github.com/ader1990/go@v0.0.0-20140630135419-8c24447fa791/src/pkg/runtime/malloc.h (about) 1 // Copyright 2009 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 // Memory allocator, based on tcmalloc. 6 // http://goog-perftools.sourceforge.net/doc/tcmalloc.html 7 8 // The main allocator works in runs of pages. 9 // Small allocation sizes (up to and including 32 kB) are 10 // rounded to one of about 100 size classes, each of which 11 // has its own free list of objects of exactly that size. 12 // Any free page of memory can be split into a set of objects 13 // of one size class, which are then managed using free list 14 // allocators. 15 // 16 // The allocator's data structures are: 17 // 18 // FixAlloc: a free-list allocator for fixed-size objects, 19 // used to manage storage used by the allocator. 20 // MHeap: the malloc heap, managed at page (4096-byte) granularity. 21 // MSpan: a run of pages managed by the MHeap. 22 // MCentral: a shared free list for a given size class. 23 // MCache: a per-thread (in Go, per-P) cache for small objects. 24 // MStats: allocation statistics. 25 // 26 // Allocating a small object proceeds up a hierarchy of caches: 27 // 28 // 1. Round the size up to one of the small size classes 29 // and look in the corresponding MCache free list. 30 // If the list is not empty, allocate an object from it. 31 // This can all be done without acquiring a lock. 32 // 33 // 2. If the MCache free list is empty, replenish it by 34 // taking a bunch of objects from the MCentral free list. 35 // Moving a bunch amortizes the cost of acquiring the MCentral lock. 36 // 37 // 3. If the MCentral free list is empty, replenish it by 38 // allocating a run of pages from the MHeap and then 39 // chopping that memory into a objects of the given size. 40 // Allocating many objects amortizes the cost of locking 41 // the heap. 42 // 43 // 4. If the MHeap is empty or has no page runs large enough, 44 // allocate a new group of pages (at least 1MB) from the 45 // operating system. Allocating a large run of pages 46 // amortizes the cost of talking to the operating system. 47 // 48 // Freeing a small object proceeds up the same hierarchy: 49 // 50 // 1. Look up the size class for the object and add it to 51 // the MCache free list. 52 // 53 // 2. If the MCache free list is too long or the MCache has 54 // too much memory, return some to the MCentral free lists. 55 // 56 // 3. If all the objects in a given span have returned to 57 // the MCentral list, return that span to the page heap. 58 // 59 // 4. If the heap has too much memory, return some to the 60 // operating system. 61 // 62 // TODO(rsc): Step 4 is not implemented. 63 // 64 // Allocating and freeing a large object uses the page heap 65 // directly, bypassing the MCache and MCentral free lists. 66 // 67 // The small objects on the MCache and MCentral free lists 68 // may or may not be zeroed. They are zeroed if and only if 69 // the second word of the object is zero. A span in the 70 // page heap is zeroed unless s->needzero is set. When a span 71 // is allocated to break into small objects, it is zeroed if needed 72 // and s->needzero is set. There are two main benefits to delaying the 73 // zeroing this way: 74 // 75 // 1. stack frames allocated from the small object lists 76 // or the page heap can avoid zeroing altogether. 77 // 2. the cost of zeroing when reusing a small object is 78 // charged to the mutator, not the garbage collector. 79 // 80 // This C code was written with an eye toward translating to Go 81 // in the future. Methods have the form Type_Method(Type *t, ...). 82 83 typedef struct MCentral MCentral; 84 typedef struct MHeap MHeap; 85 typedef struct MSpan MSpan; 86 typedef struct MStats MStats; 87 typedef struct MLink MLink; 88 typedef struct MTypes MTypes; 89 typedef struct GCStats GCStats; 90 91 enum 92 { 93 PageShift = 13, 94 PageSize = 1<<PageShift, 95 PageMask = PageSize - 1, 96 }; 97 typedef uintptr PageID; // address >> PageShift 98 99 enum 100 { 101 // Computed constant. The definition of MaxSmallSize and the 102 // algorithm in msize.c produce some number of different allocation 103 // size classes. NumSizeClasses is that number. It's needed here 104 // because there are static arrays of this length; when msize runs its 105 // size choosing algorithm it double-checks that NumSizeClasses agrees. 106 NumSizeClasses = 67, 107 108 // Tunable constants. 109 MaxSmallSize = 32<<10, 110 111 // Tiny allocator parameters, see "Tiny allocator" comment in malloc.goc. 112 TinySize = 16, 113 TinySizeClass = 2, 114 115 FixAllocChunk = 16<<10, // Chunk size for FixAlloc 116 MaxMHeapList = 1<<(20 - PageShift), // Maximum page length for fixed-size list in MHeap. 117 HeapAllocChunk = 1<<20, // Chunk size for heap growth 118 119 // Number of bits in page to span calculations (4k pages). 120 // On Windows 64-bit we limit the arena to 32GB or 35 bits (see below for reason). 121 // On other 64-bit platforms, we limit the arena to 128GB, or 37 bits. 122 // On 32-bit, we don't bother limiting anything, so we use the full 32-bit address. 123 #ifdef _64BIT 124 #ifdef GOOS_windows 125 // Windows counts memory used by page table into committed memory 126 // of the process, so we can't reserve too much memory. 127 // See http://golang.org/issue/5402 and http://golang.org/issue/5236. 128 MHeapMap_Bits = 35 - PageShift, 129 #else 130 MHeapMap_Bits = 37 - PageShift, 131 #endif 132 #else 133 MHeapMap_Bits = 32 - PageShift, 134 #endif 135 136 // Max number of threads to run garbage collection. 137 // 2, 3, and 4 are all plausible maximums depending 138 // on the hardware details of the machine. The garbage 139 // collector scales well to 8 cpus. 140 MaxGcproc = 8, 141 }; 142 143 // Maximum memory allocation size, a hint for callers. 144 // This must be a #define instead of an enum because it 145 // is so large. 146 #ifdef _64BIT 147 #define MaxMem (1ULL<<(MHeapMap_Bits+PageShift)) /* 128 GB or 32 GB */ 148 #else 149 #define MaxMem ((uintptr)-1) 150 #endif 151 152 // A generic linked list of blocks. (Typically the block is bigger than sizeof(MLink).) 153 struct MLink 154 { 155 MLink *next; 156 }; 157 158 // SysAlloc obtains a large chunk of zeroed memory from the 159 // operating system, typically on the order of a hundred kilobytes 160 // or a megabyte. 161 // NOTE: SysAlloc returns OS-aligned memory, but the heap allocator 162 // may use larger alignment, so the caller must be careful to realign the 163 // memory obtained by SysAlloc. 164 // 165 // SysUnused notifies the operating system that the contents 166 // of the memory region are no longer needed and can be reused 167 // for other purposes. 168 // SysUsed notifies the operating system that the contents 169 // of the memory region are needed again. 170 // 171 // SysFree returns it unconditionally; this is only used if 172 // an out-of-memory error has been detected midway through 173 // an allocation. It is okay if SysFree is a no-op. 174 // 175 // SysReserve reserves address space without allocating memory. 176 // If the pointer passed to it is non-nil, the caller wants the 177 // reservation there, but SysReserve can still choose another 178 // location if that one is unavailable. On some systems and in some 179 // cases SysReserve will simply check that the address space is 180 // available and not actually reserve it. If SysReserve returns 181 // non-nil, it sets *reserved to true if the address space is 182 // reserved, false if it has merely been checked. 183 // NOTE: SysReserve returns OS-aligned memory, but the heap allocator 184 // may use larger alignment, so the caller must be careful to realign the 185 // memory obtained by SysAlloc. 186 // 187 // SysMap maps previously reserved address space for use. 188 // The reserved argument is true if the address space was really 189 // reserved, not merely checked. 190 // 191 // SysFault marks a (already SysAlloc'd) region to fault 192 // if accessed. Used only for debugging the runtime. 193 194 void* runtime·SysAlloc(uintptr nbytes, uint64 *stat); 195 void runtime·SysFree(void *v, uintptr nbytes, uint64 *stat); 196 void runtime·SysUnused(void *v, uintptr nbytes); 197 void runtime·SysUsed(void *v, uintptr nbytes); 198 void runtime·SysMap(void *v, uintptr nbytes, bool reserved, uint64 *stat); 199 void* runtime·SysReserve(void *v, uintptr nbytes, bool *reserved); 200 void runtime·SysFault(void *v, uintptr nbytes); 201 202 // FixAlloc is a simple free-list allocator for fixed size objects. 203 // Malloc uses a FixAlloc wrapped around SysAlloc to manages its 204 // MCache and MSpan objects. 205 // 206 // Memory returned by FixAlloc_Alloc is not zeroed. 207 // The caller is responsible for locking around FixAlloc calls. 208 // Callers can keep state in the object but the first word is 209 // smashed by freeing and reallocating. 210 struct FixAlloc 211 { 212 uintptr size; 213 void (*first)(void *arg, byte *p); // called first time p is returned 214 void* arg; 215 MLink* list; 216 byte* chunk; 217 uint32 nchunk; 218 uintptr inuse; // in-use bytes now 219 uint64* stat; 220 }; 221 222 void runtime·FixAlloc_Init(FixAlloc *f, uintptr size, void (*first)(void*, byte*), void *arg, uint64 *stat); 223 void* runtime·FixAlloc_Alloc(FixAlloc *f); 224 void runtime·FixAlloc_Free(FixAlloc *f, void *p); 225 226 227 // Statistics. 228 // Shared with Go: if you edit this structure, also edit type MemStats in mem.go. 229 struct MStats 230 { 231 // General statistics. 232 uint64 alloc; // bytes allocated and still in use 233 uint64 total_alloc; // bytes allocated (even if freed) 234 uint64 sys; // bytes obtained from system (should be sum of xxx_sys below, no locking, approximate) 235 uint64 nlookup; // number of pointer lookups 236 uint64 nmalloc; // number of mallocs 237 uint64 nfree; // number of frees 238 239 // Statistics about malloc heap. 240 // protected by mheap.Lock 241 uint64 heap_alloc; // bytes allocated and still in use 242 uint64 heap_sys; // bytes obtained from system 243 uint64 heap_idle; // bytes in idle spans 244 uint64 heap_inuse; // bytes in non-idle spans 245 uint64 heap_released; // bytes released to the OS 246 uint64 heap_objects; // total number of allocated objects 247 248 // Statistics about allocation of low-level fixed-size structures. 249 // Protected by FixAlloc locks. 250 uint64 stacks_inuse; // bootstrap stacks 251 uint64 stacks_sys; 252 uint64 mspan_inuse; // MSpan structures 253 uint64 mspan_sys; 254 uint64 mcache_inuse; // MCache structures 255 uint64 mcache_sys; 256 uint64 buckhash_sys; // profiling bucket hash table 257 uint64 gc_sys; 258 uint64 other_sys; 259 260 // Statistics about garbage collector. 261 // Protected by mheap or stopping the world during GC. 262 uint64 next_gc; // next GC (in heap_alloc time) 263 uint64 last_gc; // last GC (in absolute time) 264 uint64 pause_total_ns; 265 uint64 pause_ns[256]; 266 uint32 numgc; 267 bool enablegc; 268 bool debuggc; 269 270 // Statistics about allocation size classes. 271 struct { 272 uint32 size; 273 uint64 nmalloc; 274 uint64 nfree; 275 } by_size[NumSizeClasses]; 276 }; 277 278 #define mstats runtime·memStats 279 extern MStats mstats; 280 void runtime·updatememstats(GCStats *stats); 281 282 // Size classes. Computed and initialized by InitSizes. 283 // 284 // SizeToClass(0 <= n <= MaxSmallSize) returns the size class, 285 // 1 <= sizeclass < NumSizeClasses, for n. 286 // Size class 0 is reserved to mean "not small". 287 // 288 // class_to_size[i] = largest size in class i 289 // class_to_allocnpages[i] = number of pages to allocate when 290 // making new objects in class i 291 292 int32 runtime·SizeToClass(int32); 293 uintptr runtime·roundupsize(uintptr); 294 extern int32 runtime·class_to_size[NumSizeClasses]; 295 extern int32 runtime·class_to_allocnpages[NumSizeClasses]; 296 extern int8 runtime·size_to_class8[1024/8 + 1]; 297 extern int8 runtime·size_to_class128[(MaxSmallSize-1024)/128 + 1]; 298 extern void runtime·InitSizes(void); 299 300 301 typedef struct MCacheList MCacheList; 302 struct MCacheList 303 { 304 MLink *list; 305 uint32 nlist; 306 }; 307 308 // Per-thread (in Go, per-P) cache for small objects. 309 // No locking needed because it is per-thread (per-P). 310 struct MCache 311 { 312 // The following members are accessed on every malloc, 313 // so they are grouped here for better caching. 314 int32 next_sample; // trigger heap sample after allocating this many bytes 315 intptr local_cachealloc; // bytes allocated (or freed) from cache since last lock of heap 316 // Allocator cache for tiny objects w/o pointers. 317 // See "Tiny allocator" comment in malloc.goc. 318 byte* tiny; 319 uintptr tinysize; 320 // The rest is not accessed on every malloc. 321 MSpan* alloc[NumSizeClasses]; // spans to allocate from 322 MCacheList free[NumSizeClasses];// lists of explicitly freed objects 323 // Local allocator stats, flushed during GC. 324 uintptr local_nlookup; // number of pointer lookups 325 uintptr local_largefree; // bytes freed for large objects (>MaxSmallSize) 326 uintptr local_nlargefree; // number of frees for large objects (>MaxSmallSize) 327 uintptr local_nsmallfree[NumSizeClasses]; // number of frees for small objects (<=MaxSmallSize) 328 }; 329 330 MSpan* runtime·MCache_Refill(MCache *c, int32 sizeclass); 331 void runtime·MCache_Free(MCache *c, MLink *p, int32 sizeclass, uintptr size); 332 void runtime·MCache_ReleaseAll(MCache *c); 333 334 // MTypes describes the types of blocks allocated within a span. 335 // The compression field describes the layout of the data. 336 // 337 // MTypes_Empty: 338 // All blocks are free, or no type information is available for 339 // allocated blocks. 340 // The data field has no meaning. 341 // MTypes_Single: 342 // The span contains just one block. 343 // The data field holds the type information. 344 // The sysalloc field has no meaning. 345 // MTypes_Words: 346 // The span contains multiple blocks. 347 // The data field points to an array of type [NumBlocks]uintptr, 348 // and each element of the array holds the type of the corresponding 349 // block. 350 // MTypes_Bytes: 351 // The span contains at most seven different types of blocks. 352 // The data field points to the following structure: 353 // struct { 354 // type [8]uintptr // type[0] is always 0 355 // index [NumBlocks]byte 356 // } 357 // The type of the i-th block is: data.type[data.index[i]] 358 enum 359 { 360 MTypes_Empty = 0, 361 MTypes_Single = 1, 362 MTypes_Words = 2, 363 MTypes_Bytes = 3, 364 }; 365 struct MTypes 366 { 367 byte compression; // one of MTypes_* 368 uintptr data; 369 }; 370 371 enum 372 { 373 KindSpecialFinalizer = 1, 374 KindSpecialProfile = 2, 375 // Note: The finalizer special must be first because if we're freeing 376 // an object, a finalizer special will cause the freeing operation 377 // to abort, and we want to keep the other special records around 378 // if that happens. 379 }; 380 381 typedef struct Special Special; 382 struct Special 383 { 384 Special* next; // linked list in span 385 uint16 offset; // span offset of object 386 byte kind; // kind of Special 387 }; 388 389 // The described object has a finalizer set for it. 390 typedef struct SpecialFinalizer SpecialFinalizer; 391 struct SpecialFinalizer 392 { 393 Special; 394 FuncVal* fn; 395 uintptr nret; 396 Type* fint; 397 PtrType* ot; 398 }; 399 400 // The described object is being heap profiled. 401 typedef struct Bucket Bucket; // from mprof.goc 402 typedef struct SpecialProfile SpecialProfile; 403 struct SpecialProfile 404 { 405 Special; 406 Bucket* b; 407 }; 408 409 // An MSpan is a run of pages. 410 enum 411 { 412 MSpanInUse = 0, 413 MSpanFree, 414 MSpanListHead, 415 MSpanDead, 416 }; 417 struct MSpan 418 { 419 MSpan *next; // in a span linked list 420 MSpan *prev; // in a span linked list 421 PageID start; // starting page number 422 uintptr npages; // number of pages in span 423 MLink *freelist; // list of free objects 424 // sweep generation: 425 // if sweepgen == h->sweepgen - 2, the span needs sweeping 426 // if sweepgen == h->sweepgen - 1, the span is currently being swept 427 // if sweepgen == h->sweepgen, the span is swept and ready to use 428 // h->sweepgen is incremented by 2 after every GC 429 uint32 sweepgen; 430 uint16 ref; // capacity - number of objects in freelist 431 uint8 sizeclass; // size class 432 bool incache; // being used by an MCache 433 uint8 state; // MSpanInUse etc 434 uint8 needzero; // needs to be zeroed before allocation 435 uintptr elemsize; // computed from sizeclass or from npages 436 int64 unusedsince; // First time spotted by GC in MSpanFree state 437 uintptr npreleased; // number of pages released to the OS 438 byte *limit; // end of data in span 439 MTypes types; // types of allocated objects in this span 440 Lock specialLock; // guards specials list 441 Special *specials; // linked list of special records sorted by offset. 442 MLink *freebuf; // objects freed explicitly, not incorporated into freelist yet 443 }; 444 445 void runtime·MSpan_Init(MSpan *span, PageID start, uintptr npages); 446 void runtime·MSpan_EnsureSwept(MSpan *span); 447 bool runtime·MSpan_Sweep(MSpan *span); 448 449 // Every MSpan is in one doubly-linked list, 450 // either one of the MHeap's free lists or one of the 451 // MCentral's span lists. We use empty MSpan structures as list heads. 452 void runtime·MSpanList_Init(MSpan *list); 453 bool runtime·MSpanList_IsEmpty(MSpan *list); 454 void runtime·MSpanList_Insert(MSpan *list, MSpan *span); 455 void runtime·MSpanList_InsertBack(MSpan *list, MSpan *span); 456 void runtime·MSpanList_Remove(MSpan *span); // from whatever list it is in 457 458 459 // Central list of free objects of a given size. 460 struct MCentral 461 { 462 Lock; 463 int32 sizeclass; 464 MSpan nonempty; // list of spans with a free object 465 MSpan empty; // list of spans with no free objects (or cached in an MCache) 466 int32 nfree; // # of objects available in nonempty spans 467 }; 468 469 void runtime·MCentral_Init(MCentral *c, int32 sizeclass); 470 MSpan* runtime·MCentral_CacheSpan(MCentral *c); 471 void runtime·MCentral_UncacheSpan(MCentral *c, MSpan *s); 472 bool runtime·MCentral_FreeSpan(MCentral *c, MSpan *s, int32 n, MLink *start, MLink *end); 473 void runtime·MCentral_FreeList(MCentral *c, MLink *start); // TODO: need this? 474 475 // Main malloc heap. 476 // The heap itself is the "free[]" and "large" arrays, 477 // but all the other global data is here too. 478 struct MHeap 479 { 480 Lock; 481 MSpan free[MaxMHeapList]; // free lists of given length 482 MSpan freelarge; // free lists length >= MaxMHeapList 483 MSpan busy[MaxMHeapList]; // busy lists of large objects of given length 484 MSpan busylarge; // busy lists of large objects length >= MaxMHeapList 485 MSpan **allspans; // all spans out there 486 MSpan **sweepspans; // copy of allspans referenced by sweeper 487 uint32 nspan; 488 uint32 nspancap; 489 uint32 sweepgen; // sweep generation, see comment in MSpan 490 uint32 sweepdone; // all spans are swept 491 492 // span lookup 493 MSpan** spans; 494 uintptr spans_mapped; 495 496 // range of addresses we might see in the heap 497 byte *bitmap; 498 uintptr bitmap_mapped; 499 byte *arena_start; 500 byte *arena_used; 501 byte *arena_end; 502 bool arena_reserved; 503 504 // central free lists for small size classes. 505 // the padding makes sure that the MCentrals are 506 // spaced CacheLineSize bytes apart, so that each MCentral.Lock 507 // gets its own cache line. 508 struct { 509 MCentral; 510 byte pad[CacheLineSize]; 511 } central[NumSizeClasses]; 512 513 FixAlloc spanalloc; // allocator for Span* 514 FixAlloc cachealloc; // allocator for MCache* 515 FixAlloc specialfinalizeralloc; // allocator for SpecialFinalizer* 516 FixAlloc specialprofilealloc; // allocator for SpecialProfile* 517 Lock speciallock; // lock for sepcial record allocators. 518 519 // Malloc stats. 520 uint64 largefree; // bytes freed for large objects (>MaxSmallSize) 521 uint64 nlargefree; // number of frees for large objects (>MaxSmallSize) 522 uint64 nsmallfree[NumSizeClasses]; // number of frees for small objects (<=MaxSmallSize) 523 }; 524 extern MHeap runtime·mheap; 525 526 void runtime·MHeap_Init(MHeap *h); 527 MSpan* runtime·MHeap_Alloc(MHeap *h, uintptr npage, int32 sizeclass, bool large, bool needzero); 528 void runtime·MHeap_Free(MHeap *h, MSpan *s, int32 acct); 529 MSpan* runtime·MHeap_Lookup(MHeap *h, void *v); 530 MSpan* runtime·MHeap_LookupMaybe(MHeap *h, void *v); 531 void runtime·MGetSizeClassInfo(int32 sizeclass, uintptr *size, int32 *npages, int32 *nobj); 532 void* runtime·MHeap_SysAlloc(MHeap *h, uintptr n); 533 void runtime·MHeap_MapBits(MHeap *h); 534 void runtime·MHeap_MapSpans(MHeap *h); 535 void runtime·MHeap_Scavenger(void); 536 void runtime·MHeap_SplitSpan(MHeap *h, MSpan *s); 537 538 void* runtime·mallocgc(uintptr size, uintptr typ, uint32 flag); 539 void* runtime·persistentalloc(uintptr size, uintptr align, uint64 *stat); 540 int32 runtime·mlookup(void *v, byte **base, uintptr *size, MSpan **s); 541 void runtime·gc(int32 force); 542 uintptr runtime·sweepone(void); 543 void runtime·markscan(void *v); 544 void runtime·marknogc(void *v); 545 void runtime·checkallocated(void *v, uintptr n); 546 void runtime·markfreed(void *v); 547 void runtime·checkfreed(void *v, uintptr n); 548 extern int32 runtime·checking; 549 void runtime·markspan(void *v, uintptr size, uintptr n, bool leftover); 550 void runtime·unmarkspan(void *v, uintptr size); 551 void runtime·purgecachedstats(MCache*); 552 void* runtime·cnew(Type*); 553 void* runtime·cnewarray(Type*, intgo); 554 void runtime·tracealloc(void*, uintptr, uintptr); 555 void runtime·tracefree(void*, uintptr); 556 void runtime·tracegc(void); 557 558 uintptr runtime·gettype(void*); 559 560 enum 561 { 562 // flags to malloc 563 FlagNoScan = 1<<0, // GC doesn't have to scan object 564 FlagNoProfiling = 1<<1, // must not profile 565 FlagNoGC = 1<<2, // must not free or scan for pointers 566 FlagNoZero = 1<<3, // don't zero memory 567 FlagNoInvokeGC = 1<<4, // don't invoke GC 568 }; 569 570 void runtime·MProf_Malloc(void*, uintptr); 571 void runtime·MProf_Free(Bucket*, uintptr, bool); 572 void runtime·MProf_GC(void); 573 void runtime·iterate_memprof(void (*callback)(Bucket*, uintptr, uintptr*, uintptr, uintptr, uintptr)); 574 int32 runtime·gcprocs(void); 575 void runtime·helpgc(int32 nproc); 576 void runtime·gchelper(void); 577 void runtime·createfing(void); 578 G* runtime·wakefing(void); 579 extern bool runtime·fingwait; 580 extern bool runtime·fingwake; 581 582 void runtime·setprofilebucket(void *p, Bucket *b); 583 584 bool runtime·addfinalizer(void*, FuncVal *fn, uintptr, Type*, PtrType*); 585 void runtime·removefinalizer(void*); 586 void runtime·queuefinalizer(byte *p, FuncVal *fn, uintptr nret, Type *fint, PtrType *ot); 587 588 void runtime·freeallspecials(MSpan *span, void *p, uintptr size); 589 bool runtime·freespecial(Special *s, void *p, uintptr size, bool freed); 590 591 enum 592 { 593 TypeInfo_SingleObject = 0, 594 TypeInfo_Array = 1, 595 TypeInfo_Chan = 2, 596 597 // Enables type information at the end of blocks allocated from heap 598 DebugTypeAtBlockEnd = 0, 599 }; 600 601 // Information from the compiler about the layout of stack frames. 602 typedef struct BitVector BitVector; 603 struct BitVector 604 { 605 int32 n; // # of bits 606 uint32 *data; 607 }; 608 typedef struct StackMap StackMap; 609 struct StackMap 610 { 611 int32 n; // number of bitmaps 612 int32 nbit; // number of bits in each bitmap 613 uint32 data[]; 614 }; 615 enum { 616 // Pointer map 617 BitsPerPointer = 2, 618 BitsDead = 0, 619 BitsScalar = 1, 620 BitsPointer = 2, 621 BitsMultiWord = 3, 622 // BitsMultiWord will be set for the first word of a multi-word item. 623 // When it is set, one of the following will be set for the second word. 624 BitsString = 0, 625 BitsSlice = 1, 626 BitsIface = 2, 627 BitsEface = 3, 628 }; 629 // Returns pointer map data for the given stackmap index 630 // (the index is encoded in PCDATA_StackMapIndex). 631 BitVector runtime·stackmapdata(StackMap *stackmap, int32 n); 632 633 // defined in mgc0.go 634 void runtime·gc_m_ptr(Eface*); 635 void runtime·gc_g_ptr(Eface*); 636 void runtime·gc_itab_ptr(Eface*); 637 638 void runtime·memorydump(void); 639 int32 runtime·setgcpercent(int32); 640 641 // Value we use to mark dead pointers when GODEBUG=gcdead=1. 642 #define PoisonGC ((uintptr)0xf969696969696969ULL) 643 #define PoisonStack ((uintptr)0x6868686868686868ULL)