github.com/ader1990/go@v0.0.0-20140630135419-8c24447fa791/src/pkg/regexp/syntax/parse.go (about)

     1  // Copyright 2011 The Go Authors.  All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package syntax
     6  
     7  import (
     8  	"sort"
     9  	"strings"
    10  	"unicode"
    11  	"unicode/utf8"
    12  )
    13  
    14  // An Error describes a failure to parse a regular expression
    15  // and gives the offending expression.
    16  type Error struct {
    17  	Code ErrorCode
    18  	Expr string
    19  }
    20  
    21  func (e *Error) Error() string {
    22  	return "error parsing regexp: " + e.Code.String() + ": `" + e.Expr + "`"
    23  }
    24  
    25  // An ErrorCode describes a failure to parse a regular expression.
    26  type ErrorCode string
    27  
    28  const (
    29  	// Unexpected error
    30  	ErrInternalError ErrorCode = "regexp/syntax: internal error"
    31  
    32  	// Parse errors
    33  	ErrInvalidCharClass      ErrorCode = "invalid character class"
    34  	ErrInvalidCharRange      ErrorCode = "invalid character class range"
    35  	ErrInvalidEscape         ErrorCode = "invalid escape sequence"
    36  	ErrInvalidNamedCapture   ErrorCode = "invalid named capture"
    37  	ErrInvalidPerlOp         ErrorCode = "invalid or unsupported Perl syntax"
    38  	ErrInvalidRepeatOp       ErrorCode = "invalid nested repetition operator"
    39  	ErrInvalidRepeatSize     ErrorCode = "invalid repeat count"
    40  	ErrInvalidUTF8           ErrorCode = "invalid UTF-8"
    41  	ErrMissingBracket        ErrorCode = "missing closing ]"
    42  	ErrMissingParen          ErrorCode = "missing closing )"
    43  	ErrMissingRepeatArgument ErrorCode = "missing argument to repetition operator"
    44  	ErrTrailingBackslash     ErrorCode = "trailing backslash at end of expression"
    45  	ErrUnexpectedParen       ErrorCode = "unexpected )"
    46  )
    47  
    48  func (e ErrorCode) String() string {
    49  	return string(e)
    50  }
    51  
    52  // Flags control the behavior of the parser and record information about regexp context.
    53  type Flags uint16
    54  
    55  const (
    56  	FoldCase      Flags = 1 << iota // case-insensitive match
    57  	Literal                         // treat pattern as literal string
    58  	ClassNL                         // allow character classes like [^a-z] and [[:space:]] to match newline
    59  	DotNL                           // allow . to match newline
    60  	OneLine                         // treat ^ and $ as only matching at beginning and end of text
    61  	NonGreedy                       // make repetition operators default to non-greedy
    62  	PerlX                           // allow Perl extensions
    63  	UnicodeGroups                   // allow \p{Han}, \P{Han} for Unicode group and negation
    64  	WasDollar                       // regexp OpEndText was $, not \z
    65  	Simple                          // regexp contains no counted repetition
    66  
    67  	MatchNL = ClassNL | DotNL
    68  
    69  	Perl        = ClassNL | OneLine | PerlX | UnicodeGroups // as close to Perl as possible
    70  	POSIX Flags = 0                                         // POSIX syntax
    71  )
    72  
    73  // Pseudo-ops for parsing stack.
    74  const (
    75  	opLeftParen = opPseudo + iota
    76  	opVerticalBar
    77  )
    78  
    79  type parser struct {
    80  	flags       Flags     // parse mode flags
    81  	stack       []*Regexp // stack of parsed expressions
    82  	free        *Regexp
    83  	numCap      int // number of capturing groups seen
    84  	wholeRegexp string
    85  	tmpClass    []rune // temporary char class work space
    86  }
    87  
    88  func (p *parser) newRegexp(op Op) *Regexp {
    89  	re := p.free
    90  	if re != nil {
    91  		p.free = re.Sub0[0]
    92  		*re = Regexp{}
    93  	} else {
    94  		re = new(Regexp)
    95  	}
    96  	re.Op = op
    97  	return re
    98  }
    99  
   100  func (p *parser) reuse(re *Regexp) {
   101  	re.Sub0[0] = p.free
   102  	p.free = re
   103  }
   104  
   105  // Parse stack manipulation.
   106  
   107  // push pushes the regexp re onto the parse stack and returns the regexp.
   108  func (p *parser) push(re *Regexp) *Regexp {
   109  	if re.Op == OpCharClass && len(re.Rune) == 2 && re.Rune[0] == re.Rune[1] {
   110  		// Single rune.
   111  		if p.maybeConcat(re.Rune[0], p.flags&^FoldCase) {
   112  			return nil
   113  		}
   114  		re.Op = OpLiteral
   115  		re.Rune = re.Rune[:1]
   116  		re.Flags = p.flags &^ FoldCase
   117  	} else if re.Op == OpCharClass && len(re.Rune) == 4 &&
   118  		re.Rune[0] == re.Rune[1] && re.Rune[2] == re.Rune[3] &&
   119  		unicode.SimpleFold(re.Rune[0]) == re.Rune[2] &&
   120  		unicode.SimpleFold(re.Rune[2]) == re.Rune[0] ||
   121  		re.Op == OpCharClass && len(re.Rune) == 2 &&
   122  			re.Rune[0]+1 == re.Rune[1] &&
   123  			unicode.SimpleFold(re.Rune[0]) == re.Rune[1] &&
   124  			unicode.SimpleFold(re.Rune[1]) == re.Rune[0] {
   125  		// Case-insensitive rune like [Aa] or [Δδ].
   126  		if p.maybeConcat(re.Rune[0], p.flags|FoldCase) {
   127  			return nil
   128  		}
   129  
   130  		// Rewrite as (case-insensitive) literal.
   131  		re.Op = OpLiteral
   132  		re.Rune = re.Rune[:1]
   133  		re.Flags = p.flags | FoldCase
   134  	} else {
   135  		// Incremental concatenation.
   136  		p.maybeConcat(-1, 0)
   137  	}
   138  
   139  	p.stack = append(p.stack, re)
   140  	return re
   141  }
   142  
   143  // maybeConcat implements incremental concatenation
   144  // of literal runes into string nodes.  The parser calls this
   145  // before each push, so only the top fragment of the stack
   146  // might need processing.  Since this is called before a push,
   147  // the topmost literal is no longer subject to operators like *
   148  // (Otherwise ab* would turn into (ab)*.)
   149  // If r >= 0 and there's a node left over, maybeConcat uses it
   150  // to push r with the given flags.
   151  // maybeConcat reports whether r was pushed.
   152  func (p *parser) maybeConcat(r rune, flags Flags) bool {
   153  	n := len(p.stack)
   154  	if n < 2 {
   155  		return false
   156  	}
   157  
   158  	re1 := p.stack[n-1]
   159  	re2 := p.stack[n-2]
   160  	if re1.Op != OpLiteral || re2.Op != OpLiteral || re1.Flags&FoldCase != re2.Flags&FoldCase {
   161  		return false
   162  	}
   163  
   164  	// Push re1 into re2.
   165  	re2.Rune = append(re2.Rune, re1.Rune...)
   166  
   167  	// Reuse re1 if possible.
   168  	if r >= 0 {
   169  		re1.Rune = re1.Rune0[:1]
   170  		re1.Rune[0] = r
   171  		re1.Flags = flags
   172  		return true
   173  	}
   174  
   175  	p.stack = p.stack[:n-1]
   176  	p.reuse(re1)
   177  	return false // did not push r
   178  }
   179  
   180  // newLiteral returns a new OpLiteral Regexp with the given flags
   181  func (p *parser) newLiteral(r rune, flags Flags) *Regexp {
   182  	re := p.newRegexp(OpLiteral)
   183  	re.Flags = flags
   184  	if flags&FoldCase != 0 {
   185  		r = minFoldRune(r)
   186  	}
   187  	re.Rune0[0] = r
   188  	re.Rune = re.Rune0[:1]
   189  	return re
   190  }
   191  
   192  // minFoldRune returns the minimum rune fold-equivalent to r.
   193  func minFoldRune(r rune) rune {
   194  	if r < minFold || r > maxFold {
   195  		return r
   196  	}
   197  	min := r
   198  	r0 := r
   199  	for r = unicode.SimpleFold(r); r != r0; r = unicode.SimpleFold(r) {
   200  		if min > r {
   201  			min = r
   202  		}
   203  	}
   204  	return min
   205  }
   206  
   207  // literal pushes a literal regexp for the rune r on the stack
   208  // and returns that regexp.
   209  func (p *parser) literal(r rune) {
   210  	p.push(p.newLiteral(r, p.flags))
   211  }
   212  
   213  // op pushes a regexp with the given op onto the stack
   214  // and returns that regexp.
   215  func (p *parser) op(op Op) *Regexp {
   216  	re := p.newRegexp(op)
   217  	re.Flags = p.flags
   218  	return p.push(re)
   219  }
   220  
   221  // repeat replaces the top stack element with itself repeated according to op, min, max.
   222  // before is the regexp suffix starting at the repetition operator.
   223  // after is the regexp suffix following after the repetition operator.
   224  // repeat returns an updated 'after' and an error, if any.
   225  func (p *parser) repeat(op Op, min, max int, before, after, lastRepeat string) (string, error) {
   226  	flags := p.flags
   227  	if p.flags&PerlX != 0 {
   228  		if len(after) > 0 && after[0] == '?' {
   229  			after = after[1:]
   230  			flags ^= NonGreedy
   231  		}
   232  		if lastRepeat != "" {
   233  			// In Perl it is not allowed to stack repetition operators:
   234  			// a** is a syntax error, not a doubled star, and a++ means
   235  			// something else entirely, which we don't support!
   236  			return "", &Error{ErrInvalidRepeatOp, lastRepeat[:len(lastRepeat)-len(after)]}
   237  		}
   238  	}
   239  	n := len(p.stack)
   240  	if n == 0 {
   241  		return "", &Error{ErrMissingRepeatArgument, before[:len(before)-len(after)]}
   242  	}
   243  	sub := p.stack[n-1]
   244  	if sub.Op >= opPseudo {
   245  		return "", &Error{ErrMissingRepeatArgument, before[:len(before)-len(after)]}
   246  	}
   247  	re := p.newRegexp(op)
   248  	re.Min = min
   249  	re.Max = max
   250  	re.Flags = flags
   251  	re.Sub = re.Sub0[:1]
   252  	re.Sub[0] = sub
   253  	p.stack[n-1] = re
   254  	return after, nil
   255  }
   256  
   257  // concat replaces the top of the stack (above the topmost '|' or '(') with its concatenation.
   258  func (p *parser) concat() *Regexp {
   259  	p.maybeConcat(-1, 0)
   260  
   261  	// Scan down to find pseudo-operator | or (.
   262  	i := len(p.stack)
   263  	for i > 0 && p.stack[i-1].Op < opPseudo {
   264  		i--
   265  	}
   266  	subs := p.stack[i:]
   267  	p.stack = p.stack[:i]
   268  
   269  	// Empty concatenation is special case.
   270  	if len(subs) == 0 {
   271  		return p.push(p.newRegexp(OpEmptyMatch))
   272  	}
   273  
   274  	return p.push(p.collapse(subs, OpConcat))
   275  }
   276  
   277  // alternate replaces the top of the stack (above the topmost '(') with its alternation.
   278  func (p *parser) alternate() *Regexp {
   279  	// Scan down to find pseudo-operator (.
   280  	// There are no | above (.
   281  	i := len(p.stack)
   282  	for i > 0 && p.stack[i-1].Op < opPseudo {
   283  		i--
   284  	}
   285  	subs := p.stack[i:]
   286  	p.stack = p.stack[:i]
   287  
   288  	// Make sure top class is clean.
   289  	// All the others already are (see swapVerticalBar).
   290  	if len(subs) > 0 {
   291  		cleanAlt(subs[len(subs)-1])
   292  	}
   293  
   294  	// Empty alternate is special case
   295  	// (shouldn't happen but easy to handle).
   296  	if len(subs) == 0 {
   297  		return p.push(p.newRegexp(OpNoMatch))
   298  	}
   299  
   300  	return p.push(p.collapse(subs, OpAlternate))
   301  }
   302  
   303  // cleanAlt cleans re for eventual inclusion in an alternation.
   304  func cleanAlt(re *Regexp) {
   305  	switch re.Op {
   306  	case OpCharClass:
   307  		re.Rune = cleanClass(&re.Rune)
   308  		if len(re.Rune) == 2 && re.Rune[0] == 0 && re.Rune[1] == unicode.MaxRune {
   309  			re.Rune = nil
   310  			re.Op = OpAnyChar
   311  			return
   312  		}
   313  		if len(re.Rune) == 4 && re.Rune[0] == 0 && re.Rune[1] == '\n'-1 && re.Rune[2] == '\n'+1 && re.Rune[3] == unicode.MaxRune {
   314  			re.Rune = nil
   315  			re.Op = OpAnyCharNotNL
   316  			return
   317  		}
   318  		if cap(re.Rune)-len(re.Rune) > 100 {
   319  			// re.Rune will not grow any more.
   320  			// Make a copy or inline to reclaim storage.
   321  			re.Rune = append(re.Rune0[:0], re.Rune...)
   322  		}
   323  	}
   324  }
   325  
   326  // collapse returns the result of applying op to sub.
   327  // If sub contains op nodes, they all get hoisted up
   328  // so that there is never a concat of a concat or an
   329  // alternate of an alternate.
   330  func (p *parser) collapse(subs []*Regexp, op Op) *Regexp {
   331  	if len(subs) == 1 {
   332  		return subs[0]
   333  	}
   334  	re := p.newRegexp(op)
   335  	re.Sub = re.Sub0[:0]
   336  	for _, sub := range subs {
   337  		if sub.Op == op {
   338  			re.Sub = append(re.Sub, sub.Sub...)
   339  			p.reuse(sub)
   340  		} else {
   341  			re.Sub = append(re.Sub, sub)
   342  		}
   343  	}
   344  	if op == OpAlternate {
   345  		re.Sub = p.factor(re.Sub, re.Flags)
   346  		if len(re.Sub) == 1 {
   347  			old := re
   348  			re = re.Sub[0]
   349  			p.reuse(old)
   350  		}
   351  	}
   352  	return re
   353  }
   354  
   355  // factor factors common prefixes from the alternation list sub.
   356  // It returns a replacement list that reuses the same storage and
   357  // frees (passes to p.reuse) any removed *Regexps.
   358  //
   359  // For example,
   360  //     ABC|ABD|AEF|BCX|BCY
   361  // simplifies by literal prefix extraction to
   362  //     A(B(C|D)|EF)|BC(X|Y)
   363  // which simplifies by character class introduction to
   364  //     A(B[CD]|EF)|BC[XY]
   365  //
   366  func (p *parser) factor(sub []*Regexp, flags Flags) []*Regexp {
   367  	if len(sub) < 2 {
   368  		return sub
   369  	}
   370  
   371  	// Round 1: Factor out common literal prefixes.
   372  	var str []rune
   373  	var strflags Flags
   374  	start := 0
   375  	out := sub[:0]
   376  	for i := 0; i <= len(sub); i++ {
   377  		// Invariant: the Regexps that were in sub[0:start] have been
   378  		// used or marked for reuse, and the slice space has been reused
   379  		// for out (len(out) <= start).
   380  		//
   381  		// Invariant: sub[start:i] consists of regexps that all begin
   382  		// with str as modified by strflags.
   383  		var istr []rune
   384  		var iflags Flags
   385  		if i < len(sub) {
   386  			istr, iflags = p.leadingString(sub[i])
   387  			if iflags == strflags {
   388  				same := 0
   389  				for same < len(str) && same < len(istr) && str[same] == istr[same] {
   390  					same++
   391  				}
   392  				if same > 0 {
   393  					// Matches at least one rune in current range.
   394  					// Keep going around.
   395  					str = str[:same]
   396  					continue
   397  				}
   398  			}
   399  		}
   400  
   401  		// Found end of a run with common leading literal string:
   402  		// sub[start:i] all begin with str[0:len(str)], but sub[i]
   403  		// does not even begin with str[0].
   404  		//
   405  		// Factor out common string and append factored expression to out.
   406  		if i == start {
   407  			// Nothing to do - run of length 0.
   408  		} else if i == start+1 {
   409  			// Just one: don't bother factoring.
   410  			out = append(out, sub[start])
   411  		} else {
   412  			// Construct factored form: prefix(suffix1|suffix2|...)
   413  			prefix := p.newRegexp(OpLiteral)
   414  			prefix.Flags = strflags
   415  			prefix.Rune = append(prefix.Rune[:0], str...)
   416  
   417  			for j := start; j < i; j++ {
   418  				sub[j] = p.removeLeadingString(sub[j], len(str))
   419  			}
   420  			suffix := p.collapse(sub[start:i], OpAlternate) // recurse
   421  
   422  			re := p.newRegexp(OpConcat)
   423  			re.Sub = append(re.Sub[:0], prefix, suffix)
   424  			out = append(out, re)
   425  		}
   426  
   427  		// Prepare for next iteration.
   428  		start = i
   429  		str = istr
   430  		strflags = iflags
   431  	}
   432  	sub = out
   433  
   434  	// Round 2: Factor out common complex prefixes,
   435  	// just the first piece of each concatenation,
   436  	// whatever it is.  This is good enough a lot of the time.
   437  	start = 0
   438  	out = sub[:0]
   439  	var first *Regexp
   440  	for i := 0; i <= len(sub); i++ {
   441  		// Invariant: the Regexps that were in sub[0:start] have been
   442  		// used or marked for reuse, and the slice space has been reused
   443  		// for out (len(out) <= start).
   444  		//
   445  		// Invariant: sub[start:i] consists of regexps that all begin with ifirst.
   446  		var ifirst *Regexp
   447  		if i < len(sub) {
   448  			ifirst = p.leadingRegexp(sub[i])
   449  			if first != nil && first.Equal(ifirst) {
   450  				continue
   451  			}
   452  		}
   453  
   454  		// Found end of a run with common leading regexp:
   455  		// sub[start:i] all begin with first but sub[i] does not.
   456  		//
   457  		// Factor out common regexp and append factored expression to out.
   458  		if i == start {
   459  			// Nothing to do - run of length 0.
   460  		} else if i == start+1 {
   461  			// Just one: don't bother factoring.
   462  			out = append(out, sub[start])
   463  		} else {
   464  			// Construct factored form: prefix(suffix1|suffix2|...)
   465  			prefix := first
   466  			for j := start; j < i; j++ {
   467  				reuse := j != start // prefix came from sub[start]
   468  				sub[j] = p.removeLeadingRegexp(sub[j], reuse)
   469  			}
   470  			suffix := p.collapse(sub[start:i], OpAlternate) // recurse
   471  
   472  			re := p.newRegexp(OpConcat)
   473  			re.Sub = append(re.Sub[:0], prefix, suffix)
   474  			out = append(out, re)
   475  		}
   476  
   477  		// Prepare for next iteration.
   478  		start = i
   479  		first = ifirst
   480  	}
   481  	sub = out
   482  
   483  	// Round 3: Collapse runs of single literals into character classes.
   484  	start = 0
   485  	out = sub[:0]
   486  	for i := 0; i <= len(sub); i++ {
   487  		// Invariant: the Regexps that were in sub[0:start] have been
   488  		// used or marked for reuse, and the slice space has been reused
   489  		// for out (len(out) <= start).
   490  		//
   491  		// Invariant: sub[start:i] consists of regexps that are either
   492  		// literal runes or character classes.
   493  		if i < len(sub) && isCharClass(sub[i]) {
   494  			continue
   495  		}
   496  
   497  		// sub[i] is not a char or char class;
   498  		// emit char class for sub[start:i]...
   499  		if i == start {
   500  			// Nothing to do - run of length 0.
   501  		} else if i == start+1 {
   502  			out = append(out, sub[start])
   503  		} else {
   504  			// Make new char class.
   505  			// Start with most complex regexp in sub[start].
   506  			max := start
   507  			for j := start + 1; j < i; j++ {
   508  				if sub[max].Op < sub[j].Op || sub[max].Op == sub[j].Op && len(sub[max].Rune) < len(sub[j].Rune) {
   509  					max = j
   510  				}
   511  			}
   512  			sub[start], sub[max] = sub[max], sub[start]
   513  
   514  			for j := start + 1; j < i; j++ {
   515  				mergeCharClass(sub[start], sub[j])
   516  				p.reuse(sub[j])
   517  			}
   518  			cleanAlt(sub[start])
   519  			out = append(out, sub[start])
   520  		}
   521  
   522  		// ... and then emit sub[i].
   523  		if i < len(sub) {
   524  			out = append(out, sub[i])
   525  		}
   526  		start = i + 1
   527  	}
   528  	sub = out
   529  
   530  	// Round 4: Collapse runs of empty matches into a single empty match.
   531  	start = 0
   532  	out = sub[:0]
   533  	for i := range sub {
   534  		if i+1 < len(sub) && sub[i].Op == OpEmptyMatch && sub[i+1].Op == OpEmptyMatch {
   535  			continue
   536  		}
   537  		out = append(out, sub[i])
   538  	}
   539  	sub = out
   540  
   541  	return sub
   542  }
   543  
   544  // leadingString returns the leading literal string that re begins with.
   545  // The string refers to storage in re or its children.
   546  func (p *parser) leadingString(re *Regexp) ([]rune, Flags) {
   547  	if re.Op == OpConcat && len(re.Sub) > 0 {
   548  		re = re.Sub[0]
   549  	}
   550  	if re.Op != OpLiteral {
   551  		return nil, 0
   552  	}
   553  	return re.Rune, re.Flags & FoldCase
   554  }
   555  
   556  // removeLeadingString removes the first n leading runes
   557  // from the beginning of re.  It returns the replacement for re.
   558  func (p *parser) removeLeadingString(re *Regexp, n int) *Regexp {
   559  	if re.Op == OpConcat && len(re.Sub) > 0 {
   560  		// Removing a leading string in a concatenation
   561  		// might simplify the concatenation.
   562  		sub := re.Sub[0]
   563  		sub = p.removeLeadingString(sub, n)
   564  		re.Sub[0] = sub
   565  		if sub.Op == OpEmptyMatch {
   566  			p.reuse(sub)
   567  			switch len(re.Sub) {
   568  			case 0, 1:
   569  				// Impossible but handle.
   570  				re.Op = OpEmptyMatch
   571  				re.Sub = nil
   572  			case 2:
   573  				old := re
   574  				re = re.Sub[1]
   575  				p.reuse(old)
   576  			default:
   577  				copy(re.Sub, re.Sub[1:])
   578  				re.Sub = re.Sub[:len(re.Sub)-1]
   579  			}
   580  		}
   581  		return re
   582  	}
   583  
   584  	if re.Op == OpLiteral {
   585  		re.Rune = re.Rune[:copy(re.Rune, re.Rune[n:])]
   586  		if len(re.Rune) == 0 {
   587  			re.Op = OpEmptyMatch
   588  		}
   589  	}
   590  	return re
   591  }
   592  
   593  // leadingRegexp returns the leading regexp that re begins with.
   594  // The regexp refers to storage in re or its children.
   595  func (p *parser) leadingRegexp(re *Regexp) *Regexp {
   596  	if re.Op == OpEmptyMatch {
   597  		return nil
   598  	}
   599  	if re.Op == OpConcat && len(re.Sub) > 0 {
   600  		sub := re.Sub[0]
   601  		if sub.Op == OpEmptyMatch {
   602  			return nil
   603  		}
   604  		return sub
   605  	}
   606  	return re
   607  }
   608  
   609  // removeLeadingRegexp removes the leading regexp in re.
   610  // It returns the replacement for re.
   611  // If reuse is true, it passes the removed regexp (if no longer needed) to p.reuse.
   612  func (p *parser) removeLeadingRegexp(re *Regexp, reuse bool) *Regexp {
   613  	if re.Op == OpConcat && len(re.Sub) > 0 {
   614  		if reuse {
   615  			p.reuse(re.Sub[0])
   616  		}
   617  		re.Sub = re.Sub[:copy(re.Sub, re.Sub[1:])]
   618  		switch len(re.Sub) {
   619  		case 0:
   620  			re.Op = OpEmptyMatch
   621  			re.Sub = nil
   622  		case 1:
   623  			old := re
   624  			re = re.Sub[0]
   625  			p.reuse(old)
   626  		}
   627  		return re
   628  	}
   629  	if reuse {
   630  		p.reuse(re)
   631  	}
   632  	return p.newRegexp(OpEmptyMatch)
   633  }
   634  
   635  func literalRegexp(s string, flags Flags) *Regexp {
   636  	re := &Regexp{Op: OpLiteral}
   637  	re.Flags = flags
   638  	re.Rune = re.Rune0[:0] // use local storage for small strings
   639  	for _, c := range s {
   640  		if len(re.Rune) >= cap(re.Rune) {
   641  			// string is too long to fit in Rune0.  let Go handle it
   642  			re.Rune = []rune(s)
   643  			break
   644  		}
   645  		re.Rune = append(re.Rune, c)
   646  	}
   647  	return re
   648  }
   649  
   650  // Parsing.
   651  
   652  // Parse parses a regular expression string s, controlled by the specified
   653  // Flags, and returns a regular expression parse tree. The syntax is
   654  // described in the top-level comment.
   655  func Parse(s string, flags Flags) (*Regexp, error) {
   656  	if flags&Literal != 0 {
   657  		// Trivial parser for literal string.
   658  		if err := checkUTF8(s); err != nil {
   659  			return nil, err
   660  		}
   661  		return literalRegexp(s, flags), nil
   662  	}
   663  
   664  	// Otherwise, must do real work.
   665  	var (
   666  		p          parser
   667  		err        error
   668  		c          rune
   669  		op         Op
   670  		lastRepeat string
   671  	)
   672  	p.flags = flags
   673  	p.wholeRegexp = s
   674  	t := s
   675  	for t != "" {
   676  		repeat := ""
   677  	BigSwitch:
   678  		switch t[0] {
   679  		default:
   680  			if c, t, err = nextRune(t); err != nil {
   681  				return nil, err
   682  			}
   683  			p.literal(c)
   684  
   685  		case '(':
   686  			if p.flags&PerlX != 0 && len(t) >= 2 && t[1] == '?' {
   687  				// Flag changes and non-capturing groups.
   688  				if t, err = p.parsePerlFlags(t); err != nil {
   689  					return nil, err
   690  				}
   691  				break
   692  			}
   693  			p.numCap++
   694  			p.op(opLeftParen).Cap = p.numCap
   695  			t = t[1:]
   696  		case '|':
   697  			if err = p.parseVerticalBar(); err != nil {
   698  				return nil, err
   699  			}
   700  			t = t[1:]
   701  		case ')':
   702  			if err = p.parseRightParen(); err != nil {
   703  				return nil, err
   704  			}
   705  			t = t[1:]
   706  		case '^':
   707  			if p.flags&OneLine != 0 {
   708  				p.op(OpBeginText)
   709  			} else {
   710  				p.op(OpBeginLine)
   711  			}
   712  			t = t[1:]
   713  		case '$':
   714  			if p.flags&OneLine != 0 {
   715  				p.op(OpEndText).Flags |= WasDollar
   716  			} else {
   717  				p.op(OpEndLine)
   718  			}
   719  			t = t[1:]
   720  		case '.':
   721  			if p.flags&DotNL != 0 {
   722  				p.op(OpAnyChar)
   723  			} else {
   724  				p.op(OpAnyCharNotNL)
   725  			}
   726  			t = t[1:]
   727  		case '[':
   728  			if t, err = p.parseClass(t); err != nil {
   729  				return nil, err
   730  			}
   731  		case '*', '+', '?':
   732  			before := t
   733  			switch t[0] {
   734  			case '*':
   735  				op = OpStar
   736  			case '+':
   737  				op = OpPlus
   738  			case '?':
   739  				op = OpQuest
   740  			}
   741  			after := t[1:]
   742  			if after, err = p.repeat(op, 0, 0, before, after, lastRepeat); err != nil {
   743  				return nil, err
   744  			}
   745  			repeat = before
   746  			t = after
   747  		case '{':
   748  			op = OpRepeat
   749  			before := t
   750  			min, max, after, ok := p.parseRepeat(t)
   751  			if !ok {
   752  				// If the repeat cannot be parsed, { is a literal.
   753  				p.literal('{')
   754  				t = t[1:]
   755  				break
   756  			}
   757  			if min < 0 || min > 1000 || max > 1000 || max >= 0 && min > max {
   758  				// Numbers were too big, or max is present and min > max.
   759  				return nil, &Error{ErrInvalidRepeatSize, before[:len(before)-len(after)]}
   760  			}
   761  			if after, err = p.repeat(op, min, max, before, after, lastRepeat); err != nil {
   762  				return nil, err
   763  			}
   764  			repeat = before
   765  			t = after
   766  		case '\\':
   767  			if p.flags&PerlX != 0 && len(t) >= 2 {
   768  				switch t[1] {
   769  				case 'A':
   770  					p.op(OpBeginText)
   771  					t = t[2:]
   772  					break BigSwitch
   773  				case 'b':
   774  					p.op(OpWordBoundary)
   775  					t = t[2:]
   776  					break BigSwitch
   777  				case 'B':
   778  					p.op(OpNoWordBoundary)
   779  					t = t[2:]
   780  					break BigSwitch
   781  				case 'C':
   782  					// any byte; not supported
   783  					return nil, &Error{ErrInvalidEscape, t[:2]}
   784  				case 'Q':
   785  					// \Q ... \E: the ... is always literals
   786  					var lit string
   787  					if i := strings.Index(t, `\E`); i < 0 {
   788  						lit = t[2:]
   789  						t = ""
   790  					} else {
   791  						lit = t[2:i]
   792  						t = t[i+2:]
   793  					}
   794  					p.push(literalRegexp(lit, p.flags))
   795  					break BigSwitch
   796  				case 'z':
   797  					p.op(OpEndText)
   798  					t = t[2:]
   799  					break BigSwitch
   800  				}
   801  			}
   802  
   803  			re := p.newRegexp(OpCharClass)
   804  			re.Flags = p.flags
   805  
   806  			// Look for Unicode character group like \p{Han}
   807  			if len(t) >= 2 && (t[1] == 'p' || t[1] == 'P') {
   808  				r, rest, err := p.parseUnicodeClass(t, re.Rune0[:0])
   809  				if err != nil {
   810  					return nil, err
   811  				}
   812  				if r != nil {
   813  					re.Rune = r
   814  					t = rest
   815  					p.push(re)
   816  					break BigSwitch
   817  				}
   818  			}
   819  
   820  			// Perl character class escape.
   821  			if r, rest := p.parsePerlClassEscape(t, re.Rune0[:0]); r != nil {
   822  				re.Rune = r
   823  				t = rest
   824  				p.push(re)
   825  				break BigSwitch
   826  			}
   827  			p.reuse(re)
   828  
   829  			// Ordinary single-character escape.
   830  			if c, t, err = p.parseEscape(t); err != nil {
   831  				return nil, err
   832  			}
   833  			p.literal(c)
   834  		}
   835  		lastRepeat = repeat
   836  	}
   837  
   838  	p.concat()
   839  	if p.swapVerticalBar() {
   840  		// pop vertical bar
   841  		p.stack = p.stack[:len(p.stack)-1]
   842  	}
   843  	p.alternate()
   844  
   845  	n := len(p.stack)
   846  	if n != 1 {
   847  		return nil, &Error{ErrMissingParen, s}
   848  	}
   849  	return p.stack[0], nil
   850  }
   851  
   852  // parseRepeat parses {min} (max=min) or {min,} (max=-1) or {min,max}.
   853  // If s is not of that form, it returns ok == false.
   854  // If s has the right form but the values are too big, it returns min == -1, ok == true.
   855  func (p *parser) parseRepeat(s string) (min, max int, rest string, ok bool) {
   856  	if s == "" || s[0] != '{' {
   857  		return
   858  	}
   859  	s = s[1:]
   860  	var ok1 bool
   861  	if min, s, ok1 = p.parseInt(s); !ok1 {
   862  		return
   863  	}
   864  	if s == "" {
   865  		return
   866  	}
   867  	if s[0] != ',' {
   868  		max = min
   869  	} else {
   870  		s = s[1:]
   871  		if s == "" {
   872  			return
   873  		}
   874  		if s[0] == '}' {
   875  			max = -1
   876  		} else if max, s, ok1 = p.parseInt(s); !ok1 {
   877  			return
   878  		} else if max < 0 {
   879  			// parseInt found too big a number
   880  			min = -1
   881  		}
   882  	}
   883  	if s == "" || s[0] != '}' {
   884  		return
   885  	}
   886  	rest = s[1:]
   887  	ok = true
   888  	return
   889  }
   890  
   891  // parsePerlFlags parses a Perl flag setting or non-capturing group or both,
   892  // like (?i) or (?: or (?i:.  It removes the prefix from s and updates the parse state.
   893  // The caller must have ensured that s begins with "(?".
   894  func (p *parser) parsePerlFlags(s string) (rest string, err error) {
   895  	t := s
   896  
   897  	// Check for named captures, first introduced in Python's regexp library.
   898  	// As usual, there are three slightly different syntaxes:
   899  	//
   900  	//   (?P<name>expr)   the original, introduced by Python
   901  	//   (?<name>expr)    the .NET alteration, adopted by Perl 5.10
   902  	//   (?'name'expr)    another .NET alteration, adopted by Perl 5.10
   903  	//
   904  	// Perl 5.10 gave in and implemented the Python version too,
   905  	// but they claim that the last two are the preferred forms.
   906  	// PCRE and languages based on it (specifically, PHP and Ruby)
   907  	// support all three as well.  EcmaScript 4 uses only the Python form.
   908  	//
   909  	// In both the open source world (via Code Search) and the
   910  	// Google source tree, (?P<expr>name) is the dominant form,
   911  	// so that's the one we implement.  One is enough.
   912  	if len(t) > 4 && t[2] == 'P' && t[3] == '<' {
   913  		// Pull out name.
   914  		end := strings.IndexRune(t, '>')
   915  		if end < 0 {
   916  			if err = checkUTF8(t); err != nil {
   917  				return "", err
   918  			}
   919  			return "", &Error{ErrInvalidNamedCapture, s}
   920  		}
   921  
   922  		capture := t[:end+1] // "(?P<name>"
   923  		name := t[4:end]     // "name"
   924  		if err = checkUTF8(name); err != nil {
   925  			return "", err
   926  		}
   927  		if !isValidCaptureName(name) {
   928  			return "", &Error{ErrInvalidNamedCapture, capture}
   929  		}
   930  
   931  		// Like ordinary capture, but named.
   932  		p.numCap++
   933  		re := p.op(opLeftParen)
   934  		re.Cap = p.numCap
   935  		re.Name = name
   936  		return t[end+1:], nil
   937  	}
   938  
   939  	// Non-capturing group.  Might also twiddle Perl flags.
   940  	var c rune
   941  	t = t[2:] // skip (?
   942  	flags := p.flags
   943  	sign := +1
   944  	sawFlag := false
   945  Loop:
   946  	for t != "" {
   947  		if c, t, err = nextRune(t); err != nil {
   948  			return "", err
   949  		}
   950  		switch c {
   951  		default:
   952  			break Loop
   953  
   954  		// Flags.
   955  		case 'i':
   956  			flags |= FoldCase
   957  			sawFlag = true
   958  		case 'm':
   959  			flags &^= OneLine
   960  			sawFlag = true
   961  		case 's':
   962  			flags |= DotNL
   963  			sawFlag = true
   964  		case 'U':
   965  			flags |= NonGreedy
   966  			sawFlag = true
   967  
   968  		// Switch to negation.
   969  		case '-':
   970  			if sign < 0 {
   971  				break Loop
   972  			}
   973  			sign = -1
   974  			// Invert flags so that | above turn into &^ and vice versa.
   975  			// We'll invert flags again before using it below.
   976  			flags = ^flags
   977  			sawFlag = false
   978  
   979  		// End of flags, starting group or not.
   980  		case ':', ')':
   981  			if sign < 0 {
   982  				if !sawFlag {
   983  					break Loop
   984  				}
   985  				flags = ^flags
   986  			}
   987  			if c == ':' {
   988  				// Open new group
   989  				p.op(opLeftParen)
   990  			}
   991  			p.flags = flags
   992  			return t, nil
   993  		}
   994  	}
   995  
   996  	return "", &Error{ErrInvalidPerlOp, s[:len(s)-len(t)]}
   997  }
   998  
   999  // isValidCaptureName reports whether name
  1000  // is a valid capture name: [A-Za-z0-9_]+.
  1001  // PCRE limits names to 32 bytes.
  1002  // Python rejects names starting with digits.
  1003  // We don't enforce either of those.
  1004  func isValidCaptureName(name string) bool {
  1005  	if name == "" {
  1006  		return false
  1007  	}
  1008  	for _, c := range name {
  1009  		if c != '_' && !isalnum(c) {
  1010  			return false
  1011  		}
  1012  	}
  1013  	return true
  1014  }
  1015  
  1016  // parseInt parses a decimal integer.
  1017  func (p *parser) parseInt(s string) (n int, rest string, ok bool) {
  1018  	if s == "" || s[0] < '0' || '9' < s[0] {
  1019  		return
  1020  	}
  1021  	// Disallow leading zeros.
  1022  	if len(s) >= 2 && s[0] == '0' && '0' <= s[1] && s[1] <= '9' {
  1023  		return
  1024  	}
  1025  	t := s
  1026  	for s != "" && '0' <= s[0] && s[0] <= '9' {
  1027  		s = s[1:]
  1028  	}
  1029  	rest = s
  1030  	ok = true
  1031  	// Have digits, compute value.
  1032  	t = t[:len(t)-len(s)]
  1033  	for i := 0; i < len(t); i++ {
  1034  		// Avoid overflow.
  1035  		if n >= 1e8 {
  1036  			n = -1
  1037  			break
  1038  		}
  1039  		n = n*10 + int(t[i]) - '0'
  1040  	}
  1041  	return
  1042  }
  1043  
  1044  // can this be represented as a character class?
  1045  // single-rune literal string, char class, ., and .|\n.
  1046  func isCharClass(re *Regexp) bool {
  1047  	return re.Op == OpLiteral && len(re.Rune) == 1 ||
  1048  		re.Op == OpCharClass ||
  1049  		re.Op == OpAnyCharNotNL ||
  1050  		re.Op == OpAnyChar
  1051  }
  1052  
  1053  // does re match r?
  1054  func matchRune(re *Regexp, r rune) bool {
  1055  	switch re.Op {
  1056  	case OpLiteral:
  1057  		return len(re.Rune) == 1 && re.Rune[0] == r
  1058  	case OpCharClass:
  1059  		for i := 0; i < len(re.Rune); i += 2 {
  1060  			if re.Rune[i] <= r && r <= re.Rune[i+1] {
  1061  				return true
  1062  			}
  1063  		}
  1064  		return false
  1065  	case OpAnyCharNotNL:
  1066  		return r != '\n'
  1067  	case OpAnyChar:
  1068  		return true
  1069  	}
  1070  	return false
  1071  }
  1072  
  1073  // parseVerticalBar handles a | in the input.
  1074  func (p *parser) parseVerticalBar() error {
  1075  	p.concat()
  1076  
  1077  	// The concatenation we just parsed is on top of the stack.
  1078  	// If it sits above an opVerticalBar, swap it below
  1079  	// (things below an opVerticalBar become an alternation).
  1080  	// Otherwise, push a new vertical bar.
  1081  	if !p.swapVerticalBar() {
  1082  		p.op(opVerticalBar)
  1083  	}
  1084  
  1085  	return nil
  1086  }
  1087  
  1088  // mergeCharClass makes dst = dst|src.
  1089  // The caller must ensure that dst.Op >= src.Op,
  1090  // to reduce the amount of copying.
  1091  func mergeCharClass(dst, src *Regexp) {
  1092  	switch dst.Op {
  1093  	case OpAnyChar:
  1094  		// src doesn't add anything.
  1095  	case OpAnyCharNotNL:
  1096  		// src might add \n
  1097  		if matchRune(src, '\n') {
  1098  			dst.Op = OpAnyChar
  1099  		}
  1100  	case OpCharClass:
  1101  		// src is simpler, so either literal or char class
  1102  		if src.Op == OpLiteral {
  1103  			dst.Rune = appendLiteral(dst.Rune, src.Rune[0], src.Flags)
  1104  		} else {
  1105  			dst.Rune = appendClass(dst.Rune, src.Rune)
  1106  		}
  1107  	case OpLiteral:
  1108  		// both literal
  1109  		if src.Rune[0] == dst.Rune[0] && src.Flags == dst.Flags {
  1110  			break
  1111  		}
  1112  		dst.Op = OpCharClass
  1113  		dst.Rune = appendLiteral(dst.Rune[:0], dst.Rune[0], dst.Flags)
  1114  		dst.Rune = appendLiteral(dst.Rune, src.Rune[0], src.Flags)
  1115  	}
  1116  }
  1117  
  1118  // If the top of the stack is an element followed by an opVerticalBar
  1119  // swapVerticalBar swaps the two and returns true.
  1120  // Otherwise it returns false.
  1121  func (p *parser) swapVerticalBar() bool {
  1122  	// If above and below vertical bar are literal or char class,
  1123  	// can merge into a single char class.
  1124  	n := len(p.stack)
  1125  	if n >= 3 && p.stack[n-2].Op == opVerticalBar && isCharClass(p.stack[n-1]) && isCharClass(p.stack[n-3]) {
  1126  		re1 := p.stack[n-1]
  1127  		re3 := p.stack[n-3]
  1128  		// Make re3 the more complex of the two.
  1129  		if re1.Op > re3.Op {
  1130  			re1, re3 = re3, re1
  1131  			p.stack[n-3] = re3
  1132  		}
  1133  		mergeCharClass(re3, re1)
  1134  		p.reuse(re1)
  1135  		p.stack = p.stack[:n-1]
  1136  		return true
  1137  	}
  1138  
  1139  	if n >= 2 {
  1140  		re1 := p.stack[n-1]
  1141  		re2 := p.stack[n-2]
  1142  		if re2.Op == opVerticalBar {
  1143  			if n >= 3 {
  1144  				// Now out of reach.
  1145  				// Clean opportunistically.
  1146  				cleanAlt(p.stack[n-3])
  1147  			}
  1148  			p.stack[n-2] = re1
  1149  			p.stack[n-1] = re2
  1150  			return true
  1151  		}
  1152  	}
  1153  	return false
  1154  }
  1155  
  1156  // parseRightParen handles a ) in the input.
  1157  func (p *parser) parseRightParen() error {
  1158  	p.concat()
  1159  	if p.swapVerticalBar() {
  1160  		// pop vertical bar
  1161  		p.stack = p.stack[:len(p.stack)-1]
  1162  	}
  1163  	p.alternate()
  1164  
  1165  	n := len(p.stack)
  1166  	if n < 2 {
  1167  		return &Error{ErrUnexpectedParen, p.wholeRegexp}
  1168  	}
  1169  	re1 := p.stack[n-1]
  1170  	re2 := p.stack[n-2]
  1171  	p.stack = p.stack[:n-2]
  1172  	if re2.Op != opLeftParen {
  1173  		return &Error{ErrUnexpectedParen, p.wholeRegexp}
  1174  	}
  1175  	// Restore flags at time of paren.
  1176  	p.flags = re2.Flags
  1177  	if re2.Cap == 0 {
  1178  		// Just for grouping.
  1179  		p.push(re1)
  1180  	} else {
  1181  		re2.Op = OpCapture
  1182  		re2.Sub = re2.Sub0[:1]
  1183  		re2.Sub[0] = re1
  1184  		p.push(re2)
  1185  	}
  1186  	return nil
  1187  }
  1188  
  1189  // parseEscape parses an escape sequence at the beginning of s
  1190  // and returns the rune.
  1191  func (p *parser) parseEscape(s string) (r rune, rest string, err error) {
  1192  	t := s[1:]
  1193  	if t == "" {
  1194  		return 0, "", &Error{ErrTrailingBackslash, ""}
  1195  	}
  1196  	c, t, err := nextRune(t)
  1197  	if err != nil {
  1198  		return 0, "", err
  1199  	}
  1200  
  1201  Switch:
  1202  	switch c {
  1203  	default:
  1204  		if c < utf8.RuneSelf && !isalnum(c) {
  1205  			// Escaped non-word characters are always themselves.
  1206  			// PCRE is not quite so rigorous: it accepts things like
  1207  			// \q, but we don't.  We once rejected \_, but too many
  1208  			// programs and people insist on using it, so allow \_.
  1209  			return c, t, nil
  1210  		}
  1211  
  1212  	// Octal escapes.
  1213  	case '1', '2', '3', '4', '5', '6', '7':
  1214  		// Single non-zero digit is a backreference; not supported
  1215  		if t == "" || t[0] < '0' || t[0] > '7' {
  1216  			break
  1217  		}
  1218  		fallthrough
  1219  	case '0':
  1220  		// Consume up to three octal digits; already have one.
  1221  		r = c - '0'
  1222  		for i := 1; i < 3; i++ {
  1223  			if t == "" || t[0] < '0' || t[0] > '7' {
  1224  				break
  1225  			}
  1226  			r = r*8 + rune(t[0]) - '0'
  1227  			t = t[1:]
  1228  		}
  1229  		return r, t, nil
  1230  
  1231  	// Hexadecimal escapes.
  1232  	case 'x':
  1233  		if t == "" {
  1234  			break
  1235  		}
  1236  		if c, t, err = nextRune(t); err != nil {
  1237  			return 0, "", err
  1238  		}
  1239  		if c == '{' {
  1240  			// Any number of digits in braces.
  1241  			// Perl accepts any text at all; it ignores all text
  1242  			// after the first non-hex digit.  We require only hex digits,
  1243  			// and at least one.
  1244  			nhex := 0
  1245  			r = 0
  1246  			for {
  1247  				if t == "" {
  1248  					break Switch
  1249  				}
  1250  				if c, t, err = nextRune(t); err != nil {
  1251  					return 0, "", err
  1252  				}
  1253  				if c == '}' {
  1254  					break
  1255  				}
  1256  				v := unhex(c)
  1257  				if v < 0 {
  1258  					break Switch
  1259  				}
  1260  				r = r*16 + v
  1261  				if r > unicode.MaxRune {
  1262  					break Switch
  1263  				}
  1264  				nhex++
  1265  			}
  1266  			if nhex == 0 {
  1267  				break Switch
  1268  			}
  1269  			return r, t, nil
  1270  		}
  1271  
  1272  		// Easy case: two hex digits.
  1273  		x := unhex(c)
  1274  		if c, t, err = nextRune(t); err != nil {
  1275  			return 0, "", err
  1276  		}
  1277  		y := unhex(c)
  1278  		if x < 0 || y < 0 {
  1279  			break
  1280  		}
  1281  		return x*16 + y, t, nil
  1282  
  1283  	// C escapes.  There is no case 'b', to avoid misparsing
  1284  	// the Perl word-boundary \b as the C backspace \b
  1285  	// when in POSIX mode.  In Perl, /\b/ means word-boundary
  1286  	// but /[\b]/ means backspace.  We don't support that.
  1287  	// If you want a backspace, embed a literal backspace
  1288  	// character or use \x08.
  1289  	case 'a':
  1290  		return '\a', t, err
  1291  	case 'f':
  1292  		return '\f', t, err
  1293  	case 'n':
  1294  		return '\n', t, err
  1295  	case 'r':
  1296  		return '\r', t, err
  1297  	case 't':
  1298  		return '\t', t, err
  1299  	case 'v':
  1300  		return '\v', t, err
  1301  	}
  1302  	return 0, "", &Error{ErrInvalidEscape, s[:len(s)-len(t)]}
  1303  }
  1304  
  1305  // parseClassChar parses a character class character at the beginning of s
  1306  // and returns it.
  1307  func (p *parser) parseClassChar(s, wholeClass string) (r rune, rest string, err error) {
  1308  	if s == "" {
  1309  		return 0, "", &Error{Code: ErrMissingBracket, Expr: wholeClass}
  1310  	}
  1311  
  1312  	// Allow regular escape sequences even though
  1313  	// many need not be escaped in this context.
  1314  	if s[0] == '\\' {
  1315  		return p.parseEscape(s)
  1316  	}
  1317  
  1318  	return nextRune(s)
  1319  }
  1320  
  1321  type charGroup struct {
  1322  	sign  int
  1323  	class []rune
  1324  }
  1325  
  1326  // parsePerlClassEscape parses a leading Perl character class escape like \d
  1327  // from the beginning of s.  If one is present, it appends the characters to r
  1328  // and returns the new slice r and the remainder of the string.
  1329  func (p *parser) parsePerlClassEscape(s string, r []rune) (out []rune, rest string) {
  1330  	if p.flags&PerlX == 0 || len(s) < 2 || s[0] != '\\' {
  1331  		return
  1332  	}
  1333  	g := perlGroup[s[0:2]]
  1334  	if g.sign == 0 {
  1335  		return
  1336  	}
  1337  	return p.appendGroup(r, g), s[2:]
  1338  }
  1339  
  1340  // parseNamedClass parses a leading POSIX named character class like [:alnum:]
  1341  // from the beginning of s.  If one is present, it appends the characters to r
  1342  // and returns the new slice r and the remainder of the string.
  1343  func (p *parser) parseNamedClass(s string, r []rune) (out []rune, rest string, err error) {
  1344  	if len(s) < 2 || s[0] != '[' || s[1] != ':' {
  1345  		return
  1346  	}
  1347  
  1348  	i := strings.Index(s[2:], ":]")
  1349  	if i < 0 {
  1350  		return
  1351  	}
  1352  	i += 2
  1353  	name, s := s[0:i+2], s[i+2:]
  1354  	g := posixGroup[name]
  1355  	if g.sign == 0 {
  1356  		return nil, "", &Error{ErrInvalidCharRange, name}
  1357  	}
  1358  	return p.appendGroup(r, g), s, nil
  1359  }
  1360  
  1361  func (p *parser) appendGroup(r []rune, g charGroup) []rune {
  1362  	if p.flags&FoldCase == 0 {
  1363  		if g.sign < 0 {
  1364  			r = appendNegatedClass(r, g.class)
  1365  		} else {
  1366  			r = appendClass(r, g.class)
  1367  		}
  1368  	} else {
  1369  		tmp := p.tmpClass[:0]
  1370  		tmp = appendFoldedClass(tmp, g.class)
  1371  		p.tmpClass = tmp
  1372  		tmp = cleanClass(&p.tmpClass)
  1373  		if g.sign < 0 {
  1374  			r = appendNegatedClass(r, tmp)
  1375  		} else {
  1376  			r = appendClass(r, tmp)
  1377  		}
  1378  	}
  1379  	return r
  1380  }
  1381  
  1382  var anyTable = &unicode.RangeTable{
  1383  	R16: []unicode.Range16{{Lo: 0, Hi: 1<<16 - 1, Stride: 1}},
  1384  	R32: []unicode.Range32{{Lo: 1 << 16, Hi: unicode.MaxRune, Stride: 1}},
  1385  }
  1386  
  1387  // unicodeTable returns the unicode.RangeTable identified by name
  1388  // and the table of additional fold-equivalent code points.
  1389  func unicodeTable(name string) (*unicode.RangeTable, *unicode.RangeTable) {
  1390  	// Special case: "Any" means any.
  1391  	if name == "Any" {
  1392  		return anyTable, anyTable
  1393  	}
  1394  	if t := unicode.Categories[name]; t != nil {
  1395  		return t, unicode.FoldCategory[name]
  1396  	}
  1397  	if t := unicode.Scripts[name]; t != nil {
  1398  		return t, unicode.FoldScript[name]
  1399  	}
  1400  	return nil, nil
  1401  }
  1402  
  1403  // parseUnicodeClass parses a leading Unicode character class like \p{Han}
  1404  // from the beginning of s.  If one is present, it appends the characters to r
  1405  // and returns the new slice r and the remainder of the string.
  1406  func (p *parser) parseUnicodeClass(s string, r []rune) (out []rune, rest string, err error) {
  1407  	if p.flags&UnicodeGroups == 0 || len(s) < 2 || s[0] != '\\' || s[1] != 'p' && s[1] != 'P' {
  1408  		return
  1409  	}
  1410  
  1411  	// Committed to parse or return error.
  1412  	sign := +1
  1413  	if s[1] == 'P' {
  1414  		sign = -1
  1415  	}
  1416  	t := s[2:]
  1417  	c, t, err := nextRune(t)
  1418  	if err != nil {
  1419  		return
  1420  	}
  1421  	var seq, name string
  1422  	if c != '{' {
  1423  		// Single-letter name.
  1424  		seq = s[:len(s)-len(t)]
  1425  		name = seq[2:]
  1426  	} else {
  1427  		// Name is in braces.
  1428  		end := strings.IndexRune(s, '}')
  1429  		if end < 0 {
  1430  			if err = checkUTF8(s); err != nil {
  1431  				return
  1432  			}
  1433  			return nil, "", &Error{ErrInvalidCharRange, s}
  1434  		}
  1435  		seq, t = s[:end+1], s[end+1:]
  1436  		name = s[3:end]
  1437  		if err = checkUTF8(name); err != nil {
  1438  			return
  1439  		}
  1440  	}
  1441  
  1442  	// Group can have leading negation too.  \p{^Han} == \P{Han}, \P{^Han} == \p{Han}.
  1443  	if name != "" && name[0] == '^' {
  1444  		sign = -sign
  1445  		name = name[1:]
  1446  	}
  1447  
  1448  	tab, fold := unicodeTable(name)
  1449  	if tab == nil {
  1450  		return nil, "", &Error{ErrInvalidCharRange, seq}
  1451  	}
  1452  
  1453  	if p.flags&FoldCase == 0 || fold == nil {
  1454  		if sign > 0 {
  1455  			r = appendTable(r, tab)
  1456  		} else {
  1457  			r = appendNegatedTable(r, tab)
  1458  		}
  1459  	} else {
  1460  		// Merge and clean tab and fold in a temporary buffer.
  1461  		// This is necessary for the negative case and just tidy
  1462  		// for the positive case.
  1463  		tmp := p.tmpClass[:0]
  1464  		tmp = appendTable(tmp, tab)
  1465  		tmp = appendTable(tmp, fold)
  1466  		p.tmpClass = tmp
  1467  		tmp = cleanClass(&p.tmpClass)
  1468  		if sign > 0 {
  1469  			r = appendClass(r, tmp)
  1470  		} else {
  1471  			r = appendNegatedClass(r, tmp)
  1472  		}
  1473  	}
  1474  	return r, t, nil
  1475  }
  1476  
  1477  // parseClass parses a character class at the beginning of s
  1478  // and pushes it onto the parse stack.
  1479  func (p *parser) parseClass(s string) (rest string, err error) {
  1480  	t := s[1:] // chop [
  1481  	re := p.newRegexp(OpCharClass)
  1482  	re.Flags = p.flags
  1483  	re.Rune = re.Rune0[:0]
  1484  
  1485  	sign := +1
  1486  	if t != "" && t[0] == '^' {
  1487  		sign = -1
  1488  		t = t[1:]
  1489  
  1490  		// If character class does not match \n, add it here,
  1491  		// so that negation later will do the right thing.
  1492  		if p.flags&ClassNL == 0 {
  1493  			re.Rune = append(re.Rune, '\n', '\n')
  1494  		}
  1495  	}
  1496  
  1497  	class := re.Rune
  1498  	first := true // ] and - are okay as first char in class
  1499  	for t == "" || t[0] != ']' || first {
  1500  		// POSIX: - is only okay unescaped as first or last in class.
  1501  		// Perl: - is okay anywhere.
  1502  		if t != "" && t[0] == '-' && p.flags&PerlX == 0 && !first && (len(t) == 1 || t[1] != ']') {
  1503  			_, size := utf8.DecodeRuneInString(t[1:])
  1504  			return "", &Error{Code: ErrInvalidCharRange, Expr: t[:1+size]}
  1505  		}
  1506  		first = false
  1507  
  1508  		// Look for POSIX [:alnum:] etc.
  1509  		if len(t) > 2 && t[0] == '[' && t[1] == ':' {
  1510  			nclass, nt, err := p.parseNamedClass(t, class)
  1511  			if err != nil {
  1512  				return "", err
  1513  			}
  1514  			if nclass != nil {
  1515  				class, t = nclass, nt
  1516  				continue
  1517  			}
  1518  		}
  1519  
  1520  		// Look for Unicode character group like \p{Han}.
  1521  		nclass, nt, err := p.parseUnicodeClass(t, class)
  1522  		if err != nil {
  1523  			return "", err
  1524  		}
  1525  		if nclass != nil {
  1526  			class, t = nclass, nt
  1527  			continue
  1528  		}
  1529  
  1530  		// Look for Perl character class symbols (extension).
  1531  		if nclass, nt := p.parsePerlClassEscape(t, class); nclass != nil {
  1532  			class, t = nclass, nt
  1533  			continue
  1534  		}
  1535  
  1536  		// Single character or simple range.
  1537  		rng := t
  1538  		var lo, hi rune
  1539  		if lo, t, err = p.parseClassChar(t, s); err != nil {
  1540  			return "", err
  1541  		}
  1542  		hi = lo
  1543  		// [a-] means (a|-) so check for final ].
  1544  		if len(t) >= 2 && t[0] == '-' && t[1] != ']' {
  1545  			t = t[1:]
  1546  			if hi, t, err = p.parseClassChar(t, s); err != nil {
  1547  				return "", err
  1548  			}
  1549  			if hi < lo {
  1550  				rng = rng[:len(rng)-len(t)]
  1551  				return "", &Error{Code: ErrInvalidCharRange, Expr: rng}
  1552  			}
  1553  		}
  1554  		if p.flags&FoldCase == 0 {
  1555  			class = appendRange(class, lo, hi)
  1556  		} else {
  1557  			class = appendFoldedRange(class, lo, hi)
  1558  		}
  1559  	}
  1560  	t = t[1:] // chop ]
  1561  
  1562  	// Use &re.Rune instead of &class to avoid allocation.
  1563  	re.Rune = class
  1564  	class = cleanClass(&re.Rune)
  1565  	if sign < 0 {
  1566  		class = negateClass(class)
  1567  	}
  1568  	re.Rune = class
  1569  	p.push(re)
  1570  	return t, nil
  1571  }
  1572  
  1573  // cleanClass sorts the ranges (pairs of elements of r),
  1574  // merges them, and eliminates duplicates.
  1575  func cleanClass(rp *[]rune) []rune {
  1576  
  1577  	// Sort by lo increasing, hi decreasing to break ties.
  1578  	sort.Sort(ranges{rp})
  1579  
  1580  	r := *rp
  1581  	if len(r) < 2 {
  1582  		return r
  1583  	}
  1584  
  1585  	// Merge abutting, overlapping.
  1586  	w := 2 // write index
  1587  	for i := 2; i < len(r); i += 2 {
  1588  		lo, hi := r[i], r[i+1]
  1589  		if lo <= r[w-1]+1 {
  1590  			// merge with previous range
  1591  			if hi > r[w-1] {
  1592  				r[w-1] = hi
  1593  			}
  1594  			continue
  1595  		}
  1596  		// new disjoint range
  1597  		r[w] = lo
  1598  		r[w+1] = hi
  1599  		w += 2
  1600  	}
  1601  
  1602  	return r[:w]
  1603  }
  1604  
  1605  // appendLiteral returns the result of appending the literal x to the class r.
  1606  func appendLiteral(r []rune, x rune, flags Flags) []rune {
  1607  	if flags&FoldCase != 0 {
  1608  		return appendFoldedRange(r, x, x)
  1609  	}
  1610  	return appendRange(r, x, x)
  1611  }
  1612  
  1613  // appendRange returns the result of appending the range lo-hi to the class r.
  1614  func appendRange(r []rune, lo, hi rune) []rune {
  1615  	// Expand last range or next to last range if it overlaps or abuts.
  1616  	// Checking two ranges helps when appending case-folded
  1617  	// alphabets, so that one range can be expanding A-Z and the
  1618  	// other expanding a-z.
  1619  	n := len(r)
  1620  	for i := 2; i <= 4; i += 2 { // twice, using i=2, i=4
  1621  		if n >= i {
  1622  			rlo, rhi := r[n-i], r[n-i+1]
  1623  			if lo <= rhi+1 && rlo <= hi+1 {
  1624  				if lo < rlo {
  1625  					r[n-i] = lo
  1626  				}
  1627  				if hi > rhi {
  1628  					r[n-i+1] = hi
  1629  				}
  1630  				return r
  1631  			}
  1632  		}
  1633  	}
  1634  
  1635  	return append(r, lo, hi)
  1636  }
  1637  
  1638  const (
  1639  	// minimum and maximum runes involved in folding.
  1640  	// checked during test.
  1641  	minFold = 0x0041
  1642  	maxFold = 0x1044f
  1643  )
  1644  
  1645  // appendFoldedRange returns the result of appending the range lo-hi
  1646  // and its case folding-equivalent runes to the class r.
  1647  func appendFoldedRange(r []rune, lo, hi rune) []rune {
  1648  	// Optimizations.
  1649  	if lo <= minFold && hi >= maxFold {
  1650  		// Range is full: folding can't add more.
  1651  		return appendRange(r, lo, hi)
  1652  	}
  1653  	if hi < minFold || lo > maxFold {
  1654  		// Range is outside folding possibilities.
  1655  		return appendRange(r, lo, hi)
  1656  	}
  1657  	if lo < minFold {
  1658  		// [lo, minFold-1] needs no folding.
  1659  		r = appendRange(r, lo, minFold-1)
  1660  		lo = minFold
  1661  	}
  1662  	if hi > maxFold {
  1663  		// [maxFold+1, hi] needs no folding.
  1664  		r = appendRange(r, maxFold+1, hi)
  1665  		hi = maxFold
  1666  	}
  1667  
  1668  	// Brute force.  Depend on appendRange to coalesce ranges on the fly.
  1669  	for c := lo; c <= hi; c++ {
  1670  		r = appendRange(r, c, c)
  1671  		f := unicode.SimpleFold(c)
  1672  		for f != c {
  1673  			r = appendRange(r, f, f)
  1674  			f = unicode.SimpleFold(f)
  1675  		}
  1676  	}
  1677  	return r
  1678  }
  1679  
  1680  // appendClass returns the result of appending the class x to the class r.
  1681  // It assume x is clean.
  1682  func appendClass(r []rune, x []rune) []rune {
  1683  	for i := 0; i < len(x); i += 2 {
  1684  		r = appendRange(r, x[i], x[i+1])
  1685  	}
  1686  	return r
  1687  }
  1688  
  1689  // appendFolded returns the result of appending the case folding of the class x to the class r.
  1690  func appendFoldedClass(r []rune, x []rune) []rune {
  1691  	for i := 0; i < len(x); i += 2 {
  1692  		r = appendFoldedRange(r, x[i], x[i+1])
  1693  	}
  1694  	return r
  1695  }
  1696  
  1697  // appendNegatedClass returns the result of appending the negation of the class x to the class r.
  1698  // It assumes x is clean.
  1699  func appendNegatedClass(r []rune, x []rune) []rune {
  1700  	nextLo := '\u0000'
  1701  	for i := 0; i < len(x); i += 2 {
  1702  		lo, hi := x[i], x[i+1]
  1703  		if nextLo <= lo-1 {
  1704  			r = appendRange(r, nextLo, lo-1)
  1705  		}
  1706  		nextLo = hi + 1
  1707  	}
  1708  	if nextLo <= unicode.MaxRune {
  1709  		r = appendRange(r, nextLo, unicode.MaxRune)
  1710  	}
  1711  	return r
  1712  }
  1713  
  1714  // appendTable returns the result of appending x to the class r.
  1715  func appendTable(r []rune, x *unicode.RangeTable) []rune {
  1716  	for _, xr := range x.R16 {
  1717  		lo, hi, stride := rune(xr.Lo), rune(xr.Hi), rune(xr.Stride)
  1718  		if stride == 1 {
  1719  			r = appendRange(r, lo, hi)
  1720  			continue
  1721  		}
  1722  		for c := lo; c <= hi; c += stride {
  1723  			r = appendRange(r, c, c)
  1724  		}
  1725  	}
  1726  	for _, xr := range x.R32 {
  1727  		lo, hi, stride := rune(xr.Lo), rune(xr.Hi), rune(xr.Stride)
  1728  		if stride == 1 {
  1729  			r = appendRange(r, lo, hi)
  1730  			continue
  1731  		}
  1732  		for c := lo; c <= hi; c += stride {
  1733  			r = appendRange(r, c, c)
  1734  		}
  1735  	}
  1736  	return r
  1737  }
  1738  
  1739  // appendNegatedTable returns the result of appending the negation of x to the class r.
  1740  func appendNegatedTable(r []rune, x *unicode.RangeTable) []rune {
  1741  	nextLo := '\u0000' // lo end of next class to add
  1742  	for _, xr := range x.R16 {
  1743  		lo, hi, stride := rune(xr.Lo), rune(xr.Hi), rune(xr.Stride)
  1744  		if stride == 1 {
  1745  			if nextLo <= lo-1 {
  1746  				r = appendRange(r, nextLo, lo-1)
  1747  			}
  1748  			nextLo = hi + 1
  1749  			continue
  1750  		}
  1751  		for c := lo; c <= hi; c += stride {
  1752  			if nextLo <= c-1 {
  1753  				r = appendRange(r, nextLo, c-1)
  1754  			}
  1755  			nextLo = c + 1
  1756  		}
  1757  	}
  1758  	for _, xr := range x.R32 {
  1759  		lo, hi, stride := rune(xr.Lo), rune(xr.Hi), rune(xr.Stride)
  1760  		if stride == 1 {
  1761  			if nextLo <= lo-1 {
  1762  				r = appendRange(r, nextLo, lo-1)
  1763  			}
  1764  			nextLo = hi + 1
  1765  			continue
  1766  		}
  1767  		for c := lo; c <= hi; c += stride {
  1768  			if nextLo <= c-1 {
  1769  				r = appendRange(r, nextLo, c-1)
  1770  			}
  1771  			nextLo = c + 1
  1772  		}
  1773  	}
  1774  	if nextLo <= unicode.MaxRune {
  1775  		r = appendRange(r, nextLo, unicode.MaxRune)
  1776  	}
  1777  	return r
  1778  }
  1779  
  1780  // negateClass overwrites r and returns r's negation.
  1781  // It assumes the class r is already clean.
  1782  func negateClass(r []rune) []rune {
  1783  	nextLo := '\u0000' // lo end of next class to add
  1784  	w := 0             // write index
  1785  	for i := 0; i < len(r); i += 2 {
  1786  		lo, hi := r[i], r[i+1]
  1787  		if nextLo <= lo-1 {
  1788  			r[w] = nextLo
  1789  			r[w+1] = lo - 1
  1790  			w += 2
  1791  		}
  1792  		nextLo = hi + 1
  1793  	}
  1794  	r = r[:w]
  1795  	if nextLo <= unicode.MaxRune {
  1796  		// It's possible for the negation to have one more
  1797  		// range - this one - than the original class, so use append.
  1798  		r = append(r, nextLo, unicode.MaxRune)
  1799  	}
  1800  	return r
  1801  }
  1802  
  1803  // ranges implements sort.Interface on a []rune.
  1804  // The choice of receiver type definition is strange
  1805  // but avoids an allocation since we already have
  1806  // a *[]rune.
  1807  type ranges struct {
  1808  	p *[]rune
  1809  }
  1810  
  1811  func (ra ranges) Less(i, j int) bool {
  1812  	p := *ra.p
  1813  	i *= 2
  1814  	j *= 2
  1815  	return p[i] < p[j] || p[i] == p[j] && p[i+1] > p[j+1]
  1816  }
  1817  
  1818  func (ra ranges) Len() int {
  1819  	return len(*ra.p) / 2
  1820  }
  1821  
  1822  func (ra ranges) Swap(i, j int) {
  1823  	p := *ra.p
  1824  	i *= 2
  1825  	j *= 2
  1826  	p[i], p[i+1], p[j], p[j+1] = p[j], p[j+1], p[i], p[i+1]
  1827  }
  1828  
  1829  func checkUTF8(s string) error {
  1830  	for s != "" {
  1831  		rune, size := utf8.DecodeRuneInString(s)
  1832  		if rune == utf8.RuneError && size == 1 {
  1833  			return &Error{Code: ErrInvalidUTF8, Expr: s}
  1834  		}
  1835  		s = s[size:]
  1836  	}
  1837  	return nil
  1838  }
  1839  
  1840  func nextRune(s string) (c rune, t string, err error) {
  1841  	c, size := utf8.DecodeRuneInString(s)
  1842  	if c == utf8.RuneError && size == 1 {
  1843  		return 0, "", &Error{Code: ErrInvalidUTF8, Expr: s}
  1844  	}
  1845  	return c, s[size:], nil
  1846  }
  1847  
  1848  func isalnum(c rune) bool {
  1849  	return '0' <= c && c <= '9' || 'A' <= c && c <= 'Z' || 'a' <= c && c <= 'z'
  1850  }
  1851  
  1852  func unhex(c rune) rune {
  1853  	if '0' <= c && c <= '9' {
  1854  		return c - '0'
  1855  	}
  1856  	if 'a' <= c && c <= 'f' {
  1857  		return c - 'a' + 10
  1858  	}
  1859  	if 'A' <= c && c <= 'F' {
  1860  		return c - 'A' + 10
  1861  	}
  1862  	return -1
  1863  }