github.com/ader1990/go@v0.0.0-20140630135419-8c24447fa791/src/pkg/crypto/tls/conn.go (about)

     1  // Copyright 2010 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // TLS low level connection and record layer
     6  
     7  package tls
     8  
     9  import (
    10  	"bytes"
    11  	"crypto/cipher"
    12  	"crypto/subtle"
    13  	"crypto/x509"
    14  	"errors"
    15  	"fmt"
    16  	"io"
    17  	"net"
    18  	"sync"
    19  	"time"
    20  )
    21  
    22  // A Conn represents a secured connection.
    23  // It implements the net.Conn interface.
    24  type Conn struct {
    25  	// constant
    26  	conn     net.Conn
    27  	isClient bool
    28  
    29  	// constant after handshake; protected by handshakeMutex
    30  	handshakeMutex    sync.Mutex // handshakeMutex < in.Mutex, out.Mutex, errMutex
    31  	handshakeErr      error      // error resulting from handshake
    32  	vers              uint16     // TLS version
    33  	haveVers          bool       // version has been negotiated
    34  	config            *Config    // configuration passed to constructor
    35  	handshakeComplete bool
    36  	didResume         bool // whether this connection was a session resumption
    37  	cipherSuite       uint16
    38  	ocspResponse      []byte // stapled OCSP response
    39  	peerCertificates  []*x509.Certificate
    40  	// verifiedChains contains the certificate chains that we built, as
    41  	// opposed to the ones presented by the server.
    42  	verifiedChains [][]*x509.Certificate
    43  	// serverName contains the server name indicated by the client, if any.
    44  	serverName string
    45  
    46  	clientProtocol         string
    47  	clientProtocolFallback bool
    48  
    49  	// input/output
    50  	in, out  halfConn     // in.Mutex < out.Mutex
    51  	rawInput *block       // raw input, right off the wire
    52  	input    *block       // application data waiting to be read
    53  	hand     bytes.Buffer // handshake data waiting to be read
    54  
    55  	tmp [16]byte
    56  }
    57  
    58  // Access to net.Conn methods.
    59  // Cannot just embed net.Conn because that would
    60  // export the struct field too.
    61  
    62  // LocalAddr returns the local network address.
    63  func (c *Conn) LocalAddr() net.Addr {
    64  	return c.conn.LocalAddr()
    65  }
    66  
    67  // RemoteAddr returns the remote network address.
    68  func (c *Conn) RemoteAddr() net.Addr {
    69  	return c.conn.RemoteAddr()
    70  }
    71  
    72  // SetDeadline sets the read and write deadlines associated with the connection.
    73  // A zero value for t means Read and Write will not time out.
    74  // After a Write has timed out, the TLS state is corrupt and all future writes will return the same error.
    75  func (c *Conn) SetDeadline(t time.Time) error {
    76  	return c.conn.SetDeadline(t)
    77  }
    78  
    79  // SetReadDeadline sets the read deadline on the underlying connection.
    80  // A zero value for t means Read will not time out.
    81  func (c *Conn) SetReadDeadline(t time.Time) error {
    82  	return c.conn.SetReadDeadline(t)
    83  }
    84  
    85  // SetWriteDeadline sets the write deadline on the underlying connection.
    86  // A zero value for t means Write will not time out.
    87  // After a Write has timed out, the TLS state is corrupt and all future writes will return the same error.
    88  func (c *Conn) SetWriteDeadline(t time.Time) error {
    89  	return c.conn.SetWriteDeadline(t)
    90  }
    91  
    92  // A halfConn represents one direction of the record layer
    93  // connection, either sending or receiving.
    94  type halfConn struct {
    95  	sync.Mutex
    96  
    97  	err     error       // first permanent error
    98  	version uint16      // protocol version
    99  	cipher  interface{} // cipher algorithm
   100  	mac     macFunction
   101  	seq     [8]byte // 64-bit sequence number
   102  	bfree   *block  // list of free blocks
   103  
   104  	nextCipher interface{} // next encryption state
   105  	nextMac    macFunction // next MAC algorithm
   106  
   107  	// used to save allocating a new buffer for each MAC.
   108  	inDigestBuf, outDigestBuf []byte
   109  }
   110  
   111  func (hc *halfConn) setErrorLocked(err error) error {
   112  	hc.err = err
   113  	return err
   114  }
   115  
   116  func (hc *halfConn) error() error {
   117  	hc.Lock()
   118  	err := hc.err
   119  	hc.Unlock()
   120  	return err
   121  }
   122  
   123  // prepareCipherSpec sets the encryption and MAC states
   124  // that a subsequent changeCipherSpec will use.
   125  func (hc *halfConn) prepareCipherSpec(version uint16, cipher interface{}, mac macFunction) {
   126  	hc.version = version
   127  	hc.nextCipher = cipher
   128  	hc.nextMac = mac
   129  }
   130  
   131  // changeCipherSpec changes the encryption and MAC states
   132  // to the ones previously passed to prepareCipherSpec.
   133  func (hc *halfConn) changeCipherSpec() error {
   134  	if hc.nextCipher == nil {
   135  		return alertInternalError
   136  	}
   137  	hc.cipher = hc.nextCipher
   138  	hc.mac = hc.nextMac
   139  	hc.nextCipher = nil
   140  	hc.nextMac = nil
   141  	for i := range hc.seq {
   142  		hc.seq[i] = 0
   143  	}
   144  	return nil
   145  }
   146  
   147  // incSeq increments the sequence number.
   148  func (hc *halfConn) incSeq() {
   149  	for i := 7; i >= 0; i-- {
   150  		hc.seq[i]++
   151  		if hc.seq[i] != 0 {
   152  			return
   153  		}
   154  	}
   155  
   156  	// Not allowed to let sequence number wrap.
   157  	// Instead, must renegotiate before it does.
   158  	// Not likely enough to bother.
   159  	panic("TLS: sequence number wraparound")
   160  }
   161  
   162  // resetSeq resets the sequence number to zero.
   163  func (hc *halfConn) resetSeq() {
   164  	for i := range hc.seq {
   165  		hc.seq[i] = 0
   166  	}
   167  }
   168  
   169  // removePadding returns an unpadded slice, in constant time, which is a prefix
   170  // of the input. It also returns a byte which is equal to 255 if the padding
   171  // was valid and 0 otherwise. See RFC 2246, section 6.2.3.2
   172  func removePadding(payload []byte) ([]byte, byte) {
   173  	if len(payload) < 1 {
   174  		return payload, 0
   175  	}
   176  
   177  	paddingLen := payload[len(payload)-1]
   178  	t := uint(len(payload)-1) - uint(paddingLen)
   179  	// if len(payload) >= (paddingLen - 1) then the MSB of t is zero
   180  	good := byte(int32(^t) >> 31)
   181  
   182  	toCheck := 255 // the maximum possible padding length
   183  	// The length of the padded data is public, so we can use an if here
   184  	if toCheck+1 > len(payload) {
   185  		toCheck = len(payload) - 1
   186  	}
   187  
   188  	for i := 0; i < toCheck; i++ {
   189  		t := uint(paddingLen) - uint(i)
   190  		// if i <= paddingLen then the MSB of t is zero
   191  		mask := byte(int32(^t) >> 31)
   192  		b := payload[len(payload)-1-i]
   193  		good &^= mask&paddingLen ^ mask&b
   194  	}
   195  
   196  	// We AND together the bits of good and replicate the result across
   197  	// all the bits.
   198  	good &= good << 4
   199  	good &= good << 2
   200  	good &= good << 1
   201  	good = uint8(int8(good) >> 7)
   202  
   203  	toRemove := good&paddingLen + 1
   204  	return payload[:len(payload)-int(toRemove)], good
   205  }
   206  
   207  // removePaddingSSL30 is a replacement for removePadding in the case that the
   208  // protocol version is SSLv3. In this version, the contents of the padding
   209  // are random and cannot be checked.
   210  func removePaddingSSL30(payload []byte) ([]byte, byte) {
   211  	if len(payload) < 1 {
   212  		return payload, 0
   213  	}
   214  
   215  	paddingLen := int(payload[len(payload)-1]) + 1
   216  	if paddingLen > len(payload) {
   217  		return payload, 0
   218  	}
   219  
   220  	return payload[:len(payload)-paddingLen], 255
   221  }
   222  
   223  func roundUp(a, b int) int {
   224  	return a + (b-a%b)%b
   225  }
   226  
   227  // cbcMode is an interface for block ciphers using cipher block chaining.
   228  type cbcMode interface {
   229  	cipher.BlockMode
   230  	SetIV([]byte)
   231  }
   232  
   233  // decrypt checks and strips the mac and decrypts the data in b. Returns a
   234  // success boolean, the number of bytes to skip from the start of the record in
   235  // order to get the application payload, and an optional alert value.
   236  func (hc *halfConn) decrypt(b *block) (ok bool, prefixLen int, alertValue alert) {
   237  	// pull out payload
   238  	payload := b.data[recordHeaderLen:]
   239  
   240  	macSize := 0
   241  	if hc.mac != nil {
   242  		macSize = hc.mac.Size()
   243  	}
   244  
   245  	paddingGood := byte(255)
   246  	explicitIVLen := 0
   247  
   248  	// decrypt
   249  	if hc.cipher != nil {
   250  		switch c := hc.cipher.(type) {
   251  		case cipher.Stream:
   252  			c.XORKeyStream(payload, payload)
   253  		case cipher.AEAD:
   254  			explicitIVLen = 8
   255  			if len(payload) < explicitIVLen {
   256  				return false, 0, alertBadRecordMAC
   257  			}
   258  			nonce := payload[:8]
   259  			payload = payload[8:]
   260  
   261  			var additionalData [13]byte
   262  			copy(additionalData[:], hc.seq[:])
   263  			copy(additionalData[8:], b.data[:3])
   264  			n := len(payload) - c.Overhead()
   265  			additionalData[11] = byte(n >> 8)
   266  			additionalData[12] = byte(n)
   267  			var err error
   268  			payload, err = c.Open(payload[:0], nonce, payload, additionalData[:])
   269  			if err != nil {
   270  				return false, 0, alertBadRecordMAC
   271  			}
   272  			b.resize(recordHeaderLen + explicitIVLen + len(payload))
   273  		case cbcMode:
   274  			blockSize := c.BlockSize()
   275  			if hc.version >= VersionTLS11 {
   276  				explicitIVLen = blockSize
   277  			}
   278  
   279  			if len(payload)%blockSize != 0 || len(payload) < roundUp(explicitIVLen+macSize+1, blockSize) {
   280  				return false, 0, alertBadRecordMAC
   281  			}
   282  
   283  			if explicitIVLen > 0 {
   284  				c.SetIV(payload[:explicitIVLen])
   285  				payload = payload[explicitIVLen:]
   286  			}
   287  			c.CryptBlocks(payload, payload)
   288  			if hc.version == VersionSSL30 {
   289  				payload, paddingGood = removePaddingSSL30(payload)
   290  			} else {
   291  				payload, paddingGood = removePadding(payload)
   292  			}
   293  			b.resize(recordHeaderLen + explicitIVLen + len(payload))
   294  
   295  			// note that we still have a timing side-channel in the
   296  			// MAC check, below. An attacker can align the record
   297  			// so that a correct padding will cause one less hash
   298  			// block to be calculated. Then they can iteratively
   299  			// decrypt a record by breaking each byte. See
   300  			// "Password Interception in a SSL/TLS Channel", Brice
   301  			// Canvel et al.
   302  			//
   303  			// However, our behavior matches OpenSSL, so we leak
   304  			// only as much as they do.
   305  		default:
   306  			panic("unknown cipher type")
   307  		}
   308  	}
   309  
   310  	// check, strip mac
   311  	if hc.mac != nil {
   312  		if len(payload) < macSize {
   313  			return false, 0, alertBadRecordMAC
   314  		}
   315  
   316  		// strip mac off payload, b.data
   317  		n := len(payload) - macSize
   318  		b.data[3] = byte(n >> 8)
   319  		b.data[4] = byte(n)
   320  		b.resize(recordHeaderLen + explicitIVLen + n)
   321  		remoteMAC := payload[n:]
   322  		localMAC := hc.mac.MAC(hc.inDigestBuf, hc.seq[0:], b.data[:recordHeaderLen], payload[:n])
   323  
   324  		if subtle.ConstantTimeCompare(localMAC, remoteMAC) != 1 || paddingGood != 255 {
   325  			return false, 0, alertBadRecordMAC
   326  		}
   327  		hc.inDigestBuf = localMAC
   328  	}
   329  	hc.incSeq()
   330  
   331  	return true, recordHeaderLen + explicitIVLen, 0
   332  }
   333  
   334  // padToBlockSize calculates the needed padding block, if any, for a payload.
   335  // On exit, prefix aliases payload and extends to the end of the last full
   336  // block of payload. finalBlock is a fresh slice which contains the contents of
   337  // any suffix of payload as well as the needed padding to make finalBlock a
   338  // full block.
   339  func padToBlockSize(payload []byte, blockSize int) (prefix, finalBlock []byte) {
   340  	overrun := len(payload) % blockSize
   341  	paddingLen := blockSize - overrun
   342  	prefix = payload[:len(payload)-overrun]
   343  	finalBlock = make([]byte, blockSize)
   344  	copy(finalBlock, payload[len(payload)-overrun:])
   345  	for i := overrun; i < blockSize; i++ {
   346  		finalBlock[i] = byte(paddingLen - 1)
   347  	}
   348  	return
   349  }
   350  
   351  // encrypt encrypts and macs the data in b.
   352  func (hc *halfConn) encrypt(b *block, explicitIVLen int) (bool, alert) {
   353  	// mac
   354  	if hc.mac != nil {
   355  		mac := hc.mac.MAC(hc.outDigestBuf, hc.seq[0:], b.data[:recordHeaderLen], b.data[recordHeaderLen+explicitIVLen:])
   356  
   357  		n := len(b.data)
   358  		b.resize(n + len(mac))
   359  		copy(b.data[n:], mac)
   360  		hc.outDigestBuf = mac
   361  	}
   362  
   363  	payload := b.data[recordHeaderLen:]
   364  
   365  	// encrypt
   366  	if hc.cipher != nil {
   367  		switch c := hc.cipher.(type) {
   368  		case cipher.Stream:
   369  			c.XORKeyStream(payload, payload)
   370  		case cipher.AEAD:
   371  			payloadLen := len(b.data) - recordHeaderLen - explicitIVLen
   372  			b.resize(len(b.data) + c.Overhead())
   373  			nonce := b.data[recordHeaderLen : recordHeaderLen+explicitIVLen]
   374  			payload := b.data[recordHeaderLen+explicitIVLen:]
   375  			payload = payload[:payloadLen]
   376  
   377  			var additionalData [13]byte
   378  			copy(additionalData[:], hc.seq[:])
   379  			copy(additionalData[8:], b.data[:3])
   380  			additionalData[11] = byte(payloadLen >> 8)
   381  			additionalData[12] = byte(payloadLen)
   382  
   383  			c.Seal(payload[:0], nonce, payload, additionalData[:])
   384  		case cbcMode:
   385  			blockSize := c.BlockSize()
   386  			if explicitIVLen > 0 {
   387  				c.SetIV(payload[:explicitIVLen])
   388  				payload = payload[explicitIVLen:]
   389  			}
   390  			prefix, finalBlock := padToBlockSize(payload, blockSize)
   391  			b.resize(recordHeaderLen + explicitIVLen + len(prefix) + len(finalBlock))
   392  			c.CryptBlocks(b.data[recordHeaderLen+explicitIVLen:], prefix)
   393  			c.CryptBlocks(b.data[recordHeaderLen+explicitIVLen+len(prefix):], finalBlock)
   394  		default:
   395  			panic("unknown cipher type")
   396  		}
   397  	}
   398  
   399  	// update length to include MAC and any block padding needed.
   400  	n := len(b.data) - recordHeaderLen
   401  	b.data[3] = byte(n >> 8)
   402  	b.data[4] = byte(n)
   403  	hc.incSeq()
   404  
   405  	return true, 0
   406  }
   407  
   408  // A block is a simple data buffer.
   409  type block struct {
   410  	data []byte
   411  	off  int // index for Read
   412  	link *block
   413  }
   414  
   415  // resize resizes block to be n bytes, growing if necessary.
   416  func (b *block) resize(n int) {
   417  	if n > cap(b.data) {
   418  		b.reserve(n)
   419  	}
   420  	b.data = b.data[0:n]
   421  }
   422  
   423  // reserve makes sure that block contains a capacity of at least n bytes.
   424  func (b *block) reserve(n int) {
   425  	if cap(b.data) >= n {
   426  		return
   427  	}
   428  	m := cap(b.data)
   429  	if m == 0 {
   430  		m = 1024
   431  	}
   432  	for m < n {
   433  		m *= 2
   434  	}
   435  	data := make([]byte, len(b.data), m)
   436  	copy(data, b.data)
   437  	b.data = data
   438  }
   439  
   440  // readFromUntil reads from r into b until b contains at least n bytes
   441  // or else returns an error.
   442  func (b *block) readFromUntil(r io.Reader, n int) error {
   443  	// quick case
   444  	if len(b.data) >= n {
   445  		return nil
   446  	}
   447  
   448  	// read until have enough.
   449  	b.reserve(n)
   450  	for {
   451  		m, err := r.Read(b.data[len(b.data):cap(b.data)])
   452  		b.data = b.data[0 : len(b.data)+m]
   453  		if len(b.data) >= n {
   454  			// TODO(bradfitz,agl): slightly suspicious
   455  			// that we're throwing away r.Read's err here.
   456  			break
   457  		}
   458  		if err != nil {
   459  			return err
   460  		}
   461  	}
   462  	return nil
   463  }
   464  
   465  func (b *block) Read(p []byte) (n int, err error) {
   466  	n = copy(p, b.data[b.off:])
   467  	b.off += n
   468  	return
   469  }
   470  
   471  // newBlock allocates a new block, from hc's free list if possible.
   472  func (hc *halfConn) newBlock() *block {
   473  	b := hc.bfree
   474  	if b == nil {
   475  		return new(block)
   476  	}
   477  	hc.bfree = b.link
   478  	b.link = nil
   479  	b.resize(0)
   480  	return b
   481  }
   482  
   483  // freeBlock returns a block to hc's free list.
   484  // The protocol is such that each side only has a block or two on
   485  // its free list at a time, so there's no need to worry about
   486  // trimming the list, etc.
   487  func (hc *halfConn) freeBlock(b *block) {
   488  	b.link = hc.bfree
   489  	hc.bfree = b
   490  }
   491  
   492  // splitBlock splits a block after the first n bytes,
   493  // returning a block with those n bytes and a
   494  // block with the remainder.  the latter may be nil.
   495  func (hc *halfConn) splitBlock(b *block, n int) (*block, *block) {
   496  	if len(b.data) <= n {
   497  		return b, nil
   498  	}
   499  	bb := hc.newBlock()
   500  	bb.resize(len(b.data) - n)
   501  	copy(bb.data, b.data[n:])
   502  	b.data = b.data[0:n]
   503  	return b, bb
   504  }
   505  
   506  // readRecord reads the next TLS record from the connection
   507  // and updates the record layer state.
   508  // c.in.Mutex <= L; c.input == nil.
   509  func (c *Conn) readRecord(want recordType) error {
   510  	// Caller must be in sync with connection:
   511  	// handshake data if handshake not yet completed,
   512  	// else application data.  (We don't support renegotiation.)
   513  	switch want {
   514  	default:
   515  		c.sendAlert(alertInternalError)
   516  		return c.in.setErrorLocked(errors.New("tls: unknown record type requested"))
   517  	case recordTypeHandshake, recordTypeChangeCipherSpec:
   518  		if c.handshakeComplete {
   519  			c.sendAlert(alertInternalError)
   520  			return c.in.setErrorLocked(errors.New("tls: handshake or ChangeCipherSpec requested after handshake complete"))
   521  		}
   522  	case recordTypeApplicationData:
   523  		if !c.handshakeComplete {
   524  			c.sendAlert(alertInternalError)
   525  			return c.in.setErrorLocked(errors.New("tls: application data record requested before handshake complete"))
   526  		}
   527  	}
   528  
   529  Again:
   530  	if c.rawInput == nil {
   531  		c.rawInput = c.in.newBlock()
   532  	}
   533  	b := c.rawInput
   534  
   535  	// Read header, payload.
   536  	if err := b.readFromUntil(c.conn, recordHeaderLen); err != nil {
   537  		// RFC suggests that EOF without an alertCloseNotify is
   538  		// an error, but popular web sites seem to do this,
   539  		// so we can't make it an error.
   540  		// if err == io.EOF {
   541  		// 	err = io.ErrUnexpectedEOF
   542  		// }
   543  		if e, ok := err.(net.Error); !ok || !e.Temporary() {
   544  			c.in.setErrorLocked(err)
   545  		}
   546  		return err
   547  	}
   548  	typ := recordType(b.data[0])
   549  
   550  	// No valid TLS record has a type of 0x80, however SSLv2 handshakes
   551  	// start with a uint16 length where the MSB is set and the first record
   552  	// is always < 256 bytes long. Therefore typ == 0x80 strongly suggests
   553  	// an SSLv2 client.
   554  	if want == recordTypeHandshake && typ == 0x80 {
   555  		c.sendAlert(alertProtocolVersion)
   556  		return c.in.setErrorLocked(errors.New("tls: unsupported SSLv2 handshake received"))
   557  	}
   558  
   559  	vers := uint16(b.data[1])<<8 | uint16(b.data[2])
   560  	n := int(b.data[3])<<8 | int(b.data[4])
   561  	if c.haveVers && vers != c.vers {
   562  		c.sendAlert(alertProtocolVersion)
   563  		return c.in.setErrorLocked(fmt.Errorf("tls: received record with version %x when expecting version %x", vers, c.vers))
   564  	}
   565  	if n > maxCiphertext {
   566  		c.sendAlert(alertRecordOverflow)
   567  		return c.in.setErrorLocked(fmt.Errorf("tls: oversized record received with length %d", n))
   568  	}
   569  	if !c.haveVers {
   570  		// First message, be extra suspicious:
   571  		// this might not be a TLS client.
   572  		// Bail out before reading a full 'body', if possible.
   573  		// The current max version is 3.1.
   574  		// If the version is >= 16.0, it's probably not real.
   575  		// Similarly, a clientHello message encodes in
   576  		// well under a kilobyte.  If the length is >= 12 kB,
   577  		// it's probably not real.
   578  		if (typ != recordTypeAlert && typ != want) || vers >= 0x1000 || n >= 0x3000 {
   579  			c.sendAlert(alertUnexpectedMessage)
   580  			return c.in.setErrorLocked(fmt.Errorf("tls: first record does not look like a TLS handshake"))
   581  		}
   582  	}
   583  	if err := b.readFromUntil(c.conn, recordHeaderLen+n); err != nil {
   584  		if err == io.EOF {
   585  			err = io.ErrUnexpectedEOF
   586  		}
   587  		if e, ok := err.(net.Error); !ok || !e.Temporary() {
   588  			c.in.setErrorLocked(err)
   589  		}
   590  		return err
   591  	}
   592  
   593  	// Process message.
   594  	b, c.rawInput = c.in.splitBlock(b, recordHeaderLen+n)
   595  	ok, off, err := c.in.decrypt(b)
   596  	if !ok {
   597  		c.in.setErrorLocked(c.sendAlert(err))
   598  	}
   599  	b.off = off
   600  	data := b.data[b.off:]
   601  	if len(data) > maxPlaintext {
   602  		err := c.sendAlert(alertRecordOverflow)
   603  		c.in.freeBlock(b)
   604  		return c.in.setErrorLocked(err)
   605  	}
   606  
   607  	switch typ {
   608  	default:
   609  		c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
   610  
   611  	case recordTypeAlert:
   612  		if len(data) != 2 {
   613  			c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
   614  			break
   615  		}
   616  		if alert(data[1]) == alertCloseNotify {
   617  			c.in.setErrorLocked(io.EOF)
   618  			break
   619  		}
   620  		switch data[0] {
   621  		case alertLevelWarning:
   622  			// drop on the floor
   623  			c.in.freeBlock(b)
   624  			goto Again
   625  		case alertLevelError:
   626  			c.in.setErrorLocked(&net.OpError{Op: "remote error", Err: alert(data[1])})
   627  		default:
   628  			c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
   629  		}
   630  
   631  	case recordTypeChangeCipherSpec:
   632  		if typ != want || len(data) != 1 || data[0] != 1 {
   633  			c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
   634  			break
   635  		}
   636  		err := c.in.changeCipherSpec()
   637  		if err != nil {
   638  			c.in.setErrorLocked(c.sendAlert(err.(alert)))
   639  		}
   640  
   641  	case recordTypeApplicationData:
   642  		if typ != want {
   643  			c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
   644  			break
   645  		}
   646  		c.input = b
   647  		b = nil
   648  
   649  	case recordTypeHandshake:
   650  		// TODO(rsc): Should at least pick off connection close.
   651  		if typ != want {
   652  			return c.in.setErrorLocked(c.sendAlert(alertNoRenegotiation))
   653  		}
   654  		c.hand.Write(data)
   655  	}
   656  
   657  	if b != nil {
   658  		c.in.freeBlock(b)
   659  	}
   660  	return c.in.err
   661  }
   662  
   663  // sendAlert sends a TLS alert message.
   664  // c.out.Mutex <= L.
   665  func (c *Conn) sendAlertLocked(err alert) error {
   666  	switch err {
   667  	case alertNoRenegotiation, alertCloseNotify:
   668  		c.tmp[0] = alertLevelWarning
   669  	default:
   670  		c.tmp[0] = alertLevelError
   671  	}
   672  	c.tmp[1] = byte(err)
   673  	c.writeRecord(recordTypeAlert, c.tmp[0:2])
   674  	// closeNotify is a special case in that it isn't an error:
   675  	if err != alertCloseNotify {
   676  		return c.out.setErrorLocked(&net.OpError{Op: "local error", Err: err})
   677  	}
   678  	return nil
   679  }
   680  
   681  // sendAlert sends a TLS alert message.
   682  // L < c.out.Mutex.
   683  func (c *Conn) sendAlert(err alert) error {
   684  	c.out.Lock()
   685  	defer c.out.Unlock()
   686  	return c.sendAlertLocked(err)
   687  }
   688  
   689  // writeRecord writes a TLS record with the given type and payload
   690  // to the connection and updates the record layer state.
   691  // c.out.Mutex <= L.
   692  func (c *Conn) writeRecord(typ recordType, data []byte) (n int, err error) {
   693  	b := c.out.newBlock()
   694  	for len(data) > 0 {
   695  		m := len(data)
   696  		if m > maxPlaintext {
   697  			m = maxPlaintext
   698  		}
   699  		explicitIVLen := 0
   700  		explicitIVIsSeq := false
   701  
   702  		var cbc cbcMode
   703  		if c.out.version >= VersionTLS11 {
   704  			var ok bool
   705  			if cbc, ok = c.out.cipher.(cbcMode); ok {
   706  				explicitIVLen = cbc.BlockSize()
   707  			}
   708  		}
   709  		if explicitIVLen == 0 {
   710  			if _, ok := c.out.cipher.(cipher.AEAD); ok {
   711  				explicitIVLen = 8
   712  				// The AES-GCM construction in TLS has an
   713  				// explicit nonce so that the nonce can be
   714  				// random. However, the nonce is only 8 bytes
   715  				// which is too small for a secure, random
   716  				// nonce. Therefore we use the sequence number
   717  				// as the nonce.
   718  				explicitIVIsSeq = true
   719  			}
   720  		}
   721  		b.resize(recordHeaderLen + explicitIVLen + m)
   722  		b.data[0] = byte(typ)
   723  		vers := c.vers
   724  		if vers == 0 {
   725  			// Some TLS servers fail if the record version is
   726  			// greater than TLS 1.0 for the initial ClientHello.
   727  			vers = VersionTLS10
   728  		}
   729  		b.data[1] = byte(vers >> 8)
   730  		b.data[2] = byte(vers)
   731  		b.data[3] = byte(m >> 8)
   732  		b.data[4] = byte(m)
   733  		if explicitIVLen > 0 {
   734  			explicitIV := b.data[recordHeaderLen : recordHeaderLen+explicitIVLen]
   735  			if explicitIVIsSeq {
   736  				copy(explicitIV, c.out.seq[:])
   737  			} else {
   738  				if _, err = io.ReadFull(c.config.rand(), explicitIV); err != nil {
   739  					break
   740  				}
   741  			}
   742  		}
   743  		copy(b.data[recordHeaderLen+explicitIVLen:], data)
   744  		c.out.encrypt(b, explicitIVLen)
   745  		_, err = c.conn.Write(b.data)
   746  		if err != nil {
   747  			break
   748  		}
   749  		n += m
   750  		data = data[m:]
   751  	}
   752  	c.out.freeBlock(b)
   753  
   754  	if typ == recordTypeChangeCipherSpec {
   755  		err = c.out.changeCipherSpec()
   756  		if err != nil {
   757  			// Cannot call sendAlert directly,
   758  			// because we already hold c.out.Mutex.
   759  			c.tmp[0] = alertLevelError
   760  			c.tmp[1] = byte(err.(alert))
   761  			c.writeRecord(recordTypeAlert, c.tmp[0:2])
   762  			return n, c.out.setErrorLocked(&net.OpError{Op: "local error", Err: err})
   763  		}
   764  	}
   765  	return
   766  }
   767  
   768  // readHandshake reads the next handshake message from
   769  // the record layer.
   770  // c.in.Mutex < L; c.out.Mutex < L.
   771  func (c *Conn) readHandshake() (interface{}, error) {
   772  	for c.hand.Len() < 4 {
   773  		if err := c.in.err; err != nil {
   774  			return nil, err
   775  		}
   776  		if err := c.readRecord(recordTypeHandshake); err != nil {
   777  			return nil, err
   778  		}
   779  	}
   780  
   781  	data := c.hand.Bytes()
   782  	n := int(data[1])<<16 | int(data[2])<<8 | int(data[3])
   783  	if n > maxHandshake {
   784  		return nil, c.in.setErrorLocked(c.sendAlert(alertInternalError))
   785  	}
   786  	for c.hand.Len() < 4+n {
   787  		if err := c.in.err; err != nil {
   788  			return nil, err
   789  		}
   790  		if err := c.readRecord(recordTypeHandshake); err != nil {
   791  			return nil, err
   792  		}
   793  	}
   794  	data = c.hand.Next(4 + n)
   795  	var m handshakeMessage
   796  	switch data[0] {
   797  	case typeClientHello:
   798  		m = new(clientHelloMsg)
   799  	case typeServerHello:
   800  		m = new(serverHelloMsg)
   801  	case typeNewSessionTicket:
   802  		m = new(newSessionTicketMsg)
   803  	case typeCertificate:
   804  		m = new(certificateMsg)
   805  	case typeCertificateRequest:
   806  		m = &certificateRequestMsg{
   807  			hasSignatureAndHash: c.vers >= VersionTLS12,
   808  		}
   809  	case typeCertificateStatus:
   810  		m = new(certificateStatusMsg)
   811  	case typeServerKeyExchange:
   812  		m = new(serverKeyExchangeMsg)
   813  	case typeServerHelloDone:
   814  		m = new(serverHelloDoneMsg)
   815  	case typeClientKeyExchange:
   816  		m = new(clientKeyExchangeMsg)
   817  	case typeCertificateVerify:
   818  		m = &certificateVerifyMsg{
   819  			hasSignatureAndHash: c.vers >= VersionTLS12,
   820  		}
   821  	case typeNextProtocol:
   822  		m = new(nextProtoMsg)
   823  	case typeFinished:
   824  		m = new(finishedMsg)
   825  	default:
   826  		return nil, c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
   827  	}
   828  
   829  	// The handshake message unmarshallers
   830  	// expect to be able to keep references to data,
   831  	// so pass in a fresh copy that won't be overwritten.
   832  	data = append([]byte(nil), data...)
   833  
   834  	if !m.unmarshal(data) {
   835  		return nil, c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
   836  	}
   837  	return m, nil
   838  }
   839  
   840  // Write writes data to the connection.
   841  func (c *Conn) Write(b []byte) (int, error) {
   842  	if err := c.Handshake(); err != nil {
   843  		return 0, err
   844  	}
   845  
   846  	c.out.Lock()
   847  	defer c.out.Unlock()
   848  
   849  	if err := c.out.err; err != nil {
   850  		return 0, err
   851  	}
   852  
   853  	if !c.handshakeComplete {
   854  		return 0, alertInternalError
   855  	}
   856  
   857  	// SSL 3.0 and TLS 1.0 are susceptible to a chosen-plaintext
   858  	// attack when using block mode ciphers due to predictable IVs.
   859  	// This can be prevented by splitting each Application Data
   860  	// record into two records, effectively randomizing the IV.
   861  	//
   862  	// http://www.openssl.org/~bodo/tls-cbc.txt
   863  	// https://bugzilla.mozilla.org/show_bug.cgi?id=665814
   864  	// http://www.imperialviolet.org/2012/01/15/beastfollowup.html
   865  
   866  	var m int
   867  	if len(b) > 1 && c.vers <= VersionTLS10 {
   868  		if _, ok := c.out.cipher.(cipher.BlockMode); ok {
   869  			n, err := c.writeRecord(recordTypeApplicationData, b[:1])
   870  			if err != nil {
   871  				return n, c.out.setErrorLocked(err)
   872  			}
   873  			m, b = 1, b[1:]
   874  		}
   875  	}
   876  
   877  	n, err := c.writeRecord(recordTypeApplicationData, b)
   878  	return n + m, c.out.setErrorLocked(err)
   879  }
   880  
   881  // Read can be made to time out and return a net.Error with Timeout() == true
   882  // after a fixed time limit; see SetDeadline and SetReadDeadline.
   883  func (c *Conn) Read(b []byte) (n int, err error) {
   884  	if err = c.Handshake(); err != nil {
   885  		return
   886  	}
   887  	if len(b) == 0 {
   888  		// Put this after Handshake, in case people were calling
   889  		// Read(nil) for the side effect of the Handshake.
   890  		return
   891  	}
   892  
   893  	c.in.Lock()
   894  	defer c.in.Unlock()
   895  
   896  	// Some OpenSSL servers send empty records in order to randomize the
   897  	// CBC IV. So this loop ignores a limited number of empty records.
   898  	const maxConsecutiveEmptyRecords = 100
   899  	for emptyRecordCount := 0; emptyRecordCount <= maxConsecutiveEmptyRecords; emptyRecordCount++ {
   900  		for c.input == nil && c.in.err == nil {
   901  			if err := c.readRecord(recordTypeApplicationData); err != nil {
   902  				// Soft error, like EAGAIN
   903  				return 0, err
   904  			}
   905  		}
   906  		if err := c.in.err; err != nil {
   907  			return 0, err
   908  		}
   909  
   910  		n, err = c.input.Read(b)
   911  		if c.input.off >= len(c.input.data) {
   912  			c.in.freeBlock(c.input)
   913  			c.input = nil
   914  		}
   915  
   916  		// If a close-notify alert is waiting, read it so that
   917  		// we can return (n, EOF) instead of (n, nil), to signal
   918  		// to the HTTP response reading goroutine that the
   919  		// connection is now closed. This eliminates a race
   920  		// where the HTTP response reading goroutine would
   921  		// otherwise not observe the EOF until its next read,
   922  		// by which time a client goroutine might have already
   923  		// tried to reuse the HTTP connection for a new
   924  		// request.
   925  		// See https://codereview.appspot.com/76400046
   926  		// and http://golang.org/issue/3514
   927  		if ri := c.rawInput; ri != nil &&
   928  			n != 0 && err == nil &&
   929  			c.input == nil && len(ri.data) > 0 && recordType(ri.data[0]) == recordTypeAlert {
   930  			if recErr := c.readRecord(recordTypeApplicationData); recErr != nil {
   931  				err = recErr // will be io.EOF on closeNotify
   932  			}
   933  		}
   934  
   935  		if n != 0 || err != nil {
   936  			return n, err
   937  		}
   938  	}
   939  
   940  	return 0, io.ErrNoProgress
   941  }
   942  
   943  // Close closes the connection.
   944  func (c *Conn) Close() error {
   945  	var alertErr error
   946  
   947  	c.handshakeMutex.Lock()
   948  	defer c.handshakeMutex.Unlock()
   949  	if c.handshakeComplete {
   950  		alertErr = c.sendAlert(alertCloseNotify)
   951  	}
   952  
   953  	if err := c.conn.Close(); err != nil {
   954  		return err
   955  	}
   956  	return alertErr
   957  }
   958  
   959  // Handshake runs the client or server handshake
   960  // protocol if it has not yet been run.
   961  // Most uses of this package need not call Handshake
   962  // explicitly: the first Read or Write will call it automatically.
   963  func (c *Conn) Handshake() error {
   964  	c.handshakeMutex.Lock()
   965  	defer c.handshakeMutex.Unlock()
   966  	if err := c.handshakeErr; err != nil {
   967  		return err
   968  	}
   969  	if c.handshakeComplete {
   970  		return nil
   971  	}
   972  
   973  	if c.isClient {
   974  		c.handshakeErr = c.clientHandshake()
   975  	} else {
   976  		c.handshakeErr = c.serverHandshake()
   977  	}
   978  	return c.handshakeErr
   979  }
   980  
   981  // ConnectionState returns basic TLS details about the connection.
   982  func (c *Conn) ConnectionState() ConnectionState {
   983  	c.handshakeMutex.Lock()
   984  	defer c.handshakeMutex.Unlock()
   985  
   986  	var state ConnectionState
   987  	state.HandshakeComplete = c.handshakeComplete
   988  	if c.handshakeComplete {
   989  		state.Version = c.vers
   990  		state.NegotiatedProtocol = c.clientProtocol
   991  		state.DidResume = c.didResume
   992  		state.NegotiatedProtocolIsMutual = !c.clientProtocolFallback
   993  		state.CipherSuite = c.cipherSuite
   994  		state.PeerCertificates = c.peerCertificates
   995  		state.VerifiedChains = c.verifiedChains
   996  		state.ServerName = c.serverName
   997  	}
   998  
   999  	return state
  1000  }
  1001  
  1002  // OCSPResponse returns the stapled OCSP response from the TLS server, if
  1003  // any. (Only valid for client connections.)
  1004  func (c *Conn) OCSPResponse() []byte {
  1005  	c.handshakeMutex.Lock()
  1006  	defer c.handshakeMutex.Unlock()
  1007  
  1008  	return c.ocspResponse
  1009  }
  1010  
  1011  // VerifyHostname checks that the peer certificate chain is valid for
  1012  // connecting to host.  If so, it returns nil; if not, it returns an error
  1013  // describing the problem.
  1014  func (c *Conn) VerifyHostname(host string) error {
  1015  	c.handshakeMutex.Lock()
  1016  	defer c.handshakeMutex.Unlock()
  1017  	if !c.isClient {
  1018  		return errors.New("tls: VerifyHostname called on TLS server connection")
  1019  	}
  1020  	if !c.handshakeComplete {
  1021  		return errors.New("tls: handshake has not yet been performed")
  1022  	}
  1023  	return c.peerCertificates[0].VerifyHostname(host)
  1024  }