool.Stats() 1713 if pending != 2 { 1714 t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 2) 1715 } 1716 if queued != 2 { 1717 t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 2) 1718 } 1719 if err := validateTxPoolInternals(pool); err != nil { 1720 t.Fatalf("pool internal state corrupted: %v", err) 1721 } 1722 // Retrieve the status of each transaction and validate them 1723 hashes := make([]common.Hash, len(txs)) 1724 for i, tx := range txs { 1725 hashes[i] = tx.Hash() 1726 } 1727 hashes = append(hashes, common.Hash{}) 1728 1729 statuses := pool.Status(hashes) 1730 expect := []TxStatus{TxStatusPending, TxStatusPending, TxStatusQueued, TxStatusQueued, TxStatusUnknown} 1731 1732 for i := 0; i < len(statuses); i++ { 1733 if statuses[i] != expect[i] { 1734 t.Errorf("transaction %d: status mismatch: have %v, want %v", i, statuses[i], expect[i]) 1735 } 1736 } 1737 } 1738 1739 // Benchmarks the speed of validating the contents of the pending queue of the 1740 // transaction pool. 1741 func BenchmarkPendingDemotion100(b *testing.B) { benchmarkPendingDemotion(b, 100) } 1742 func BenchmarkPendingDemotion1000(b *testing.B) { benchmarkPendingDemotion(b, 1000) } 1743 func BenchmarkPendingDemotion10000(b *testing.B) { benchmarkPendingDemotion(b, 10000) } 1744 1745 func benchmarkPendingDemotion(b *testing.B, size int) { 1746 // Add a batch of transactions to a pool one by one 1747 pool, key := setupTxPool() 1748 defer pool.Stop() 1749 1750 account, _ := deriveSender(transaction(0, 0, key)) 1751 pool.currentState.AddBalance(account, big.NewInt(1000000)) 1752 1753 for i := 0; i < size; i++ { 1754 tx := transaction(uint64(i), 100000, key) 1755 pool.promoteTx(account, tx.Hash(), tx) 1756 } 1757 // Benchmark the speed of pool validation 1758 b.ResetTimer() 1759 for i := 0; i < b.N; i++ { 1760 pool.demoteUnexecutables() 1761 } 1762 } 1763 1764 // Benchmarks the speed of scheduling the contents of the future queue of the 1765 // transaction pool. 1766 func BenchmarkFuturePromotion100(b *testing.B) { benchmarkFuturePromotion(b, 100) } 1767 func BenchmarkFuturePromotion1000(b *testing.B) { benchmarkFuturePromotion(b, 1000) } 1768 func BenchmarkFuturePromotion10000(b *testing.B) { benchmarkFuturePromotion(b, 10000) } 1769 1770 func benchmarkFuturePromotion(b *testing.B, size int) { 1771 // Add a batch of transactions to a pool one by one 1772 pool, key := setupTxPool() 1773 defer pool.Stop() 1774 1775 account, _ := deriveSender(transaction(0, 0, key)) 1776 pool.currentState.AddBalance(account, big.NewInt(1000000)) 1777 1778 for i := 0; i < size; i++ { 1779 tx := transaction(uint64(1+i), 100000, key) 1780 pool.enqueueTx(tx.Hash(), tx) 1781 } 1782 // Benchmark the speed of pool validation 1783 b.ResetTimer() 1784 for i := 0; i < b.N; i++ { 1785 pool.promoteExecutables(nil) 1786 } 1787 } 1788 1789 // Benchmarks the speed of iterative transaction insertion. 1790 func BenchmarkPoolInsert(b *testing.B) { 1791 // Generate a batch of transactions to enqueue into the pool 1792 pool, key := setupTxPool() 1793 defer pool.Stop() 1794 1795 account, _ := deriveSender(transaction(0, 0, key)) 1796 pool.currentState.AddBalance(account, big.NewInt(1000000)) 1797 1798 txs := make(types.Transactions, b.N) 1799 for i := 0; i < b.N; i++ { 1800 txs[i] = transaction(uint64(i), 100000, key) 1801 } 1802 // Benchmark importing the transactions into the queue 1803 b.ResetTimer() 1804 for _, tx := range txs { 1805 pool.AddRemote(tx) 1806 } 1807 } 1808 1809 // Benchmarks the speed of batched transaction insertion. 1810 func BenchmarkPoolBatchInsert100(b *testing.B) { benchmarkPoolBatchInsert(b, 100) } 1811 func BenchmarkPoolBatchInsert1000(b *testing.B) { benchmarkPoolBatchInsert(b, 1000) } 1812 func BenchmarkPoolBatchInsert10000(b *testing.B) { benchmarkPoolBatchInsert(b, 10000) } 1813 1814 func benchmarkPoolBatchInsert(b *testing.B, size int) { 1815 // Generate a batch of transactions to enqueue into the pool 1816 pool, key := setupTxPool() 1817 defer pool.Stop() 1818 1819 account, _ := deriveSender(transaction(0, 0, key)) 1820 pool.currentState.AddBalance(account, big.NewInt(1000000)) 1821 1822 batches := make([]types.Transactions, b.N) 1823 for i := 0; i < b.N; i++ { 1824 batches[i] = make(types.Transactions, size) 1825 for j := 0; j < size; j++ { 1826 batches[i][j] = transaction(uint64(size*i+j), 100000, key) 1827 } 1828 } 1829 // Benchmark importing the transactions into the queue 1830 b.ResetTimer() 1831 for _, batch := range batches { 1832 pool.AddRemotes(batch) 1833 } 1834 }