github.com/ader1990/go@v0.0.0-20140630135419-8c24447fa791/src/pkg/image/jpeg/scan.go (about) 1 // Copyright 2012 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package jpeg 6 7 import ( 8 "image" 9 "io" 10 ) 11 12 // makeImg allocates and initializes the destination image. 13 func (d *decoder) makeImg(h0, v0, mxx, myy int) { 14 if d.nComp == nGrayComponent { 15 m := image.NewGray(image.Rect(0, 0, 8*mxx, 8*myy)) 16 d.img1 = m.SubImage(image.Rect(0, 0, d.width, d.height)).(*image.Gray) 17 return 18 } 19 var subsampleRatio image.YCbCrSubsampleRatio 20 switch { 21 case h0 == 1 && v0 == 1: 22 subsampleRatio = image.YCbCrSubsampleRatio444 23 case h0 == 1 && v0 == 2: 24 subsampleRatio = image.YCbCrSubsampleRatio440 25 case h0 == 2 && v0 == 1: 26 subsampleRatio = image.YCbCrSubsampleRatio422 27 case h0 == 2 && v0 == 2: 28 subsampleRatio = image.YCbCrSubsampleRatio420 29 default: 30 panic("unreachable") 31 } 32 m := image.NewYCbCr(image.Rect(0, 0, 8*h0*mxx, 8*v0*myy), subsampleRatio) 33 d.img3 = m.SubImage(image.Rect(0, 0, d.width, d.height)).(*image.YCbCr) 34 } 35 36 // Specified in section B.2.3. 37 func (d *decoder) processSOS(n int) error { 38 if d.nComp == 0 { 39 return FormatError("missing SOF marker") 40 } 41 if n < 6 || 4+2*d.nComp < n || n%2 != 0 { 42 return FormatError("SOS has wrong length") 43 } 44 _, err := io.ReadFull(d.r, d.tmp[:n]) 45 if err != nil { 46 return err 47 } 48 nComp := int(d.tmp[0]) 49 if n != 4+2*nComp { 50 return FormatError("SOS length inconsistent with number of components") 51 } 52 var scan [nColorComponent]struct { 53 compIndex uint8 54 td uint8 // DC table selector. 55 ta uint8 // AC table selector. 56 } 57 for i := 0; i < nComp; i++ { 58 cs := d.tmp[1+2*i] // Component selector. 59 compIndex := -1 60 for j, comp := range d.comp { 61 if cs == comp.c { 62 compIndex = j 63 } 64 } 65 if compIndex < 0 { 66 return FormatError("unknown component selector") 67 } 68 scan[i].compIndex = uint8(compIndex) 69 scan[i].td = d.tmp[2+2*i] >> 4 70 scan[i].ta = d.tmp[2+2*i] & 0x0f 71 } 72 73 // zigStart and zigEnd are the spectral selection bounds. 74 // ah and al are the successive approximation high and low values. 75 // The spec calls these values Ss, Se, Ah and Al. 76 // 77 // For progressive JPEGs, these are the two more-or-less independent 78 // aspects of progression. Spectral selection progression is when not 79 // all of a block's 64 DCT coefficients are transmitted in one pass. 80 // For example, three passes could transmit coefficient 0 (the DC 81 // component), coefficients 1-5, and coefficients 6-63, in zig-zag 82 // order. Successive approximation is when not all of the bits of a 83 // band of coefficients are transmitted in one pass. For example, 84 // three passes could transmit the 6 most significant bits, followed 85 // by the second-least significant bit, followed by the least 86 // significant bit. 87 // 88 // For baseline JPEGs, these parameters are hard-coded to 0/63/0/0. 89 zigStart, zigEnd, ah, al := int32(0), int32(blockSize-1), uint32(0), uint32(0) 90 if d.progressive { 91 zigStart = int32(d.tmp[1+2*nComp]) 92 zigEnd = int32(d.tmp[2+2*nComp]) 93 ah = uint32(d.tmp[3+2*nComp] >> 4) 94 al = uint32(d.tmp[3+2*nComp] & 0x0f) 95 if (zigStart == 0 && zigEnd != 0) || zigStart > zigEnd || blockSize <= zigEnd { 96 return FormatError("bad spectral selection bounds") 97 } 98 if zigStart != 0 && nComp != 1 { 99 return FormatError("progressive AC coefficients for more than one component") 100 } 101 if ah != 0 && ah != al+1 { 102 return FormatError("bad successive approximation values") 103 } 104 } 105 106 // mxx and myy are the number of MCUs (Minimum Coded Units) in the image. 107 h0, v0 := d.comp[0].h, d.comp[0].v // The h and v values from the Y components. 108 mxx := (d.width + 8*h0 - 1) / (8 * h0) 109 myy := (d.height + 8*v0 - 1) / (8 * v0) 110 if d.img1 == nil && d.img3 == nil { 111 d.makeImg(h0, v0, mxx, myy) 112 } 113 if d.progressive { 114 for i := 0; i < nComp; i++ { 115 compIndex := scan[i].compIndex 116 if d.progCoeffs[compIndex] == nil { 117 d.progCoeffs[compIndex] = make([]block, mxx*myy*d.comp[compIndex].h*d.comp[compIndex].v) 118 } 119 } 120 } 121 122 d.b = bits{} 123 mcu, expectedRST := 0, uint8(rst0Marker) 124 var ( 125 // b is the decoded coefficients, in natural (not zig-zag) order. 126 b block 127 dc [nColorComponent]int32 128 // mx0 and my0 are the location of the current (in terms of 8x8 blocks). 129 // For example, with 4:2:0 chroma subsampling, the block whose top left 130 // pixel co-ordinates are (16, 8) is the third block in the first row: 131 // mx0 is 2 and my0 is 0, even though the pixel is in the second MCU. 132 // TODO(nigeltao): rename mx0 and my0 to bx and by? 133 mx0, my0 int 134 blockCount int 135 ) 136 for my := 0; my < myy; my++ { 137 for mx := 0; mx < mxx; mx++ { 138 for i := 0; i < nComp; i++ { 139 compIndex := scan[i].compIndex 140 qt := &d.quant[d.comp[compIndex].tq] 141 for j := 0; j < d.comp[compIndex].h*d.comp[compIndex].v; j++ { 142 // The blocks are traversed one MCU at a time. For 4:2:0 chroma 143 // subsampling, there are four Y 8x8 blocks in every 16x16 MCU. 144 // 145 // For a baseline 32x16 pixel image, the Y blocks visiting order is: 146 // 0 1 4 5 147 // 2 3 6 7 148 // 149 // For progressive images, the interleaved scans (those with nComp > 1) 150 // are traversed as above, but non-interleaved scans are traversed left 151 // to right, top to bottom: 152 // 0 1 2 3 153 // 4 5 6 7 154 // Only DC scans (zigStart == 0) can be interleaved. AC scans must have 155 // only one component. 156 // 157 // To further complicate matters, for non-interleaved scans, there is no 158 // data for any blocks that are inside the image at the MCU level but 159 // outside the image at the pixel level. For example, a 24x16 pixel 4:2:0 160 // progressive image consists of two 16x16 MCUs. The interleaved scans 161 // will process 8 Y blocks: 162 // 0 1 4 5 163 // 2 3 6 7 164 // The non-interleaved scans will process only 6 Y blocks: 165 // 0 1 2 166 // 3 4 5 167 if nComp != 1 { 168 mx0, my0 = d.comp[compIndex].h*mx, d.comp[compIndex].v*my 169 if h0 == 1 { 170 my0 += j 171 } else { 172 mx0 += j % 2 173 my0 += j / 2 174 } 175 } else { 176 q := mxx * d.comp[compIndex].h 177 mx0 = blockCount % q 178 my0 = blockCount / q 179 blockCount++ 180 if mx0*8 >= d.width || my0*8 >= d.height { 181 continue 182 } 183 } 184 185 // Load the previous partially decoded coefficients, if applicable. 186 if d.progressive { 187 b = d.progCoeffs[compIndex][my0*mxx*d.comp[compIndex].h+mx0] 188 } else { 189 b = block{} 190 } 191 192 if ah != 0 { 193 if err := d.refine(&b, &d.huff[acTable][scan[i].ta], zigStart, zigEnd, 1<<al); err != nil { 194 return err 195 } 196 } else { 197 zig := zigStart 198 if zig == 0 { 199 zig++ 200 // Decode the DC coefficient, as specified in section F.2.2.1. 201 value, err := d.decodeHuffman(&d.huff[dcTable][scan[i].td]) 202 if err != nil { 203 return err 204 } 205 if value > 16 { 206 return UnsupportedError("excessive DC component") 207 } 208 dcDelta, err := d.receiveExtend(value) 209 if err != nil { 210 return err 211 } 212 dc[compIndex] += dcDelta 213 b[0] = dc[compIndex] << al 214 } 215 216 if zig <= zigEnd && d.eobRun > 0 { 217 d.eobRun-- 218 } else { 219 // Decode the AC coefficients, as specified in section F.2.2.2. 220 for ; zig <= zigEnd; zig++ { 221 value, err := d.decodeHuffman(&d.huff[acTable][scan[i].ta]) 222 if err != nil { 223 return err 224 } 225 val0 := value >> 4 226 val1 := value & 0x0f 227 if val1 != 0 { 228 zig += int32(val0) 229 if zig > zigEnd { 230 break 231 } 232 ac, err := d.receiveExtend(val1) 233 if err != nil { 234 return err 235 } 236 b[unzig[zig]] = ac << al 237 } else { 238 if val0 != 0x0f { 239 d.eobRun = uint16(1 << val0) 240 if val0 != 0 { 241 bits, err := d.decodeBits(int(val0)) 242 if err != nil { 243 return err 244 } 245 d.eobRun |= uint16(bits) 246 } 247 d.eobRun-- 248 break 249 } 250 zig += 0x0f 251 } 252 } 253 } 254 } 255 256 if d.progressive { 257 if zigEnd != blockSize-1 || al != 0 { 258 // We haven't completely decoded this 8x8 block. Save the coefficients. 259 d.progCoeffs[compIndex][my0*mxx*d.comp[compIndex].h+mx0] = b 260 // At this point, we could execute the rest of the loop body to dequantize and 261 // perform the inverse DCT, to save early stages of a progressive image to the 262 // *image.YCbCr buffers (the whole point of progressive encoding), but in Go, 263 // the jpeg.Decode function does not return until the entire image is decoded, 264 // so we "continue" here to avoid wasted computation. 265 continue 266 } 267 } 268 269 // Dequantize, perform the inverse DCT and store the block to the image. 270 for zig := 0; zig < blockSize; zig++ { 271 b[unzig[zig]] *= qt[zig] 272 } 273 idct(&b) 274 dst, stride := []byte(nil), 0 275 if d.nComp == nGrayComponent { 276 dst, stride = d.img1.Pix[8*(my0*d.img1.Stride+mx0):], d.img1.Stride 277 } else { 278 switch compIndex { 279 case 0: 280 dst, stride = d.img3.Y[8*(my0*d.img3.YStride+mx0):], d.img3.YStride 281 case 1: 282 dst, stride = d.img3.Cb[8*(my0*d.img3.CStride+mx0):], d.img3.CStride 283 case 2: 284 dst, stride = d.img3.Cr[8*(my0*d.img3.CStride+mx0):], d.img3.CStride 285 default: 286 return UnsupportedError("too many components") 287 } 288 } 289 // Level shift by +128, clip to [0, 255], and write to dst. 290 for y := 0; y < 8; y++ { 291 y8 := y * 8 292 yStride := y * stride 293 for x := 0; x < 8; x++ { 294 c := b[y8+x] 295 if c < -128 { 296 c = 0 297 } else if c > 127 { 298 c = 255 299 } else { 300 c += 128 301 } 302 dst[yStride+x] = uint8(c) 303 } 304 } 305 } // for j 306 } // for i 307 mcu++ 308 if d.ri > 0 && mcu%d.ri == 0 && mcu < mxx*myy { 309 // A more sophisticated decoder could use RST[0-7] markers to resynchronize from corrupt input, 310 // but this one assumes well-formed input, and hence the restart marker follows immediately. 311 _, err := io.ReadFull(d.r, d.tmp[0:2]) 312 if err != nil { 313 return err 314 } 315 if d.tmp[0] != 0xff || d.tmp[1] != expectedRST { 316 return FormatError("bad RST marker") 317 } 318 expectedRST++ 319 if expectedRST == rst7Marker+1 { 320 expectedRST = rst0Marker 321 } 322 // Reset the Huffman decoder. 323 d.b = bits{} 324 // Reset the DC components, as per section F.2.1.3.1. 325 dc = [nColorComponent]int32{} 326 // Reset the progressive decoder state, as per section G.1.2.2. 327 d.eobRun = 0 328 } 329 } // for mx 330 } // for my 331 332 return nil 333 } 334 335 // refine decodes a successive approximation refinement block, as specified in 336 // section G.1.2. 337 func (d *decoder) refine(b *block, h *huffman, zigStart, zigEnd, delta int32) error { 338 // Refining a DC component is trivial. 339 if zigStart == 0 { 340 if zigEnd != 0 { 341 panic("unreachable") 342 } 343 bit, err := d.decodeBit() 344 if err != nil { 345 return err 346 } 347 if bit { 348 b[0] |= delta 349 } 350 return nil 351 } 352 353 // Refining AC components is more complicated; see sections G.1.2.2 and G.1.2.3. 354 zig := zigStart 355 if d.eobRun == 0 { 356 loop: 357 for ; zig <= zigEnd; zig++ { 358 z := int32(0) 359 value, err := d.decodeHuffman(h) 360 if err != nil { 361 return err 362 } 363 val0 := value >> 4 364 val1 := value & 0x0f 365 366 switch val1 { 367 case 0: 368 if val0 != 0x0f { 369 d.eobRun = uint16(1 << val0) 370 if val0 != 0 { 371 bits, err := d.decodeBits(int(val0)) 372 if err != nil { 373 return err 374 } 375 d.eobRun |= uint16(bits) 376 } 377 break loop 378 } 379 case 1: 380 z = delta 381 bit, err := d.decodeBit() 382 if err != nil { 383 return err 384 } 385 if !bit { 386 z = -z 387 } 388 default: 389 return FormatError("unexpected Huffman code") 390 } 391 392 zig, err = d.refineNonZeroes(b, zig, zigEnd, int32(val0), delta) 393 if err != nil { 394 return err 395 } 396 if zig > zigEnd { 397 return FormatError("too many coefficients") 398 } 399 if z != 0 { 400 b[unzig[zig]] = z 401 } 402 } 403 } 404 if d.eobRun > 0 { 405 d.eobRun-- 406 if _, err := d.refineNonZeroes(b, zig, zigEnd, -1, delta); err != nil { 407 return err 408 } 409 } 410 return nil 411 } 412 413 // refineNonZeroes refines non-zero entries of b in zig-zag order. If nz >= 0, 414 // the first nz zero entries are skipped over. 415 func (d *decoder) refineNonZeroes(b *block, zig, zigEnd, nz, delta int32) (int32, error) { 416 for ; zig <= zigEnd; zig++ { 417 u := unzig[zig] 418 if b[u] == 0 { 419 if nz == 0 { 420 break 421 } 422 nz-- 423 continue 424 } 425 bit, err := d.decodeBit() 426 if err != nil { 427 return 0, err 428 } 429 if !bit { 430 continue 431 } 432 if b[u] >= 0 { 433 b[u] += delta 434 } else { 435 b[u] -= delta 436 } 437 } 438 return zig, nil 439 }