github.com/ader1990/go@v0.0.0-20140630135419-8c24447fa791/src/pkg/net/http/server.go (about)

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // HTTP server.  See RFC 2616.
     6  
     7  package http
     8  
     9  import (
    10  	"bufio"
    11  	"crypto/tls"
    12  	"errors"
    13  	"fmt"
    14  	"io"
    15  	"io/ioutil"
    16  	"log"
    17  	"net"
    18  	"net/url"
    19  	"os"
    20  	"path"
    21  	"runtime"
    22  	"strconv"
    23  	"strings"
    24  	"sync"
    25  	"sync/atomic"
    26  	"time"
    27  )
    28  
    29  // Errors introduced by the HTTP server.
    30  var (
    31  	ErrWriteAfterFlush = errors.New("Conn.Write called after Flush")
    32  	ErrBodyNotAllowed  = errors.New("http: request method or response status code does not allow body")
    33  	ErrHijacked        = errors.New("Conn has been hijacked")
    34  	ErrContentLength   = errors.New("Conn.Write wrote more than the declared Content-Length")
    35  )
    36  
    37  // Objects implementing the Handler interface can be
    38  // registered to serve a particular path or subtree
    39  // in the HTTP server.
    40  //
    41  // ServeHTTP should write reply headers and data to the ResponseWriter
    42  // and then return.  Returning signals that the request is finished
    43  // and that the HTTP server can move on to the next request on
    44  // the connection.
    45  type Handler interface {
    46  	ServeHTTP(ResponseWriter, *Request)
    47  }
    48  
    49  // A ResponseWriter interface is used by an HTTP handler to
    50  // construct an HTTP response.
    51  type ResponseWriter interface {
    52  	// Header returns the header map that will be sent by WriteHeader.
    53  	// Changing the header after a call to WriteHeader (or Write) has
    54  	// no effect.
    55  	Header() Header
    56  
    57  	// Write writes the data to the connection as part of an HTTP reply.
    58  	// If WriteHeader has not yet been called, Write calls WriteHeader(http.StatusOK)
    59  	// before writing the data.  If the Header does not contain a
    60  	// Content-Type line, Write adds a Content-Type set to the result of passing
    61  	// the initial 512 bytes of written data to DetectContentType.
    62  	Write([]byte) (int, error)
    63  
    64  	// WriteHeader sends an HTTP response header with status code.
    65  	// If WriteHeader is not called explicitly, the first call to Write
    66  	// will trigger an implicit WriteHeader(http.StatusOK).
    67  	// Thus explicit calls to WriteHeader are mainly used to
    68  	// send error codes.
    69  	WriteHeader(int)
    70  }
    71  
    72  // The Flusher interface is implemented by ResponseWriters that allow
    73  // an HTTP handler to flush buffered data to the client.
    74  //
    75  // Note that even for ResponseWriters that support Flush,
    76  // if the client is connected through an HTTP proxy,
    77  // the buffered data may not reach the client until the response
    78  // completes.
    79  type Flusher interface {
    80  	// Flush sends any buffered data to the client.
    81  	Flush()
    82  }
    83  
    84  // The Hijacker interface is implemented by ResponseWriters that allow
    85  // an HTTP handler to take over the connection.
    86  type Hijacker interface {
    87  	// Hijack lets the caller take over the connection.
    88  	// After a call to Hijack(), the HTTP server library
    89  	// will not do anything else with the connection.
    90  	// It becomes the caller's responsibility to manage
    91  	// and close the connection.
    92  	Hijack() (net.Conn, *bufio.ReadWriter, error)
    93  }
    94  
    95  // The CloseNotifier interface is implemented by ResponseWriters which
    96  // allow detecting when the underlying connection has gone away.
    97  //
    98  // This mechanism can be used to cancel long operations on the server
    99  // if the client has disconnected before the response is ready.
   100  type CloseNotifier interface {
   101  	// CloseNotify returns a channel that receives a single value
   102  	// when the client connection has gone away.
   103  	CloseNotify() <-chan bool
   104  }
   105  
   106  // A conn represents the server side of an HTTP connection.
   107  type conn struct {
   108  	remoteAddr string               // network address of remote side
   109  	server     *Server              // the Server on which the connection arrived
   110  	rwc        net.Conn             // i/o connection
   111  	sr         liveSwitchReader     // where the LimitReader reads from; usually the rwc
   112  	lr         *io.LimitedReader    // io.LimitReader(sr)
   113  	buf        *bufio.ReadWriter    // buffered(lr,rwc), reading from bufio->limitReader->sr->rwc
   114  	tlsState   *tls.ConnectionState // or nil when not using TLS
   115  
   116  	mu           sync.Mutex // guards the following
   117  	clientGone   bool       // if client has disconnected mid-request
   118  	closeNotifyc chan bool  // made lazily
   119  	hijackedv    bool       // connection has been hijacked by handler
   120  }
   121  
   122  func (c *conn) hijacked() bool {
   123  	c.mu.Lock()
   124  	defer c.mu.Unlock()
   125  	return c.hijackedv
   126  }
   127  
   128  func (c *conn) hijack() (rwc net.Conn, buf *bufio.ReadWriter, err error) {
   129  	c.mu.Lock()
   130  	defer c.mu.Unlock()
   131  	if c.hijackedv {
   132  		return nil, nil, ErrHijacked
   133  	}
   134  	if c.closeNotifyc != nil {
   135  		return nil, nil, errors.New("http: Hijack is incompatible with use of CloseNotifier")
   136  	}
   137  	c.hijackedv = true
   138  	rwc = c.rwc
   139  	buf = c.buf
   140  	c.rwc = nil
   141  	c.buf = nil
   142  	c.setState(rwc, StateHijacked)
   143  	return
   144  }
   145  
   146  func (c *conn) closeNotify() <-chan bool {
   147  	c.mu.Lock()
   148  	defer c.mu.Unlock()
   149  	if c.closeNotifyc == nil {
   150  		c.closeNotifyc = make(chan bool, 1)
   151  		if c.hijackedv {
   152  			// to obey the function signature, even though
   153  			// it'll never receive a value.
   154  			return c.closeNotifyc
   155  		}
   156  		pr, pw := io.Pipe()
   157  
   158  		readSource := c.sr.r
   159  		c.sr.Lock()
   160  		c.sr.r = pr
   161  		c.sr.Unlock()
   162  		go func() {
   163  			_, err := io.Copy(pw, readSource)
   164  			if err == nil {
   165  				err = io.EOF
   166  			}
   167  			pw.CloseWithError(err)
   168  			c.noteClientGone()
   169  		}()
   170  	}
   171  	return c.closeNotifyc
   172  }
   173  
   174  func (c *conn) noteClientGone() {
   175  	c.mu.Lock()
   176  	defer c.mu.Unlock()
   177  	if c.closeNotifyc != nil && !c.clientGone {
   178  		c.closeNotifyc <- true
   179  	}
   180  	c.clientGone = true
   181  }
   182  
   183  // A switchReader can have its Reader changed at runtime.
   184  // It's not safe for concurrent Reads and switches.
   185  type switchReader struct {
   186  	io.Reader
   187  }
   188  
   189  // A switchWriter can have its Writer changed at runtime.
   190  // It's not safe for concurrent Writes and switches.
   191  type switchWriter struct {
   192  	io.Writer
   193  }
   194  
   195  // A liveSwitchReader is a switchReader that's safe for concurrent
   196  // reads and switches, if its mutex is held.
   197  type liveSwitchReader struct {
   198  	sync.Mutex
   199  	r io.Reader
   200  }
   201  
   202  func (sr *liveSwitchReader) Read(p []byte) (n int, err error) {
   203  	sr.Lock()
   204  	r := sr.r
   205  	sr.Unlock()
   206  	return r.Read(p)
   207  }
   208  
   209  // This should be >= 512 bytes for DetectContentType,
   210  // but otherwise it's somewhat arbitrary.
   211  const bufferBeforeChunkingSize = 2048
   212  
   213  // chunkWriter writes to a response's conn buffer, and is the writer
   214  // wrapped by the response.bufw buffered writer.
   215  //
   216  // chunkWriter also is responsible for finalizing the Header, including
   217  // conditionally setting the Content-Type and setting a Content-Length
   218  // in cases where the handler's final output is smaller than the buffer
   219  // size. It also conditionally adds chunk headers, when in chunking mode.
   220  //
   221  // See the comment above (*response).Write for the entire write flow.
   222  type chunkWriter struct {
   223  	res *response
   224  
   225  	// header is either nil or a deep clone of res.handlerHeader
   226  	// at the time of res.WriteHeader, if res.WriteHeader is
   227  	// called and extra buffering is being done to calculate
   228  	// Content-Type and/or Content-Length.
   229  	header Header
   230  
   231  	// wroteHeader tells whether the header's been written to "the
   232  	// wire" (or rather: w.conn.buf). this is unlike
   233  	// (*response).wroteHeader, which tells only whether it was
   234  	// logically written.
   235  	wroteHeader bool
   236  
   237  	// set by the writeHeader method:
   238  	chunking bool // using chunked transfer encoding for reply body
   239  }
   240  
   241  var (
   242  	crlf       = []byte("\r\n")
   243  	colonSpace = []byte(": ")
   244  )
   245  
   246  func (cw *chunkWriter) Write(p []byte) (n int, err error) {
   247  	if !cw.wroteHeader {
   248  		cw.writeHeader(p)
   249  	}
   250  	if cw.res.req.Method == "HEAD" {
   251  		// Eat writes.
   252  		return len(p), nil
   253  	}
   254  	if cw.chunking {
   255  		_, err = fmt.Fprintf(cw.res.conn.buf, "%x\r\n", len(p))
   256  		if err != nil {
   257  			cw.res.conn.rwc.Close()
   258  			return
   259  		}
   260  	}
   261  	n, err = cw.res.conn.buf.Write(p)
   262  	if cw.chunking && err == nil {
   263  		_, err = cw.res.conn.buf.Write(crlf)
   264  	}
   265  	if err != nil {
   266  		cw.res.conn.rwc.Close()
   267  	}
   268  	return
   269  }
   270  
   271  func (cw *chunkWriter) flush() {
   272  	if !cw.wroteHeader {
   273  		cw.writeHeader(nil)
   274  	}
   275  	cw.res.conn.buf.Flush()
   276  }
   277  
   278  func (cw *chunkWriter) close() {
   279  	if !cw.wroteHeader {
   280  		cw.writeHeader(nil)
   281  	}
   282  	if cw.chunking {
   283  		// zero EOF chunk, trailer key/value pairs (currently
   284  		// unsupported in Go's server), followed by a blank
   285  		// line.
   286  		cw.res.conn.buf.WriteString("0\r\n\r\n")
   287  	}
   288  }
   289  
   290  // A response represents the server side of an HTTP response.
   291  type response struct {
   292  	conn          *conn
   293  	req           *Request // request for this response
   294  	wroteHeader   bool     // reply header has been (logically) written
   295  	wroteContinue bool     // 100 Continue response was written
   296  
   297  	w  *bufio.Writer // buffers output in chunks to chunkWriter
   298  	cw chunkWriter
   299  	sw *switchWriter // of the bufio.Writer, for return to putBufioWriter
   300  
   301  	// handlerHeader is the Header that Handlers get access to,
   302  	// which may be retained and mutated even after WriteHeader.
   303  	// handlerHeader is copied into cw.header at WriteHeader
   304  	// time, and privately mutated thereafter.
   305  	handlerHeader Header
   306  	calledHeader  bool // handler accessed handlerHeader via Header
   307  
   308  	written       int64 // number of bytes written in body
   309  	contentLength int64 // explicitly-declared Content-Length; or -1
   310  	status        int   // status code passed to WriteHeader
   311  
   312  	// close connection after this reply.  set on request and
   313  	// updated after response from handler if there's a
   314  	// "Connection: keep-alive" response header and a
   315  	// Content-Length.
   316  	closeAfterReply bool
   317  
   318  	// requestBodyLimitHit is set by requestTooLarge when
   319  	// maxBytesReader hits its max size. It is checked in
   320  	// WriteHeader, to make sure we don't consume the
   321  	// remaining request body to try to advance to the next HTTP
   322  	// request. Instead, when this is set, we stop reading
   323  	// subsequent requests on this connection and stop reading
   324  	// input from it.
   325  	requestBodyLimitHit bool
   326  
   327  	handlerDone bool // set true when the handler exits
   328  
   329  	// Buffers for Date and Content-Length
   330  	dateBuf [len(TimeFormat)]byte
   331  	clenBuf [10]byte
   332  }
   333  
   334  // requestTooLarge is called by maxBytesReader when too much input has
   335  // been read from the client.
   336  func (w *response) requestTooLarge() {
   337  	w.closeAfterReply = true
   338  	w.requestBodyLimitHit = true
   339  	if !w.wroteHeader {
   340  		w.Header().Set("Connection", "close")
   341  	}
   342  }
   343  
   344  // needsSniff reports whether a Content-Type still needs to be sniffed.
   345  func (w *response) needsSniff() bool {
   346  	_, haveType := w.handlerHeader["Content-Type"]
   347  	return !w.cw.wroteHeader && !haveType && w.written < sniffLen
   348  }
   349  
   350  // writerOnly hides an io.Writer value's optional ReadFrom method
   351  // from io.Copy.
   352  type writerOnly struct {
   353  	io.Writer
   354  }
   355  
   356  func srcIsRegularFile(src io.Reader) (isRegular bool, err error) {
   357  	switch v := src.(type) {
   358  	case *os.File:
   359  		fi, err := v.Stat()
   360  		if err != nil {
   361  			return false, err
   362  		}
   363  		return fi.Mode().IsRegular(), nil
   364  	case *io.LimitedReader:
   365  		return srcIsRegularFile(v.R)
   366  	default:
   367  		return
   368  	}
   369  }
   370  
   371  // ReadFrom is here to optimize copying from an *os.File regular file
   372  // to a *net.TCPConn with sendfile.
   373  func (w *response) ReadFrom(src io.Reader) (n int64, err error) {
   374  	// Our underlying w.conn.rwc is usually a *TCPConn (with its
   375  	// own ReadFrom method). If not, or if our src isn't a regular
   376  	// file, just fall back to the normal copy method.
   377  	rf, ok := w.conn.rwc.(io.ReaderFrom)
   378  	regFile, err := srcIsRegularFile(src)
   379  	if err != nil {
   380  		return 0, err
   381  	}
   382  	if !ok || !regFile {
   383  		return io.Copy(writerOnly{w}, src)
   384  	}
   385  
   386  	// sendfile path:
   387  
   388  	if !w.wroteHeader {
   389  		w.WriteHeader(StatusOK)
   390  	}
   391  
   392  	if w.needsSniff() {
   393  		n0, err := io.Copy(writerOnly{w}, io.LimitReader(src, sniffLen))
   394  		n += n0
   395  		if err != nil {
   396  			return n, err
   397  		}
   398  	}
   399  
   400  	w.w.Flush()  // get rid of any previous writes
   401  	w.cw.flush() // make sure Header is written; flush data to rwc
   402  
   403  	// Now that cw has been flushed, its chunking field is guaranteed initialized.
   404  	if !w.cw.chunking && w.bodyAllowed() {
   405  		n0, err := rf.ReadFrom(src)
   406  		n += n0
   407  		w.written += n0
   408  		return n, err
   409  	}
   410  
   411  	n0, err := io.Copy(writerOnly{w}, src)
   412  	n += n0
   413  	return n, err
   414  }
   415  
   416  // noLimit is an effective infinite upper bound for io.LimitedReader
   417  const noLimit int64 = (1 << 63) - 1
   418  
   419  // debugServerConnections controls whether all server connections are wrapped
   420  // with a verbose logging wrapper.
   421  const debugServerConnections = false
   422  
   423  // Create new connection from rwc.
   424  func (srv *Server) newConn(rwc net.Conn) (c *conn, err error) {
   425  	c = new(conn)
   426  	c.remoteAddr = rwc.RemoteAddr().String()
   427  	c.server = srv
   428  	c.rwc = rwc
   429  	if debugServerConnections {
   430  		c.rwc = newLoggingConn("server", c.rwc)
   431  	}
   432  	c.sr = liveSwitchReader{r: c.rwc}
   433  	c.lr = io.LimitReader(&c.sr, noLimit).(*io.LimitedReader)
   434  	br := newBufioReader(c.lr)
   435  	bw := newBufioWriterSize(c.rwc, 4<<10)
   436  	c.buf = bufio.NewReadWriter(br, bw)
   437  	return c, nil
   438  }
   439  
   440  var (
   441  	bufioReaderPool   sync.Pool
   442  	bufioWriter2kPool sync.Pool
   443  	bufioWriter4kPool sync.Pool
   444  )
   445  
   446  func bufioWriterPool(size int) *sync.Pool {
   447  	switch size {
   448  	case 2 << 10:
   449  		return &bufioWriter2kPool
   450  	case 4 << 10:
   451  		return &bufioWriter4kPool
   452  	}
   453  	return nil
   454  }
   455  
   456  func newBufioReader(r io.Reader) *bufio.Reader {
   457  	if v := bufioReaderPool.Get(); v != nil {
   458  		br := v.(*bufio.Reader)
   459  		br.Reset(r)
   460  		return br
   461  	}
   462  	return bufio.NewReader(r)
   463  }
   464  
   465  func putBufioReader(br *bufio.Reader) {
   466  	br.Reset(nil)
   467  	bufioReaderPool.Put(br)
   468  }
   469  
   470  func newBufioWriterSize(w io.Writer, size int) *bufio.Writer {
   471  	pool := bufioWriterPool(size)
   472  	if pool != nil {
   473  		if v := pool.Get(); v != nil {
   474  			bw := v.(*bufio.Writer)
   475  			bw.Reset(w)
   476  			return bw
   477  		}
   478  	}
   479  	return bufio.NewWriterSize(w, size)
   480  }
   481  
   482  func putBufioWriter(bw *bufio.Writer) {
   483  	bw.Reset(nil)
   484  	if pool := bufioWriterPool(bw.Available()); pool != nil {
   485  		pool.Put(bw)
   486  	}
   487  }
   488  
   489  // DefaultMaxHeaderBytes is the maximum permitted size of the headers
   490  // in an HTTP request.
   491  // This can be overridden by setting Server.MaxHeaderBytes.
   492  const DefaultMaxHeaderBytes = 1 << 20 // 1 MB
   493  
   494  func (srv *Server) maxHeaderBytes() int {
   495  	if srv.MaxHeaderBytes > 0 {
   496  		return srv.MaxHeaderBytes
   497  	}
   498  	return DefaultMaxHeaderBytes
   499  }
   500  
   501  func (srv *Server) initialLimitedReaderSize() int64 {
   502  	return int64(srv.maxHeaderBytes()) + 4096 // bufio slop
   503  }
   504  
   505  // wrapper around io.ReaderCloser which on first read, sends an
   506  // HTTP/1.1 100 Continue header
   507  type expectContinueReader struct {
   508  	resp       *response
   509  	readCloser io.ReadCloser
   510  	closed     bool
   511  }
   512  
   513  func (ecr *expectContinueReader) Read(p []byte) (n int, err error) {
   514  	if ecr.closed {
   515  		return 0, ErrBodyReadAfterClose
   516  	}
   517  	if !ecr.resp.wroteContinue && !ecr.resp.conn.hijacked() {
   518  		ecr.resp.wroteContinue = true
   519  		ecr.resp.conn.buf.WriteString("HTTP/1.1 100 Continue\r\n\r\n")
   520  		ecr.resp.conn.buf.Flush()
   521  	}
   522  	return ecr.readCloser.Read(p)
   523  }
   524  
   525  func (ecr *expectContinueReader) Close() error {
   526  	ecr.closed = true
   527  	return ecr.readCloser.Close()
   528  }
   529  
   530  // TimeFormat is the time format to use with
   531  // time.Parse and time.Time.Format when parsing
   532  // or generating times in HTTP headers.
   533  // It is like time.RFC1123 but hard codes GMT as the time zone.
   534  const TimeFormat = "Mon, 02 Jan 2006 15:04:05 GMT"
   535  
   536  // appendTime is a non-allocating version of []byte(t.UTC().Format(TimeFormat))
   537  func appendTime(b []byte, t time.Time) []byte {
   538  	const days = "SunMonTueWedThuFriSat"
   539  	const months = "JanFebMarAprMayJunJulAugSepOctNovDec"
   540  
   541  	t = t.UTC()
   542  	yy, mm, dd := t.Date()
   543  	hh, mn, ss := t.Clock()
   544  	day := days[3*t.Weekday():]
   545  	mon := months[3*(mm-1):]
   546  
   547  	return append(b,
   548  		day[0], day[1], day[2], ',', ' ',
   549  		byte('0'+dd/10), byte('0'+dd%10), ' ',
   550  		mon[0], mon[1], mon[2], ' ',
   551  		byte('0'+yy/1000), byte('0'+(yy/100)%10), byte('0'+(yy/10)%10), byte('0'+yy%10), ' ',
   552  		byte('0'+hh/10), byte('0'+hh%10), ':',
   553  		byte('0'+mn/10), byte('0'+mn%10), ':',
   554  		byte('0'+ss/10), byte('0'+ss%10), ' ',
   555  		'G', 'M', 'T')
   556  }
   557  
   558  var errTooLarge = errors.New("http: request too large")
   559  
   560  // Read next request from connection.
   561  func (c *conn) readRequest() (w *response, err error) {
   562  	if c.hijacked() {
   563  		return nil, ErrHijacked
   564  	}
   565  
   566  	if d := c.server.ReadTimeout; d != 0 {
   567  		c.rwc.SetReadDeadline(time.Now().Add(d))
   568  	}
   569  	if d := c.server.WriteTimeout; d != 0 {
   570  		defer func() {
   571  			c.rwc.SetWriteDeadline(time.Now().Add(d))
   572  		}()
   573  	}
   574  
   575  	c.lr.N = c.server.initialLimitedReaderSize()
   576  	var req *Request
   577  	if req, err = ReadRequest(c.buf.Reader); err != nil {
   578  		if c.lr.N == 0 {
   579  			return nil, errTooLarge
   580  		}
   581  		return nil, err
   582  	}
   583  	c.lr.N = noLimit
   584  
   585  	req.RemoteAddr = c.remoteAddr
   586  	req.TLS = c.tlsState
   587  
   588  	w = &response{
   589  		conn:          c,
   590  		req:           req,
   591  		handlerHeader: make(Header),
   592  		contentLength: -1,
   593  	}
   594  	w.cw.res = w
   595  	w.w = newBufioWriterSize(&w.cw, bufferBeforeChunkingSize)
   596  	return w, nil
   597  }
   598  
   599  func (w *response) Header() Header {
   600  	if w.cw.header == nil && w.wroteHeader && !w.cw.wroteHeader {
   601  		// Accessing the header between logically writing it
   602  		// and physically writing it means we need to allocate
   603  		// a clone to snapshot the logically written state.
   604  		w.cw.header = w.handlerHeader.clone()
   605  	}
   606  	w.calledHeader = true
   607  	return w.handlerHeader
   608  }
   609  
   610  // maxPostHandlerReadBytes is the max number of Request.Body bytes not
   611  // consumed by a handler that the server will read from the client
   612  // in order to keep a connection alive.  If there are more bytes than
   613  // this then the server to be paranoid instead sends a "Connection:
   614  // close" response.
   615  //
   616  // This number is approximately what a typical machine's TCP buffer
   617  // size is anyway.  (if we have the bytes on the machine, we might as
   618  // well read them)
   619  const maxPostHandlerReadBytes = 256 << 10
   620  
   621  func (w *response) WriteHeader(code int) {
   622  	if w.conn.hijacked() {
   623  		w.conn.server.logf("http: response.WriteHeader on hijacked connection")
   624  		return
   625  	}
   626  	if w.wroteHeader {
   627  		w.conn.server.logf("http: multiple response.WriteHeader calls")
   628  		return
   629  	}
   630  	w.wroteHeader = true
   631  	w.status = code
   632  
   633  	if w.calledHeader && w.cw.header == nil {
   634  		w.cw.header = w.handlerHeader.clone()
   635  	}
   636  
   637  	if cl := w.handlerHeader.get("Content-Length"); cl != "" {
   638  		v, err := strconv.ParseInt(cl, 10, 64)
   639  		if err == nil && v >= 0 {
   640  			w.contentLength = v
   641  		} else {
   642  			w.conn.server.logf("http: invalid Content-Length of %q", cl)
   643  			w.handlerHeader.Del("Content-Length")
   644  		}
   645  	}
   646  }
   647  
   648  // extraHeader is the set of headers sometimes added by chunkWriter.writeHeader.
   649  // This type is used to avoid extra allocations from cloning and/or populating
   650  // the response Header map and all its 1-element slices.
   651  type extraHeader struct {
   652  	contentType      string
   653  	connection       string
   654  	transferEncoding string
   655  	date             []byte // written if not nil
   656  	contentLength    []byte // written if not nil
   657  }
   658  
   659  // Sorted the same as extraHeader.Write's loop.
   660  var extraHeaderKeys = [][]byte{
   661  	[]byte("Content-Type"),
   662  	[]byte("Connection"),
   663  	[]byte("Transfer-Encoding"),
   664  }
   665  
   666  var (
   667  	headerContentLength = []byte("Content-Length: ")
   668  	headerDate          = []byte("Date: ")
   669  )
   670  
   671  // Write writes the headers described in h to w.
   672  //
   673  // This method has a value receiver, despite the somewhat large size
   674  // of h, because it prevents an allocation. The escape analysis isn't
   675  // smart enough to realize this function doesn't mutate h.
   676  func (h extraHeader) Write(w *bufio.Writer) {
   677  	if h.date != nil {
   678  		w.Write(headerDate)
   679  		w.Write(h.date)
   680  		w.Write(crlf)
   681  	}
   682  	if h.contentLength != nil {
   683  		w.Write(headerContentLength)
   684  		w.Write(h.contentLength)
   685  		w.Write(crlf)
   686  	}
   687  	for i, v := range []string{h.contentType, h.connection, h.transferEncoding} {
   688  		if v != "" {
   689  			w.Write(extraHeaderKeys[i])
   690  			w.Write(colonSpace)
   691  			w.WriteString(v)
   692  			w.Write(crlf)
   693  		}
   694  	}
   695  }
   696  
   697  // writeHeader finalizes the header sent to the client and writes it
   698  // to cw.res.conn.buf.
   699  //
   700  // p is not written by writeHeader, but is the first chunk of the body
   701  // that will be written.  It is sniffed for a Content-Type if none is
   702  // set explicitly.  It's also used to set the Content-Length, if the
   703  // total body size was small and the handler has already finished
   704  // running.
   705  func (cw *chunkWriter) writeHeader(p []byte) {
   706  	if cw.wroteHeader {
   707  		return
   708  	}
   709  	cw.wroteHeader = true
   710  
   711  	w := cw.res
   712  	keepAlivesEnabled := w.conn.server.doKeepAlives()
   713  	isHEAD := w.req.Method == "HEAD"
   714  
   715  	// header is written out to w.conn.buf below. Depending on the
   716  	// state of the handler, we either own the map or not. If we
   717  	// don't own it, the exclude map is created lazily for
   718  	// WriteSubset to remove headers. The setHeader struct holds
   719  	// headers we need to add.
   720  	header := cw.header
   721  	owned := header != nil
   722  	if !owned {
   723  		header = w.handlerHeader
   724  	}
   725  	var excludeHeader map[string]bool
   726  	delHeader := func(key string) {
   727  		if owned {
   728  			header.Del(key)
   729  			return
   730  		}
   731  		if _, ok := header[key]; !ok {
   732  			return
   733  		}
   734  		if excludeHeader == nil {
   735  			excludeHeader = make(map[string]bool)
   736  		}
   737  		excludeHeader[key] = true
   738  	}
   739  	var setHeader extraHeader
   740  
   741  	// If the handler is done but never sent a Content-Length
   742  	// response header and this is our first (and last) write, set
   743  	// it, even to zero. This helps HTTP/1.0 clients keep their
   744  	// "keep-alive" connections alive.
   745  	// Exceptions: 304/204/1xx responses never get Content-Length, and if
   746  	// it was a HEAD request, we don't know the difference between
   747  	// 0 actual bytes and 0 bytes because the handler noticed it
   748  	// was a HEAD request and chose not to write anything.  So for
   749  	// HEAD, the handler should either write the Content-Length or
   750  	// write non-zero bytes.  If it's actually 0 bytes and the
   751  	// handler never looked at the Request.Method, we just don't
   752  	// send a Content-Length header.
   753  	if w.handlerDone && bodyAllowedForStatus(w.status) && header.get("Content-Length") == "" && (!isHEAD || len(p) > 0) {
   754  		w.contentLength = int64(len(p))
   755  		setHeader.contentLength = strconv.AppendInt(cw.res.clenBuf[:0], int64(len(p)), 10)
   756  	}
   757  
   758  	// If this was an HTTP/1.0 request with keep-alive and we sent a
   759  	// Content-Length back, we can make this a keep-alive response ...
   760  	if w.req.wantsHttp10KeepAlive() && keepAlivesEnabled {
   761  		sentLength := header.get("Content-Length") != ""
   762  		if sentLength && header.get("Connection") == "keep-alive" {
   763  			w.closeAfterReply = false
   764  		}
   765  	}
   766  
   767  	// Check for a explicit (and valid) Content-Length header.
   768  	hasCL := w.contentLength != -1
   769  
   770  	if w.req.wantsHttp10KeepAlive() && (isHEAD || hasCL) {
   771  		_, connectionHeaderSet := header["Connection"]
   772  		if !connectionHeaderSet {
   773  			setHeader.connection = "keep-alive"
   774  		}
   775  	} else if !w.req.ProtoAtLeast(1, 1) || w.req.wantsClose() {
   776  		w.closeAfterReply = true
   777  	}
   778  
   779  	if header.get("Connection") == "close" || !keepAlivesEnabled {
   780  		w.closeAfterReply = true
   781  	}
   782  
   783  	// Per RFC 2616, we should consume the request body before
   784  	// replying, if the handler hasn't already done so.  But we
   785  	// don't want to do an unbounded amount of reading here for
   786  	// DoS reasons, so we only try up to a threshold.
   787  	if w.req.ContentLength != 0 && !w.closeAfterReply {
   788  		ecr, isExpecter := w.req.Body.(*expectContinueReader)
   789  		if !isExpecter || ecr.resp.wroteContinue {
   790  			n, _ := io.CopyN(ioutil.Discard, w.req.Body, maxPostHandlerReadBytes+1)
   791  			if n >= maxPostHandlerReadBytes {
   792  				w.requestTooLarge()
   793  				delHeader("Connection")
   794  				setHeader.connection = "close"
   795  			} else {
   796  				w.req.Body.Close()
   797  			}
   798  		}
   799  	}
   800  
   801  	code := w.status
   802  	if bodyAllowedForStatus(code) {
   803  		// If no content type, apply sniffing algorithm to body.
   804  		_, haveType := header["Content-Type"]
   805  		if !haveType {
   806  			setHeader.contentType = DetectContentType(p)
   807  		}
   808  	} else {
   809  		for _, k := range suppressedHeaders(code) {
   810  			delHeader(k)
   811  		}
   812  	}
   813  
   814  	if _, ok := header["Date"]; !ok {
   815  		setHeader.date = appendTime(cw.res.dateBuf[:0], time.Now())
   816  	}
   817  
   818  	te := header.get("Transfer-Encoding")
   819  	hasTE := te != ""
   820  	if hasCL && hasTE && te != "identity" {
   821  		// TODO: return an error if WriteHeader gets a return parameter
   822  		// For now just ignore the Content-Length.
   823  		w.conn.server.logf("http: WriteHeader called with both Transfer-Encoding of %q and a Content-Length of %d",
   824  			te, w.contentLength)
   825  		delHeader("Content-Length")
   826  		hasCL = false
   827  	}
   828  
   829  	if w.req.Method == "HEAD" || !bodyAllowedForStatus(code) {
   830  		// do nothing
   831  	} else if code == StatusNoContent {
   832  		delHeader("Transfer-Encoding")
   833  	} else if hasCL {
   834  		delHeader("Transfer-Encoding")
   835  	} else if w.req.ProtoAtLeast(1, 1) {
   836  		// HTTP/1.1 or greater: use chunked transfer encoding
   837  		// to avoid closing the connection at EOF.
   838  		// TODO: this blows away any custom or stacked Transfer-Encoding they
   839  		// might have set.  Deal with that as need arises once we have a valid
   840  		// use case.
   841  		cw.chunking = true
   842  		setHeader.transferEncoding = "chunked"
   843  	} else {
   844  		// HTTP version < 1.1: cannot do chunked transfer
   845  		// encoding and we don't know the Content-Length so
   846  		// signal EOF by closing connection.
   847  		w.closeAfterReply = true
   848  		delHeader("Transfer-Encoding") // in case already set
   849  	}
   850  
   851  	// Cannot use Content-Length with non-identity Transfer-Encoding.
   852  	if cw.chunking {
   853  		delHeader("Content-Length")
   854  	}
   855  	if !w.req.ProtoAtLeast(1, 0) {
   856  		return
   857  	}
   858  
   859  	if w.closeAfterReply && (!keepAlivesEnabled || !hasToken(cw.header.get("Connection"), "close")) {
   860  		delHeader("Connection")
   861  		if w.req.ProtoAtLeast(1, 1) {
   862  			setHeader.connection = "close"
   863  		}
   864  	}
   865  
   866  	w.conn.buf.WriteString(statusLine(w.req, code))
   867  	cw.header.WriteSubset(w.conn.buf, excludeHeader)
   868  	setHeader.Write(w.conn.buf.Writer)
   869  	w.conn.buf.Write(crlf)
   870  }
   871  
   872  // statusLines is a cache of Status-Line strings, keyed by code (for
   873  // HTTP/1.1) or negative code (for HTTP/1.0). This is faster than a
   874  // map keyed by struct of two fields. This map's max size is bounded
   875  // by 2*len(statusText), two protocol types for each known official
   876  // status code in the statusText map.
   877  var (
   878  	statusMu    sync.RWMutex
   879  	statusLines = make(map[int]string)
   880  )
   881  
   882  // statusLine returns a response Status-Line (RFC 2616 Section 6.1)
   883  // for the given request and response status code.
   884  func statusLine(req *Request, code int) string {
   885  	// Fast path:
   886  	key := code
   887  	proto11 := req.ProtoAtLeast(1, 1)
   888  	if !proto11 {
   889  		key = -key
   890  	}
   891  	statusMu.RLock()
   892  	line, ok := statusLines[key]
   893  	statusMu.RUnlock()
   894  	if ok {
   895  		return line
   896  	}
   897  
   898  	// Slow path:
   899  	proto := "HTTP/1.0"
   900  	if proto11 {
   901  		proto = "HTTP/1.1"
   902  	}
   903  	codestring := strconv.Itoa(code)
   904  	text, ok := statusText[code]
   905  	if !ok {
   906  		text = "status code " + codestring
   907  	}
   908  	line = proto + " " + codestring + " " + text + "\r\n"
   909  	if ok {
   910  		statusMu.Lock()
   911  		defer statusMu.Unlock()
   912  		statusLines[key] = line
   913  	}
   914  	return line
   915  }
   916  
   917  // bodyAllowed returns true if a Write is allowed for this response type.
   918  // It's illegal to call this before the header has been flushed.
   919  func (w *response) bodyAllowed() bool {
   920  	if !w.wroteHeader {
   921  		panic("")
   922  	}
   923  	return bodyAllowedForStatus(w.status)
   924  }
   925  
   926  // The Life Of A Write is like this:
   927  //
   928  // Handler starts. No header has been sent. The handler can either
   929  // write a header, or just start writing.  Writing before sending a header
   930  // sends an implicitly empty 200 OK header.
   931  //
   932  // If the handler didn't declare a Content-Length up front, we either
   933  // go into chunking mode or, if the handler finishes running before
   934  // the chunking buffer size, we compute a Content-Length and send that
   935  // in the header instead.
   936  //
   937  // Likewise, if the handler didn't set a Content-Type, we sniff that
   938  // from the initial chunk of output.
   939  //
   940  // The Writers are wired together like:
   941  //
   942  // 1. *response (the ResponseWriter) ->
   943  // 2. (*response).w, a *bufio.Writer of bufferBeforeChunkingSize bytes
   944  // 3. chunkWriter.Writer (whose writeHeader finalizes Content-Length/Type)
   945  //    and which writes the chunk headers, if needed.
   946  // 4. conn.buf, a bufio.Writer of default (4kB) bytes
   947  // 5. the rwc, the net.Conn.
   948  //
   949  // TODO(bradfitz): short-circuit some of the buffering when the
   950  // initial header contains both a Content-Type and Content-Length.
   951  // Also short-circuit in (1) when the header's been sent and not in
   952  // chunking mode, writing directly to (4) instead, if (2) has no
   953  // buffered data.  More generally, we could short-circuit from (1) to
   954  // (3) even in chunking mode if the write size from (1) is over some
   955  // threshold and nothing is in (2).  The answer might be mostly making
   956  // bufferBeforeChunkingSize smaller and having bufio's fast-paths deal
   957  // with this instead.
   958  func (w *response) Write(data []byte) (n int, err error) {
   959  	return w.write(len(data), data, "")
   960  }
   961  
   962  func (w *response) WriteString(data string) (n int, err error) {
   963  	return w.write(len(data), nil, data)
   964  }
   965  
   966  // either dataB or dataS is non-zero.
   967  func (w *response) write(lenData int, dataB []byte, dataS string) (n int, err error) {
   968  	if w.conn.hijacked() {
   969  		w.conn.server.logf("http: response.Write on hijacked connection")
   970  		return 0, ErrHijacked
   971  	}
   972  	if !w.wroteHeader {
   973  		w.WriteHeader(StatusOK)
   974  	}
   975  	if lenData == 0 {
   976  		return 0, nil
   977  	}
   978  	if !w.bodyAllowed() {
   979  		return 0, ErrBodyNotAllowed
   980  	}
   981  
   982  	w.written += int64(lenData) // ignoring errors, for errorKludge
   983  	if w.contentLength != -1 && w.written > w.contentLength {
   984  		return 0, ErrContentLength
   985  	}
   986  	if dataB != nil {
   987  		return w.w.Write(dataB)
   988  	} else {
   989  		return w.w.WriteString(dataS)
   990  	}
   991  }
   992  
   993  func (w *response) finishRequest() {
   994  	w.handlerDone = true
   995  
   996  	if !w.wroteHeader {
   997  		w.WriteHeader(StatusOK)
   998  	}
   999  
  1000  	w.w.Flush()
  1001  	putBufioWriter(w.w)
  1002  	w.cw.close()
  1003  	w.conn.buf.Flush()
  1004  
  1005  	// Close the body (regardless of w.closeAfterReply) so we can
  1006  	// re-use its bufio.Reader later safely.
  1007  	w.req.Body.Close()
  1008  
  1009  	if w.req.MultipartForm != nil {
  1010  		w.req.MultipartForm.RemoveAll()
  1011  	}
  1012  
  1013  	if w.req.Method != "HEAD" && w.contentLength != -1 && w.bodyAllowed() && w.contentLength != w.written {
  1014  		// Did not write enough. Avoid getting out of sync.
  1015  		w.closeAfterReply = true
  1016  	}
  1017  }
  1018  
  1019  func (w *response) Flush() {
  1020  	if !w.wroteHeader {
  1021  		w.WriteHeader(StatusOK)
  1022  	}
  1023  	w.w.Flush()
  1024  	w.cw.flush()
  1025  }
  1026  
  1027  func (c *conn) finalFlush() {
  1028  	if c.buf != nil {
  1029  		c.buf.Flush()
  1030  
  1031  		// Steal the bufio.Reader (~4KB worth of memory) and its associated
  1032  		// reader for a future connection.
  1033  		putBufioReader(c.buf.Reader)
  1034  
  1035  		// Steal the bufio.Writer (~4KB worth of memory) and its associated
  1036  		// writer for a future connection.
  1037  		putBufioWriter(c.buf.Writer)
  1038  
  1039  		c.buf = nil
  1040  	}
  1041  }
  1042  
  1043  // Close the connection.
  1044  func (c *conn) close() {
  1045  	c.finalFlush()
  1046  	if c.rwc != nil {
  1047  		c.rwc.Close()
  1048  		c.rwc = nil
  1049  	}
  1050  }
  1051  
  1052  // rstAvoidanceDelay is the amount of time we sleep after closing the
  1053  // write side of a TCP connection before closing the entire socket.
  1054  // By sleeping, we increase the chances that the client sees our FIN
  1055  // and processes its final data before they process the subsequent RST
  1056  // from closing a connection with known unread data.
  1057  // This RST seems to occur mostly on BSD systems. (And Windows?)
  1058  // This timeout is somewhat arbitrary (~latency around the planet).
  1059  const rstAvoidanceDelay = 500 * time.Millisecond
  1060  
  1061  // closeWrite flushes any outstanding data and sends a FIN packet (if
  1062  // client is connected via TCP), signalling that we're done.  We then
  1063  // pause for a bit, hoping the client processes it before `any
  1064  // subsequent RST.
  1065  //
  1066  // See http://golang.org/issue/3595
  1067  func (c *conn) closeWriteAndWait() {
  1068  	c.finalFlush()
  1069  	if tcp, ok := c.rwc.(*net.TCPConn); ok {
  1070  		tcp.CloseWrite()
  1071  	}
  1072  	time.Sleep(rstAvoidanceDelay)
  1073  }
  1074  
  1075  // validNPN reports whether the proto is not a blacklisted Next
  1076  // Protocol Negotiation protocol.  Empty and built-in protocol types
  1077  // are blacklisted and can't be overridden with alternate
  1078  // implementations.
  1079  func validNPN(proto string) bool {
  1080  	switch proto {
  1081  	case "", "http/1.1", "http/1.0":
  1082  		return false
  1083  	}
  1084  	return true
  1085  }
  1086  
  1087  func (c *conn) setState(nc net.Conn, state ConnState) {
  1088  	if hook := c.server.ConnState; hook != nil {
  1089  		hook(nc, state)
  1090  	}
  1091  }
  1092  
  1093  // Serve a new connection.
  1094  func (c *conn) serve() {
  1095  	origConn := c.rwc // copy it before it's set nil on Close or Hijack
  1096  	defer func() {
  1097  		if err := recover(); err != nil {
  1098  			const size = 64 << 10
  1099  			buf := make([]byte, size)
  1100  			buf = buf[:runtime.Stack(buf, false)]
  1101  			c.server.logf("http: panic serving %v: %v\n%s", c.remoteAddr, err, buf)
  1102  		}
  1103  		if !c.hijacked() {
  1104  			c.close()
  1105  			c.setState(origConn, StateClosed)
  1106  		}
  1107  	}()
  1108  
  1109  	if tlsConn, ok := c.rwc.(*tls.Conn); ok {
  1110  		if d := c.server.ReadTimeout; d != 0 {
  1111  			c.rwc.SetReadDeadline(time.Now().Add(d))
  1112  		}
  1113  		if d := c.server.WriteTimeout; d != 0 {
  1114  			c.rwc.SetWriteDeadline(time.Now().Add(d))
  1115  		}
  1116  		if err := tlsConn.Handshake(); err != nil {
  1117  			c.server.logf("http: TLS handshake error from %s: %v", c.rwc.RemoteAddr(), err)
  1118  			return
  1119  		}
  1120  		c.tlsState = new(tls.ConnectionState)
  1121  		*c.tlsState = tlsConn.ConnectionState()
  1122  		if proto := c.tlsState.NegotiatedProtocol; validNPN(proto) {
  1123  			if fn := c.server.TLSNextProto[proto]; fn != nil {
  1124  				h := initNPNRequest{tlsConn, serverHandler{c.server}}
  1125  				fn(c.server, tlsConn, h)
  1126  			}
  1127  			return
  1128  		}
  1129  	}
  1130  
  1131  	for {
  1132  		w, err := c.readRequest()
  1133  		if c.lr.N != c.server.initialLimitedReaderSize() {
  1134  			// If we read any bytes off the wire, we're active.
  1135  			c.setState(c.rwc, StateActive)
  1136  		}
  1137  		if err != nil {
  1138  			if err == errTooLarge {
  1139  				// Their HTTP client may or may not be
  1140  				// able to read this if we're
  1141  				// responding to them and hanging up
  1142  				// while they're still writing their
  1143  				// request.  Undefined behavior.
  1144  				io.WriteString(c.rwc, "HTTP/1.1 413 Request Entity Too Large\r\n\r\n")
  1145  				c.closeWriteAndWait()
  1146  				break
  1147  			} else if err == io.EOF {
  1148  				break // Don't reply
  1149  			} else if neterr, ok := err.(net.Error); ok && neterr.Timeout() {
  1150  				break // Don't reply
  1151  			}
  1152  			io.WriteString(c.rwc, "HTTP/1.1 400 Bad Request\r\n\r\n")
  1153  			break
  1154  		}
  1155  
  1156  		// Expect 100 Continue support
  1157  		req := w.req
  1158  		if req.expectsContinue() {
  1159  			if req.ProtoAtLeast(1, 1) && req.ContentLength != 0 {
  1160  				// Wrap the Body reader with one that replies on the connection
  1161  				req.Body = &expectContinueReader{readCloser: req.Body, resp: w}
  1162  			}
  1163  			req.Header.Del("Expect")
  1164  		} else if req.Header.get("Expect") != "" {
  1165  			w.sendExpectationFailed()
  1166  			break
  1167  		}
  1168  
  1169  		// HTTP cannot have multiple simultaneous active requests.[*]
  1170  		// Until the server replies to this request, it can't read another,
  1171  		// so we might as well run the handler in this goroutine.
  1172  		// [*] Not strictly true: HTTP pipelining.  We could let them all process
  1173  		// in parallel even if their responses need to be serialized.
  1174  		serverHandler{c.server}.ServeHTTP(w, w.req)
  1175  		if c.hijacked() {
  1176  			return
  1177  		}
  1178  		w.finishRequest()
  1179  		if w.closeAfterReply {
  1180  			if w.requestBodyLimitHit {
  1181  				c.closeWriteAndWait()
  1182  			}
  1183  			break
  1184  		}
  1185  		c.setState(c.rwc, StateIdle)
  1186  	}
  1187  }
  1188  
  1189  func (w *response) sendExpectationFailed() {
  1190  	// TODO(bradfitz): let ServeHTTP handlers handle
  1191  	// requests with non-standard expectation[s]? Seems
  1192  	// theoretical at best, and doesn't fit into the
  1193  	// current ServeHTTP model anyway.  We'd need to
  1194  	// make the ResponseWriter an optional
  1195  	// "ExpectReplier" interface or something.
  1196  	//
  1197  	// For now we'll just obey RFC 2616 14.20 which says
  1198  	// "If a server receives a request containing an
  1199  	// Expect field that includes an expectation-
  1200  	// extension that it does not support, it MUST
  1201  	// respond with a 417 (Expectation Failed) status."
  1202  	w.Header().Set("Connection", "close")
  1203  	w.WriteHeader(StatusExpectationFailed)
  1204  	w.finishRequest()
  1205  }
  1206  
  1207  // Hijack implements the Hijacker.Hijack method. Our response is both a ResponseWriter
  1208  // and a Hijacker.
  1209  func (w *response) Hijack() (rwc net.Conn, buf *bufio.ReadWriter, err error) {
  1210  	if w.wroteHeader {
  1211  		w.cw.flush()
  1212  	}
  1213  	// Release the bufioWriter that writes to the chunk writer, it is not
  1214  	// used after a connection has been hijacked.
  1215  	rwc, buf, err = w.conn.hijack()
  1216  	if err == nil {
  1217  		putBufioWriter(w.w)
  1218  		w.w = nil
  1219  	}
  1220  	return rwc, buf, err
  1221  }
  1222  
  1223  func (w *response) CloseNotify() <-chan bool {
  1224  	return w.conn.closeNotify()
  1225  }
  1226  
  1227  // The HandlerFunc type is an adapter to allow the use of
  1228  // ordinary functions as HTTP handlers.  If f is a function
  1229  // with the appropriate signature, HandlerFunc(f) is a
  1230  // Handler object that calls f.
  1231  type HandlerFunc func(ResponseWriter, *Request)
  1232  
  1233  // ServeHTTP calls f(w, r).
  1234  func (f HandlerFunc) ServeHTTP(w ResponseWriter, r *Request) {
  1235  	f(w, r)
  1236  }
  1237  
  1238  // Helper handlers
  1239  
  1240  // Error replies to the request with the specified error message and HTTP code.
  1241  // The error message should be plain text.
  1242  func Error(w ResponseWriter, error string, code int) {
  1243  	w.Header().Set("Content-Type", "text/plain; charset=utf-8")
  1244  	w.WriteHeader(code)
  1245  	fmt.Fprintln(w, error)
  1246  }
  1247  
  1248  // NotFound replies to the request with an HTTP 404 not found error.
  1249  func NotFound(w ResponseWriter, r *Request) { Error(w, "404 page not found", StatusNotFound) }
  1250  
  1251  // NotFoundHandler returns a simple request handler
  1252  // that replies to each request with a ``404 page not found'' reply.
  1253  func NotFoundHandler() Handler { return HandlerFunc(NotFound) }
  1254  
  1255  // StripPrefix returns a handler that serves HTTP requests
  1256  // by removing the given prefix from the request URL's Path
  1257  // and invoking the handler h. StripPrefix handles a
  1258  // request for a path that doesn't begin with prefix by
  1259  // replying with an HTTP 404 not found error.
  1260  func StripPrefix(prefix string, h Handler) Handler {
  1261  	if prefix == "" {
  1262  		return h
  1263  	}
  1264  	return HandlerFunc(func(w ResponseWriter, r *Request) {
  1265  		if p := strings.TrimPrefix(r.URL.Path, prefix); len(p) < len(r.URL.Path) {
  1266  			r.URL.Path = p
  1267  			h.ServeHTTP(w, r)
  1268  		} else {
  1269  			NotFound(w, r)
  1270  		}
  1271  	})
  1272  }
  1273  
  1274  // Redirect replies to the request with a redirect to url,
  1275  // which may be a path relative to the request path.
  1276  func Redirect(w ResponseWriter, r *Request, urlStr string, code int) {
  1277  	if u, err := url.Parse(urlStr); err == nil {
  1278  		// If url was relative, make absolute by
  1279  		// combining with request path.
  1280  		// The browser would probably do this for us,
  1281  		// but doing it ourselves is more reliable.
  1282  
  1283  		// NOTE(rsc): RFC 2616 says that the Location
  1284  		// line must be an absolute URI, like
  1285  		// "http://www.google.com/redirect/",
  1286  		// not a path like "/redirect/".
  1287  		// Unfortunately, we don't know what to
  1288  		// put in the host name section to get the
  1289  		// client to connect to us again, so we can't
  1290  		// know the right absolute URI to send back.
  1291  		// Because of this problem, no one pays attention
  1292  		// to the RFC; they all send back just a new path.
  1293  		// So do we.
  1294  		oldpath := r.URL.Path
  1295  		if oldpath == "" { // should not happen, but avoid a crash if it does
  1296  			oldpath = "/"
  1297  		}
  1298  		if u.Scheme == "" {
  1299  			// no leading http://server
  1300  			if urlStr == "" || urlStr[0] != '/' {
  1301  				// make relative path absolute
  1302  				olddir, _ := path.Split(oldpath)
  1303  				urlStr = olddir + urlStr
  1304  			}
  1305  
  1306  			var query string
  1307  			if i := strings.Index(urlStr, "?"); i != -1 {
  1308  				urlStr, query = urlStr[:i], urlStr[i:]
  1309  			}
  1310  
  1311  			// clean up but preserve trailing slash
  1312  			trailing := strings.HasSuffix(urlStr, "/")
  1313  			urlStr = path.Clean(urlStr)
  1314  			if trailing && !strings.HasSuffix(urlStr, "/") {
  1315  				urlStr += "/"
  1316  			}
  1317  			urlStr += query
  1318  		}
  1319  	}
  1320  
  1321  	w.Header().Set("Location", urlStr)
  1322  	w.WriteHeader(code)
  1323  
  1324  	// RFC2616 recommends that a short note "SHOULD" be included in the
  1325  	// response because older user agents may not understand 301/307.
  1326  	// Shouldn't send the response for POST or HEAD; that leaves GET.
  1327  	if r.Method == "GET" {
  1328  		note := "<a href=\"" + htmlEscape(urlStr) + "\">" + statusText[code] + "</a>.\n"
  1329  		fmt.Fprintln(w, note)
  1330  	}
  1331  }
  1332  
  1333  var htmlReplacer = strings.NewReplacer(
  1334  	"&", "&amp;",
  1335  	"<", "&lt;",
  1336  	">", "&gt;",
  1337  	// "&#34;" is shorter than "&quot;".
  1338  	`"`, "&#34;",
  1339  	// "&#39;" is shorter than "&apos;" and apos was not in HTML until HTML5.
  1340  	"'", "&#39;",
  1341  )
  1342  
  1343  func htmlEscape(s string) string {
  1344  	return htmlReplacer.Replace(s)
  1345  }
  1346  
  1347  // Redirect to a fixed URL
  1348  type redirectHandler struct {
  1349  	url  string
  1350  	code int
  1351  }
  1352  
  1353  func (rh *redirectHandler) ServeHTTP(w ResponseWriter, r *Request) {
  1354  	Redirect(w, r, rh.url, rh.code)
  1355  }
  1356  
  1357  // RedirectHandler returns a request handler that redirects
  1358  // each request it receives to the given url using the given
  1359  // status code.
  1360  func RedirectHandler(url string, code int) Handler {
  1361  	return &redirectHandler{url, code}
  1362  }
  1363  
  1364  // ServeMux is an HTTP request multiplexer.
  1365  // It matches the URL of each incoming request against a list of registered
  1366  // patterns and calls the handler for the pattern that
  1367  // most closely matches the URL.
  1368  //
  1369  // Patterns name fixed, rooted paths, like "/favicon.ico",
  1370  // or rooted subtrees, like "/images/" (note the trailing slash).
  1371  // Longer patterns take precedence over shorter ones, so that
  1372  // if there are handlers registered for both "/images/"
  1373  // and "/images/thumbnails/", the latter handler will be
  1374  // called for paths beginning "/images/thumbnails/" and the
  1375  // former will receive requests for any other paths in the
  1376  // "/images/" subtree.
  1377  //
  1378  // Note that since a pattern ending in a slash names a rooted subtree,
  1379  // the pattern "/" matches all paths not matched by other registered
  1380  // patterns, not just the URL with Path == "/".
  1381  //
  1382  // Patterns may optionally begin with a host name, restricting matches to
  1383  // URLs on that host only.  Host-specific patterns take precedence over
  1384  // general patterns, so that a handler might register for the two patterns
  1385  // "/codesearch" and "codesearch.google.com/" without also taking over
  1386  // requests for "http://www.google.com/".
  1387  //
  1388  // ServeMux also takes care of sanitizing the URL request path,
  1389  // redirecting any request containing . or .. elements to an
  1390  // equivalent .- and ..-free URL.
  1391  type ServeMux struct {
  1392  	mu    sync.RWMutex
  1393  	m     map[string]muxEntry
  1394  	hosts bool // whether any patterns contain hostnames
  1395  }
  1396  
  1397  type muxEntry struct {
  1398  	explicit bool
  1399  	h        Handler
  1400  	pattern  string
  1401  }
  1402  
  1403  // NewServeMux allocates and returns a new ServeMux.
  1404  func NewServeMux() *ServeMux { return &ServeMux{m: make(map[string]muxEntry)} }
  1405  
  1406  // DefaultServeMux is the default ServeMux used by Serve.
  1407  var DefaultServeMux = NewServeMux()
  1408  
  1409  // Does path match pattern?
  1410  func pathMatch(pattern, path string) bool {
  1411  	if len(pattern) == 0 {
  1412  		// should not happen
  1413  		return false
  1414  	}
  1415  	n := len(pattern)
  1416  	if pattern[n-1] != '/' {
  1417  		return pattern == path
  1418  	}
  1419  	return len(path) >= n && path[0:n] == pattern
  1420  }
  1421  
  1422  // Return the canonical path for p, eliminating . and .. elements.
  1423  func cleanPath(p string) string {
  1424  	if p == "" {
  1425  		return "/"
  1426  	}
  1427  	if p[0] != '/' {
  1428  		p = "/" + p
  1429  	}
  1430  	np := path.Clean(p)
  1431  	// path.Clean removes trailing slash except for root;
  1432  	// put the trailing slash back if necessary.
  1433  	if p[len(p)-1] == '/' && np != "/" {
  1434  		np += "/"
  1435  	}
  1436  	return np
  1437  }
  1438  
  1439  // Find a handler on a handler map given a path string
  1440  // Most-specific (longest) pattern wins
  1441  func (mux *ServeMux) match(path string) (h Handler, pattern string) {
  1442  	var n = 0
  1443  	for k, v := range mux.m {
  1444  		if !pathMatch(k, path) {
  1445  			continue
  1446  		}
  1447  		if h == nil || len(k) > n {
  1448  			n = len(k)
  1449  			h = v.h
  1450  			pattern = v.pattern
  1451  		}
  1452  	}
  1453  	return
  1454  }
  1455  
  1456  // Handler returns the handler to use for the given request,
  1457  // consulting r.Method, r.Host, and r.URL.Path. It always returns
  1458  // a non-nil handler. If the path is not in its canonical form, the
  1459  // handler will be an internally-generated handler that redirects
  1460  // to the canonical path.
  1461  //
  1462  // Handler also returns the registered pattern that matches the
  1463  // request or, in the case of internally-generated redirects,
  1464  // the pattern that will match after following the redirect.
  1465  //
  1466  // If there is no registered handler that applies to the request,
  1467  // Handler returns a ``page not found'' handler and an empty pattern.
  1468  func (mux *ServeMux) Handler(r *Request) (h Handler, pattern string) {
  1469  	if r.Method != "CONNECT" {
  1470  		if p := cleanPath(r.URL.Path); p != r.URL.Path {
  1471  			_, pattern = mux.handler(r.Host, p)
  1472  			url := *r.URL
  1473  			url.Path = p
  1474  			return RedirectHandler(url.String(), StatusMovedPermanently), pattern
  1475  		}
  1476  	}
  1477  
  1478  	return mux.handler(r.Host, r.URL.Path)
  1479  }
  1480  
  1481  // handler is the main implementation of Handler.
  1482  // The path is known to be in canonical form, except for CONNECT methods.
  1483  func (mux *ServeMux) handler(host, path string) (h Handler, pattern string) {
  1484  	mux.mu.RLock()
  1485  	defer mux.mu.RUnlock()
  1486  
  1487  	// Host-specific pattern takes precedence over generic ones
  1488  	if mux.hosts {
  1489  		h, pattern = mux.match(host + path)
  1490  	}
  1491  	if h == nil {
  1492  		h, pattern = mux.match(path)
  1493  	}
  1494  	if h == nil {
  1495  		h, pattern = NotFoundHandler(), ""
  1496  	}
  1497  	return
  1498  }
  1499  
  1500  // ServeHTTP dispatches the request to the handler whose
  1501  // pattern most closely matches the request URL.
  1502  func (mux *ServeMux) ServeHTTP(w ResponseWriter, r *Request) {
  1503  	if r.RequestURI == "*" {
  1504  		if r.ProtoAtLeast(1, 1) {
  1505  			w.Header().Set("Connection", "close")
  1506  		}
  1507  		w.WriteHeader(StatusBadRequest)
  1508  		return
  1509  	}
  1510  	h, _ := mux.Handler(r)
  1511  	h.ServeHTTP(w, r)
  1512  }
  1513  
  1514  // Handle registers the handler for the given pattern.
  1515  // If a handler already exists for pattern, Handle panics.
  1516  func (mux *ServeMux) Handle(pattern string, handler Handler) {
  1517  	mux.mu.Lock()
  1518  	defer mux.mu.Unlock()
  1519  
  1520  	if pattern == "" {
  1521  		panic("http: invalid pattern " + pattern)
  1522  	}
  1523  	if handler == nil {
  1524  		panic("http: nil handler")
  1525  	}
  1526  	if mux.m[pattern].explicit {
  1527  		panic("http: multiple registrations for " + pattern)
  1528  	}
  1529  
  1530  	mux.m[pattern] = muxEntry{explicit: true, h: handler, pattern: pattern}
  1531  
  1532  	if pattern[0] != '/' {
  1533  		mux.hosts = true
  1534  	}
  1535  
  1536  	// Helpful behavior:
  1537  	// If pattern is /tree/, insert an implicit permanent redirect for /tree.
  1538  	// It can be overridden by an explicit registration.
  1539  	n := len(pattern)
  1540  	if n > 0 && pattern[n-1] == '/' && !mux.m[pattern[0:n-1]].explicit {
  1541  		// If pattern contains a host name, strip it and use remaining
  1542  		// path for redirect.
  1543  		path := pattern
  1544  		if pattern[0] != '/' {
  1545  			// In pattern, at least the last character is a '/', so
  1546  			// strings.Index can't be -1.
  1547  			path = pattern[strings.Index(pattern, "/"):]
  1548  		}
  1549  		mux.m[pattern[0:n-1]] = muxEntry{h: RedirectHandler(path, StatusMovedPermanently), pattern: pattern}
  1550  	}
  1551  }
  1552  
  1553  // HandleFunc registers the handler function for the given pattern.
  1554  func (mux *ServeMux) HandleFunc(pattern string, handler func(ResponseWriter, *Request)) {
  1555  	mux.Handle(pattern, HandlerFunc(handler))
  1556  }
  1557  
  1558  // Handle registers the handler for the given pattern
  1559  // in the DefaultServeMux.
  1560  // The documentation for ServeMux explains how patterns are matched.
  1561  func Handle(pattern string, handler Handler) { DefaultServeMux.Handle(pattern, handler) }
  1562  
  1563  // HandleFunc registers the handler function for the given pattern
  1564  // in the DefaultServeMux.
  1565  // The documentation for ServeMux explains how patterns are matched.
  1566  func HandleFunc(pattern string, handler func(ResponseWriter, *Request)) {
  1567  	DefaultServeMux.HandleFunc(pattern, handler)
  1568  }
  1569  
  1570  // Serve accepts incoming HTTP connections on the listener l,
  1571  // creating a new service goroutine for each.  The service goroutines
  1572  // read requests and then call handler to reply to them.
  1573  // Handler is typically nil, in which case the DefaultServeMux is used.
  1574  func Serve(l net.Listener, handler Handler) error {
  1575  	srv := &Server{Handler: handler}
  1576  	return srv.Serve(l)
  1577  }
  1578  
  1579  // A Server defines parameters for running an HTTP server.
  1580  // The zero value for Server is a valid configuration.
  1581  type Server struct {
  1582  	Addr           string        // TCP address to listen on, ":http" if empty
  1583  	Handler        Handler       // handler to invoke, http.DefaultServeMux if nil
  1584  	ReadTimeout    time.Duration // maximum duration before timing out read of the request
  1585  	WriteTimeout   time.Duration // maximum duration before timing out write of the response
  1586  	MaxHeaderBytes int           // maximum size of request headers, DefaultMaxHeaderBytes if 0
  1587  	TLSConfig      *tls.Config   // optional TLS config, used by ListenAndServeTLS
  1588  
  1589  	// TLSNextProto optionally specifies a function to take over
  1590  	// ownership of the provided TLS connection when an NPN
  1591  	// protocol upgrade has occurred.  The map key is the protocol
  1592  	// name negotiated. The Handler argument should be used to
  1593  	// handle HTTP requests and will initialize the Request's TLS
  1594  	// and RemoteAddr if not already set.  The connection is
  1595  	// automatically closed when the function returns.
  1596  	TLSNextProto map[string]func(*Server, *tls.Conn, Handler)
  1597  
  1598  	// ConnState specifies an optional callback function that is
  1599  	// called when a client connection changes state. See the
  1600  	// ConnState type and associated constants for details.
  1601  	ConnState func(net.Conn, ConnState)
  1602  
  1603  	// ErrorLog specifies an optional logger for errors accepting
  1604  	// connections and unexpected behavior from handlers.
  1605  	// If nil, logging goes to os.Stderr via the log package's
  1606  	// standard logger.
  1607  	ErrorLog *log.Logger
  1608  
  1609  	disableKeepAlives int32 // accessed atomically.
  1610  }
  1611  
  1612  // A ConnState represents the state of a client connection to a server.
  1613  // It's used by the optional Server.ConnState hook.
  1614  type ConnState int
  1615  
  1616  const (
  1617  	// StateNew represents a new connection that is expected to
  1618  	// send a request immediately. Connections begin at this
  1619  	// state and then transition to either StateActive or
  1620  	// StateClosed.
  1621  	StateNew ConnState = iota
  1622  
  1623  	// StateActive represents a connection that has read 1 or more
  1624  	// bytes of a request. The Server.ConnState hook for
  1625  	// StateActive fires before the request has entered a handler
  1626  	// and doesn't fire again until the request has been
  1627  	// handled. After the request is handled, the state
  1628  	// transitions to StateClosed, StateHijacked, or StateIdle.
  1629  	StateActive
  1630  
  1631  	// StateIdle represents a connection that has finished
  1632  	// handling a request and is in the keep-alive state, waiting
  1633  	// for a new request. Connections transition from StateIdle
  1634  	// to either StateActive or StateClosed.
  1635  	StateIdle
  1636  
  1637  	// StateHijacked represents a hijacked connection.
  1638  	// This is a terminal state. It does not transition to StateClosed.
  1639  	StateHijacked
  1640  
  1641  	// StateClosed represents a closed connection.
  1642  	// This is a terminal state. Hijacked connections do not
  1643  	// transition to StateClosed.
  1644  	StateClosed
  1645  )
  1646  
  1647  var stateName = map[ConnState]string{
  1648  	StateNew:      "new",
  1649  	StateActive:   "active",
  1650  	StateIdle:     "idle",
  1651  	StateHijacked: "hijacked",
  1652  	StateClosed:   "closed",
  1653  }
  1654  
  1655  func (c ConnState) String() string {
  1656  	return stateName[c]
  1657  }
  1658  
  1659  // serverHandler delegates to either the server's Handler or
  1660  // DefaultServeMux and also handles "OPTIONS *" requests.
  1661  type serverHandler struct {
  1662  	srv *Server
  1663  }
  1664  
  1665  func (sh serverHandler) ServeHTTP(rw ResponseWriter, req *Request) {
  1666  	handler := sh.srv.Handler
  1667  	if handler == nil {
  1668  		handler = DefaultServeMux
  1669  	}
  1670  	if req.RequestURI == "*" && req.Method == "OPTIONS" {
  1671  		handler = globalOptionsHandler{}
  1672  	}
  1673  	handler.ServeHTTP(rw, req)
  1674  }
  1675  
  1676  // ListenAndServe listens on the TCP network address srv.Addr and then
  1677  // calls Serve to handle requests on incoming connections.  If
  1678  // srv.Addr is blank, ":http" is used.
  1679  func (srv *Server) ListenAndServe() error {
  1680  	addr := srv.Addr
  1681  	if addr == "" {
  1682  		addr = ":http"
  1683  	}
  1684  	ln, err := net.Listen("tcp", addr)
  1685  	if err != nil {
  1686  		return err
  1687  	}
  1688  	return srv.Serve(tcpKeepAliveListener{ln.(*net.TCPListener)})
  1689  }
  1690  
  1691  // Serve accepts incoming connections on the Listener l, creating a
  1692  // new service goroutine for each.  The service goroutines read requests and
  1693  // then call srv.Handler to reply to them.
  1694  func (srv *Server) Serve(l net.Listener) error {
  1695  	defer l.Close()
  1696  	var tempDelay time.Duration // how long to sleep on accept failure
  1697  	for {
  1698  		rw, e := l.Accept()
  1699  		if e != nil {
  1700  			if ne, ok := e.(net.Error); ok && ne.Temporary() {
  1701  				if tempDelay == 0 {
  1702  					tempDelay = 5 * time.Millisecond
  1703  				} else {
  1704  					tempDelay *= 2
  1705  				}
  1706  				if max := 1 * time.Second; tempDelay > max {
  1707  					tempDelay = max
  1708  				}
  1709  				srv.logf("http: Accept error: %v; retrying in %v", e, tempDelay)
  1710  				time.Sleep(tempDelay)
  1711  				continue
  1712  			}
  1713  			return e
  1714  		}
  1715  		tempDelay = 0
  1716  		c, err := srv.newConn(rw)
  1717  		if err != nil {
  1718  			continue
  1719  		}
  1720  		c.setState(c.rwc, StateNew) // before Serve can return
  1721  		go c.serve()
  1722  	}
  1723  }
  1724  
  1725  func (s *Server) doKeepAlives() bool {
  1726  	return atomic.LoadInt32(&s.disableKeepAlives) == 0
  1727  }
  1728  
  1729  // SetKeepAlivesEnabled controls whether HTTP keep-alives are enabled.
  1730  // By default, keep-alives are always enabled. Only very
  1731  // resource-constrained environments or servers in the process of
  1732  // shutting down should disable them.
  1733  func (s *Server) SetKeepAlivesEnabled(v bool) {
  1734  	if v {
  1735  		atomic.StoreInt32(&s.disableKeepAlives, 0)
  1736  	} else {
  1737  		atomic.StoreInt32(&s.disableKeepAlives, 1)
  1738  	}
  1739  }
  1740  
  1741  func (s *Server) logf(format string, args ...interface{}) {
  1742  	if s.ErrorLog != nil {
  1743  		s.ErrorLog.Printf(format, args...)
  1744  	} else {
  1745  		log.Printf(format, args...)
  1746  	}
  1747  }
  1748  
  1749  // ListenAndServe listens on the TCP network address addr
  1750  // and then calls Serve with handler to handle requests
  1751  // on incoming connections.  Handler is typically nil,
  1752  // in which case the DefaultServeMux is used.
  1753  //
  1754  // A trivial example server is:
  1755  //
  1756  //	package main
  1757  //
  1758  //	import (
  1759  //		"io"
  1760  //		"net/http"
  1761  //		"log"
  1762  //	)
  1763  //
  1764  //	// hello world, the web server
  1765  //	func HelloServer(w http.ResponseWriter, req *http.Request) {
  1766  //		io.WriteString(w, "hello, world!\n")
  1767  //	}
  1768  //
  1769  //	func main() {
  1770  //		http.HandleFunc("/hello", HelloServer)
  1771  //		err := http.ListenAndServe(":12345", nil)
  1772  //		if err != nil {
  1773  //			log.Fatal("ListenAndServe: ", err)
  1774  //		}
  1775  //	}
  1776  func ListenAndServe(addr string, handler Handler) error {
  1777  	server := &Server{Addr: addr, Handler: handler}
  1778  	return server.ListenAndServe()
  1779  }
  1780  
  1781  // ListenAndServeTLS acts identically to ListenAndServe, except that it
  1782  // expects HTTPS connections. Additionally, files containing a certificate and
  1783  // matching private key for the server must be provided. If the certificate
  1784  // is signed by a certificate authority, the certFile should be the concatenation
  1785  // of the server's certificate followed by the CA's certificate.
  1786  //
  1787  // A trivial example server is:
  1788  //
  1789  //	import (
  1790  //		"log"
  1791  //		"net/http"
  1792  //	)
  1793  //
  1794  //	func handler(w http.ResponseWriter, req *http.Request) {
  1795  //		w.Header().Set("Content-Type", "text/plain")
  1796  //		w.Write([]byte("This is an example server.\n"))
  1797  //	}
  1798  //
  1799  //	func main() {
  1800  //		http.HandleFunc("/", handler)
  1801  //		log.Printf("About to listen on 10443. Go to https://127.0.0.1:10443/")
  1802  //		err := http.ListenAndServeTLS(":10443", "cert.pem", "key.pem", nil)
  1803  //		if err != nil {
  1804  //			log.Fatal(err)
  1805  //		}
  1806  //	}
  1807  //
  1808  // One can use generate_cert.go in crypto/tls to generate cert.pem and key.pem.
  1809  func ListenAndServeTLS(addr string, certFile string, keyFile string, handler Handler) error {
  1810  	server := &Server{Addr: addr, Handler: handler}
  1811  	return server.ListenAndServeTLS(certFile, keyFile)
  1812  }
  1813  
  1814  // ListenAndServeTLS listens on the TCP network address srv.Addr and
  1815  // then calls Serve to handle requests on incoming TLS connections.
  1816  //
  1817  // Filenames containing a certificate and matching private key for
  1818  // the server must be provided. If the certificate is signed by a
  1819  // certificate authority, the certFile should be the concatenation
  1820  // of the server's certificate followed by the CA's certificate.
  1821  //
  1822  // If srv.Addr is blank, ":https" is used.
  1823  func (srv *Server) ListenAndServeTLS(certFile, keyFile string) error {
  1824  	addr := srv.Addr
  1825  	if addr == "" {
  1826  		addr = ":https"
  1827  	}
  1828  	config := &tls.Config{}
  1829  	if srv.TLSConfig != nil {
  1830  		*config = *srv.TLSConfig
  1831  	}
  1832  	if config.NextProtos == nil {
  1833  		config.NextProtos = []string{"http/1.1"}
  1834  	}
  1835  
  1836  	var err error
  1837  	config.Certificates = make([]tls.Certificate, 1)
  1838  	config.Certificates[0], err = tls.LoadX509KeyPair(certFile, keyFile)
  1839  	if err != nil {
  1840  		return err
  1841  	}
  1842  
  1843  	ln, err := net.Listen("tcp", addr)
  1844  	if err != nil {
  1845  		return err
  1846  	}
  1847  
  1848  	tlsListener := tls.NewListener(tcpKeepAliveListener{ln.(*net.TCPListener)}, config)
  1849  	return srv.Serve(tlsListener)
  1850  }
  1851  
  1852  // TimeoutHandler returns a Handler that runs h with the given time limit.
  1853  //
  1854  // The new Handler calls h.ServeHTTP to handle each request, but if a
  1855  // call runs for longer than its time limit, the handler responds with
  1856  // a 503 Service Unavailable error and the given message in its body.
  1857  // (If msg is empty, a suitable default message will be sent.)
  1858  // After such a timeout, writes by h to its ResponseWriter will return
  1859  // ErrHandlerTimeout.
  1860  func TimeoutHandler(h Handler, dt time.Duration, msg string) Handler {
  1861  	f := func() <-chan time.Time {
  1862  		return time.After(dt)
  1863  	}
  1864  	return &timeoutHandler{h, f, msg}
  1865  }
  1866  
  1867  // ErrHandlerTimeout is returned on ResponseWriter Write calls
  1868  // in handlers which have timed out.
  1869  var ErrHandlerTimeout = errors.New("http: Handler timeout")
  1870  
  1871  type timeoutHandler struct {
  1872  	handler Handler
  1873  	timeout func() <-chan time.Time // returns channel producing a timeout
  1874  	body    string
  1875  }
  1876  
  1877  func (h *timeoutHandler) errorBody() string {
  1878  	if h.body != "" {
  1879  		return h.body
  1880  	}
  1881  	return "<html><head><title>Timeout</title></head><body><h1>Timeout</h1></body></html>"
  1882  }
  1883  
  1884  func (h *timeoutHandler) ServeHTTP(w ResponseWriter, r *Request) {
  1885  	done := make(chan bool, 1)
  1886  	tw := &timeoutWriter{w: w}
  1887  	go func() {
  1888  		h.handler.ServeHTTP(tw, r)
  1889  		done <- true
  1890  	}()
  1891  	select {
  1892  	case <-done:
  1893  		return
  1894  	case <-h.timeout():
  1895  		tw.mu.Lock()
  1896  		defer tw.mu.Unlock()
  1897  		if !tw.wroteHeader {
  1898  			tw.w.WriteHeader(StatusServiceUnavailable)
  1899  			tw.w.Write([]byte(h.errorBody()))
  1900  		}
  1901  		tw.timedOut = true
  1902  	}
  1903  }
  1904  
  1905  type timeoutWriter struct {
  1906  	w ResponseWriter
  1907  
  1908  	mu          sync.Mutex
  1909  	timedOut    bool
  1910  	wroteHeader bool
  1911  }
  1912  
  1913  func (tw *timeoutWriter) Header() Header {
  1914  	return tw.w.Header()
  1915  }
  1916  
  1917  func (tw *timeoutWriter) Write(p []byte) (int, error) {
  1918  	tw.mu.Lock()
  1919  	timedOut := tw.timedOut
  1920  	tw.mu.Unlock()
  1921  	if timedOut {
  1922  		return 0, ErrHandlerTimeout
  1923  	}
  1924  	return tw.w.Write(p)
  1925  }
  1926  
  1927  func (tw *timeoutWriter) WriteHeader(code int) {
  1928  	tw.mu.Lock()
  1929  	if tw.timedOut || tw.wroteHeader {
  1930  		tw.mu.Unlock()
  1931  		return
  1932  	}
  1933  	tw.wroteHeader = true
  1934  	tw.mu.Unlock()
  1935  	tw.w.WriteHeader(code)
  1936  }
  1937  
  1938  // tcpKeepAliveListener sets TCP keep-alive timeouts on accepted
  1939  // connections. It's used by ListenAndServe and ListenAndServeTLS so
  1940  // dead TCP connections (e.g. closing laptop mid-download) eventually
  1941  // go away.
  1942  type tcpKeepAliveListener struct {
  1943  	*net.TCPListener
  1944  }
  1945  
  1946  func (ln tcpKeepAliveListener) Accept() (c net.Conn, err error) {
  1947  	tc, err := ln.AcceptTCP()
  1948  	if err != nil {
  1949  		return
  1950  	}
  1951  	tc.SetKeepAlive(true)
  1952  	tc.SetKeepAlivePeriod(3 * time.Minute)
  1953  	return tc, nil
  1954  }
  1955  
  1956  // globalOptionsHandler responds to "OPTIONS *" requests.
  1957  type globalOptionsHandler struct{}
  1958  
  1959  func (globalOptionsHandler) ServeHTTP(w ResponseWriter, r *Request) {
  1960  	w.Header().Set("Content-Length", "0")
  1961  	if r.ContentLength != 0 {
  1962  		// Read up to 4KB of OPTIONS body (as mentioned in the
  1963  		// spec as being reserved for future use), but anything
  1964  		// over that is considered a waste of server resources
  1965  		// (or an attack) and we abort and close the connection,
  1966  		// courtesy of MaxBytesReader's EOF behavior.
  1967  		mb := MaxBytesReader(w, r.Body, 4<<10)
  1968  		io.Copy(ioutil.Discard, mb)
  1969  	}
  1970  }
  1971  
  1972  type eofReaderWithWriteTo struct{}
  1973  
  1974  func (eofReaderWithWriteTo) WriteTo(io.Writer) (int64, error) { return 0, nil }
  1975  func (eofReaderWithWriteTo) Read([]byte) (int, error)         { return 0, io.EOF }
  1976  
  1977  // eofReader is a non-nil io.ReadCloser that always returns EOF.
  1978  // It has a WriteTo method so io.Copy won't need a buffer.
  1979  var eofReader = &struct {
  1980  	eofReaderWithWriteTo
  1981  	io.Closer
  1982  }{
  1983  	eofReaderWithWriteTo{},
  1984  	ioutil.NopCloser(nil),
  1985  }
  1986  
  1987  // Verify that an io.Copy from an eofReader won't require a buffer.
  1988  var _ io.WriterTo = eofReader
  1989  
  1990  // initNPNRequest is an HTTP handler that initializes certain
  1991  // uninitialized fields in its *Request. Such partially-initialized
  1992  // Requests come from NPN protocol handlers.
  1993  type initNPNRequest struct {
  1994  	c *tls.Conn
  1995  	h serverHandler
  1996  }
  1997  
  1998  func (h initNPNRequest) ServeHTTP(rw ResponseWriter, req *Request) {
  1999  	if req.TLS == nil {
  2000  		req.TLS = &tls.ConnectionState{}
  2001  		*req.TLS = h.c.ConnectionState()
  2002  	}
  2003  	if req.Body == nil {
  2004  		req.Body = eofReader
  2005  	}
  2006  	if req.RemoteAddr == "" {
  2007  		req.RemoteAddr = h.c.RemoteAddr().String()
  2008  	}
  2009  	h.h.ServeHTTP(rw, req)
  2010  }
  2011  
  2012  // loggingConn is used for debugging.
  2013  type loggingConn struct {
  2014  	name string
  2015  	net.Conn
  2016  }
  2017  
  2018  var (
  2019  	uniqNameMu   sync.Mutex
  2020  	uniqNameNext = make(map[string]int)
  2021  )
  2022  
  2023  func newLoggingConn(baseName string, c net.Conn) net.Conn {
  2024  	uniqNameMu.Lock()
  2025  	defer uniqNameMu.Unlock()
  2026  	uniqNameNext[baseName]++
  2027  	return &loggingConn{
  2028  		name: fmt.Sprintf("%s-%d", baseName, uniqNameNext[baseName]),
  2029  		Conn: c,
  2030  	}
  2031  }
  2032  
  2033  func (c *loggingConn) Write(p []byte) (n int, err error) {
  2034  	log.Printf("%s.Write(%d) = ....", c.name, len(p))
  2035  	n, err = c.Conn.Write(p)
  2036  	log.Printf("%s.Write(%d) = %d, %v", c.name, len(p), n, err)
  2037  	return
  2038  }
  2039  
  2040  func (c *loggingConn) Read(p []byte) (n int, err error) {
  2041  	log.Printf("%s.Read(%d) = ....", c.name, len(p))
  2042  	n, err = c.Conn.Read(p)
  2043  	log.Printf("%s.Read(%d) = %d, %v", c.name, len(p), n, err)
  2044  	return
  2045  }
  2046  
  2047  func (c *loggingConn) Close() (err error) {
  2048  	log.Printf("%s.Close() = ...", c.name)
  2049  	err = c.Conn.Close()
  2050  	log.Printf("%s.Close() = %v", c.name, err)
  2051  	return
  2052  }