github.com/ader1990/go@v0.0.0-20140630135419-8c24447fa791/src/pkg/strings/replace.go (about)

     1  // Copyright 2011 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package strings
     6  
     7  import "io"
     8  
     9  // A Replacer replaces a list of strings with replacements.
    10  type Replacer struct {
    11  	r replacer
    12  }
    13  
    14  // replacer is the interface that a replacement algorithm needs to implement.
    15  type replacer interface {
    16  	Replace(s string) string
    17  	WriteString(w io.Writer, s string) (n int, err error)
    18  }
    19  
    20  // byteBitmap represents bytes which are sought for replacement.
    21  // byteBitmap is 256 bits wide, with a bit set for each old byte to be
    22  // replaced.
    23  type byteBitmap [256 / 32]uint32
    24  
    25  func (m *byteBitmap) set(b byte) {
    26  	m[b>>5] |= uint32(1 << (b & 31))
    27  }
    28  
    29  // NewReplacer returns a new Replacer from a list of old, new string pairs.
    30  // Replacements are performed in order, without overlapping matches.
    31  func NewReplacer(oldnew ...string) *Replacer {
    32  	if len(oldnew)%2 == 1 {
    33  		panic("strings.NewReplacer: odd argument count")
    34  	}
    35  
    36  	if len(oldnew) == 2 && len(oldnew[0]) > 1 {
    37  		return &Replacer{r: makeSingleStringReplacer(oldnew[0], oldnew[1])}
    38  	}
    39  
    40  	allNewBytes := true
    41  	for i := 0; i < len(oldnew); i += 2 {
    42  		if len(oldnew[i]) != 1 {
    43  			return &Replacer{r: makeGenericReplacer(oldnew)}
    44  		}
    45  		if len(oldnew[i+1]) != 1 {
    46  			allNewBytes = false
    47  		}
    48  	}
    49  
    50  	if allNewBytes {
    51  		bb := &byteReplacer{}
    52  		for i := 0; i < len(oldnew); i += 2 {
    53  			o, n := oldnew[i][0], oldnew[i+1][0]
    54  			if bb.old[o>>5]&uint32(1<<(o&31)) != 0 {
    55  				// Later old->new maps do not override previous ones with the same old string.
    56  				continue
    57  			}
    58  			bb.old.set(o)
    59  			bb.new[o] = n
    60  		}
    61  		return &Replacer{r: bb}
    62  	}
    63  
    64  	bs := &byteStringReplacer{}
    65  	for i := 0; i < len(oldnew); i += 2 {
    66  		o, new := oldnew[i][0], oldnew[i+1]
    67  		if bs.old[o>>5]&uint32(1<<(o&31)) != 0 {
    68  			// Later old->new maps do not override previous ones with the same old string.
    69  			continue
    70  		}
    71  		bs.old.set(o)
    72  		bs.new[o] = []byte(new)
    73  	}
    74  	return &Replacer{r: bs}
    75  }
    76  
    77  // Replace returns a copy of s with all replacements performed.
    78  func (r *Replacer) Replace(s string) string {
    79  	return r.r.Replace(s)
    80  }
    81  
    82  // WriteString writes s to w with all replacements performed.
    83  func (r *Replacer) WriteString(w io.Writer, s string) (n int, err error) {
    84  	return r.r.WriteString(w, s)
    85  }
    86  
    87  // trieNode is a node in a lookup trie for prioritized key/value pairs. Keys
    88  // and values may be empty. For example, the trie containing keys "ax", "ay",
    89  // "bcbc", "x" and "xy" could have eight nodes:
    90  //
    91  //  n0  -
    92  //  n1  a-
    93  //  n2  .x+
    94  //  n3  .y+
    95  //  n4  b-
    96  //  n5  .cbc+
    97  //  n6  x+
    98  //  n7  .y+
    99  //
   100  // n0 is the root node, and its children are n1, n4 and n6; n1's children are
   101  // n2 and n3; n4's child is n5; n6's child is n7. Nodes n0, n1 and n4 (marked
   102  // with a trailing "-") are partial keys, and nodes n2, n3, n5, n6 and n7
   103  // (marked with a trailing "+") are complete keys.
   104  type trieNode struct {
   105  	// value is the value of the trie node's key/value pair. It is empty if
   106  	// this node is not a complete key.
   107  	value string
   108  	// priority is the priority (higher is more important) of the trie node's
   109  	// key/value pair; keys are not necessarily matched shortest- or longest-
   110  	// first. Priority is positive if this node is a complete key, and zero
   111  	// otherwise. In the example above, positive/zero priorities are marked
   112  	// with a trailing "+" or "-".
   113  	priority int
   114  
   115  	// A trie node may have zero, one or more child nodes:
   116  	//  * if the remaining fields are zero, there are no children.
   117  	//  * if prefix and next are non-zero, there is one child in next.
   118  	//  * if table is non-zero, it defines all the children.
   119  	//
   120  	// Prefixes are preferred over tables when there is one child, but the
   121  	// root node always uses a table for lookup efficiency.
   122  
   123  	// prefix is the difference in keys between this trie node and the next.
   124  	// In the example above, node n4 has prefix "cbc" and n4's next node is n5.
   125  	// Node n5 has no children and so has zero prefix, next and table fields.
   126  	prefix string
   127  	next   *trieNode
   128  
   129  	// table is a lookup table indexed by the next byte in the key, after
   130  	// remapping that byte through genericReplacer.mapping to create a dense
   131  	// index. In the example above, the keys only use 'a', 'b', 'c', 'x' and
   132  	// 'y', which remap to 0, 1, 2, 3 and 4. All other bytes remap to 5, and
   133  	// genericReplacer.tableSize will be 5. Node n0's table will be
   134  	// []*trieNode{ 0:n1, 1:n4, 3:n6 }, where the 0, 1 and 3 are the remapped
   135  	// 'a', 'b' and 'x'.
   136  	table []*trieNode
   137  }
   138  
   139  func (t *trieNode) add(key, val string, priority int, r *genericReplacer) {
   140  	if key == "" {
   141  		if t.priority == 0 {
   142  			t.value = val
   143  			t.priority = priority
   144  		}
   145  		return
   146  	}
   147  
   148  	if t.prefix != "" {
   149  		// Need to split the prefix among multiple nodes.
   150  		var n int // length of the longest common prefix
   151  		for ; n < len(t.prefix) && n < len(key); n++ {
   152  			if t.prefix[n] != key[n] {
   153  				break
   154  			}
   155  		}
   156  		if n == len(t.prefix) {
   157  			t.next.add(key[n:], val, priority, r)
   158  		} else if n == 0 {
   159  			// First byte differs, start a new lookup table here. Looking up
   160  			// what is currently t.prefix[0] will lead to prefixNode, and
   161  			// looking up key[0] will lead to keyNode.
   162  			var prefixNode *trieNode
   163  			if len(t.prefix) == 1 {
   164  				prefixNode = t.next
   165  			} else {
   166  				prefixNode = &trieNode{
   167  					prefix: t.prefix[1:],
   168  					next:   t.next,
   169  				}
   170  			}
   171  			keyNode := new(trieNode)
   172  			t.table = make([]*trieNode, r.tableSize)
   173  			t.table[r.mapping[t.prefix[0]]] = prefixNode
   174  			t.table[r.mapping[key[0]]] = keyNode
   175  			t.prefix = ""
   176  			t.next = nil
   177  			keyNode.add(key[1:], val, priority, r)
   178  		} else {
   179  			// Insert new node after the common section of the prefix.
   180  			next := &trieNode{
   181  				prefix: t.prefix[n:],
   182  				next:   t.next,
   183  			}
   184  			t.prefix = t.prefix[:n]
   185  			t.next = next
   186  			next.add(key[n:], val, priority, r)
   187  		}
   188  	} else if t.table != nil {
   189  		// Insert into existing table.
   190  		m := r.mapping[key[0]]
   191  		if t.table[m] == nil {
   192  			t.table[m] = new(trieNode)
   193  		}
   194  		t.table[m].add(key[1:], val, priority, r)
   195  	} else {
   196  		t.prefix = key
   197  		t.next = new(trieNode)
   198  		t.next.add("", val, priority, r)
   199  	}
   200  }
   201  
   202  func (r *genericReplacer) lookup(s string, ignoreRoot bool) (val string, keylen int, found bool) {
   203  	// Iterate down the trie to the end, and grab the value and keylen with
   204  	// the highest priority.
   205  	bestPriority := 0
   206  	node := &r.root
   207  	n := 0
   208  	for node != nil {
   209  		if node.priority > bestPriority && !(ignoreRoot && node == &r.root) {
   210  			bestPriority = node.priority
   211  			val = node.value
   212  			keylen = n
   213  			found = true
   214  		}
   215  
   216  		if s == "" {
   217  			break
   218  		}
   219  		if node.table != nil {
   220  			index := r.mapping[s[0]]
   221  			if int(index) == r.tableSize {
   222  				break
   223  			}
   224  			node = node.table[index]
   225  			s = s[1:]
   226  			n++
   227  		} else if node.prefix != "" && HasPrefix(s, node.prefix) {
   228  			n += len(node.prefix)
   229  			s = s[len(node.prefix):]
   230  			node = node.next
   231  		} else {
   232  			break
   233  		}
   234  	}
   235  	return
   236  }
   237  
   238  // genericReplacer is the fully generic algorithm.
   239  // It's used as a fallback when nothing faster can be used.
   240  type genericReplacer struct {
   241  	root trieNode
   242  	// tableSize is the size of a trie node's lookup table. It is the number
   243  	// of unique key bytes.
   244  	tableSize int
   245  	// mapping maps from key bytes to a dense index for trieNode.table.
   246  	mapping [256]byte
   247  }
   248  
   249  func makeGenericReplacer(oldnew []string) *genericReplacer {
   250  	r := new(genericReplacer)
   251  	// Find each byte used, then assign them each an index.
   252  	for i := 0; i < len(oldnew); i += 2 {
   253  		key := oldnew[i]
   254  		for j := 0; j < len(key); j++ {
   255  			r.mapping[key[j]] = 1
   256  		}
   257  	}
   258  
   259  	for _, b := range r.mapping {
   260  		r.tableSize += int(b)
   261  	}
   262  
   263  	var index byte
   264  	for i, b := range r.mapping {
   265  		if b == 0 {
   266  			r.mapping[i] = byte(r.tableSize)
   267  		} else {
   268  			r.mapping[i] = index
   269  			index++
   270  		}
   271  	}
   272  	// Ensure root node uses a lookup table (for performance).
   273  	r.root.table = make([]*trieNode, r.tableSize)
   274  
   275  	for i := 0; i < len(oldnew); i += 2 {
   276  		r.root.add(oldnew[i], oldnew[i+1], len(oldnew)-i, r)
   277  	}
   278  	return r
   279  }
   280  
   281  type appendSliceWriter []byte
   282  
   283  // Write writes to the buffer to satisfy io.Writer.
   284  func (w *appendSliceWriter) Write(p []byte) (int, error) {
   285  	*w = append(*w, p...)
   286  	return len(p), nil
   287  }
   288  
   289  // WriteString writes to the buffer without string->[]byte->string allocations.
   290  func (w *appendSliceWriter) WriteString(s string) (int, error) {
   291  	*w = append(*w, s...)
   292  	return len(s), nil
   293  }
   294  
   295  type stringWriterIface interface {
   296  	WriteString(string) (int, error)
   297  }
   298  
   299  type stringWriter struct {
   300  	w io.Writer
   301  }
   302  
   303  func (w stringWriter) WriteString(s string) (int, error) {
   304  	return w.w.Write([]byte(s))
   305  }
   306  
   307  func getStringWriter(w io.Writer) stringWriterIface {
   308  	sw, ok := w.(stringWriterIface)
   309  	if !ok {
   310  		sw = stringWriter{w}
   311  	}
   312  	return sw
   313  }
   314  
   315  func (r *genericReplacer) Replace(s string) string {
   316  	buf := make(appendSliceWriter, 0, len(s))
   317  	r.WriteString(&buf, s)
   318  	return string(buf)
   319  }
   320  
   321  func (r *genericReplacer) WriteString(w io.Writer, s string) (n int, err error) {
   322  	sw := getStringWriter(w)
   323  	var last, wn int
   324  	var prevMatchEmpty bool
   325  	for i := 0; i <= len(s); {
   326  		// Ignore the empty match iff the previous loop found the empty match.
   327  		val, keylen, match := r.lookup(s[i:], prevMatchEmpty)
   328  		prevMatchEmpty = match && keylen == 0
   329  		if match {
   330  			wn, err = sw.WriteString(s[last:i])
   331  			n += wn
   332  			if err != nil {
   333  				return
   334  			}
   335  			wn, err = sw.WriteString(val)
   336  			n += wn
   337  			if err != nil {
   338  				return
   339  			}
   340  			i += keylen
   341  			last = i
   342  			continue
   343  		}
   344  		i++
   345  	}
   346  	if last != len(s) {
   347  		wn, err = sw.WriteString(s[last:])
   348  		n += wn
   349  	}
   350  	return
   351  }
   352  
   353  // singleStringReplacer is the implementation that's used when there is only
   354  // one string to replace (and that string has more than one byte).
   355  type singleStringReplacer struct {
   356  	finder *stringFinder
   357  	// value is the new string that replaces that pattern when it's found.
   358  	value string
   359  }
   360  
   361  func makeSingleStringReplacer(pattern string, value string) *singleStringReplacer {
   362  	return &singleStringReplacer{finder: makeStringFinder(pattern), value: value}
   363  }
   364  
   365  func (r *singleStringReplacer) Replace(s string) string {
   366  	var buf []byte
   367  	i, matched := 0, false
   368  	for {
   369  		match := r.finder.next(s[i:])
   370  		if match == -1 {
   371  			break
   372  		}
   373  		matched = true
   374  		buf = append(buf, s[i:i+match]...)
   375  		buf = append(buf, r.value...)
   376  		i += match + len(r.finder.pattern)
   377  	}
   378  	if !matched {
   379  		return s
   380  	}
   381  	buf = append(buf, s[i:]...)
   382  	return string(buf)
   383  }
   384  
   385  func (r *singleStringReplacer) WriteString(w io.Writer, s string) (n int, err error) {
   386  	sw := getStringWriter(w)
   387  	var i, wn int
   388  	for {
   389  		match := r.finder.next(s[i:])
   390  		if match == -1 {
   391  			break
   392  		}
   393  		wn, err = sw.WriteString(s[i : i+match])
   394  		n += wn
   395  		if err != nil {
   396  			return
   397  		}
   398  		wn, err = sw.WriteString(r.value)
   399  		n += wn
   400  		if err != nil {
   401  			return
   402  		}
   403  		i += match + len(r.finder.pattern)
   404  	}
   405  	wn, err = sw.WriteString(s[i:])
   406  	n += wn
   407  	return
   408  }
   409  
   410  // byteReplacer is the implementation that's used when all the "old"
   411  // and "new" values are single ASCII bytes.
   412  type byteReplacer struct {
   413  	// old has a bit set for each old byte that should be replaced.
   414  	old byteBitmap
   415  
   416  	// replacement byte, indexed by old byte. only valid if
   417  	// corresponding old bit is set.
   418  	new [256]byte
   419  }
   420  
   421  func (r *byteReplacer) Replace(s string) string {
   422  	var buf []byte // lazily allocated
   423  	for i := 0; i < len(s); i++ {
   424  		b := s[i]
   425  		if r.old[b>>5]&uint32(1<<(b&31)) != 0 {
   426  			if buf == nil {
   427  				buf = []byte(s)
   428  			}
   429  			buf[i] = r.new[b]
   430  		}
   431  	}
   432  	if buf == nil {
   433  		return s
   434  	}
   435  	return string(buf)
   436  }
   437  
   438  func (r *byteReplacer) WriteString(w io.Writer, s string) (n int, err error) {
   439  	// TODO(bradfitz): use io.WriteString with slices of s, avoiding allocation.
   440  	bufsize := 32 << 10
   441  	if len(s) < bufsize {
   442  		bufsize = len(s)
   443  	}
   444  	buf := make([]byte, bufsize)
   445  
   446  	for len(s) > 0 {
   447  		ncopy := copy(buf, s[:])
   448  		s = s[ncopy:]
   449  		for i, b := range buf[:ncopy] {
   450  			if r.old[b>>5]&uint32(1<<(b&31)) != 0 {
   451  				buf[i] = r.new[b]
   452  			}
   453  		}
   454  		wn, err := w.Write(buf[:ncopy])
   455  		n += wn
   456  		if err != nil {
   457  			return n, err
   458  		}
   459  	}
   460  	return n, nil
   461  }
   462  
   463  // byteStringReplacer is the implementation that's used when all the
   464  // "old" values are single ASCII bytes but the "new" values vary in
   465  // size.
   466  type byteStringReplacer struct {
   467  	// old has a bit set for each old byte that should be replaced.
   468  	old byteBitmap
   469  
   470  	// replacement string, indexed by old byte. only valid if
   471  	// corresponding old bit is set.
   472  	new [256][]byte
   473  }
   474  
   475  func (r *byteStringReplacer) Replace(s string) string {
   476  	newSize := 0
   477  	anyChanges := false
   478  	for i := 0; i < len(s); i++ {
   479  		b := s[i]
   480  		if r.old[b>>5]&uint32(1<<(b&31)) != 0 {
   481  			anyChanges = true
   482  			newSize += len(r.new[b])
   483  		} else {
   484  			newSize++
   485  		}
   486  	}
   487  	if !anyChanges {
   488  		return s
   489  	}
   490  	buf := make([]byte, newSize)
   491  	bi := buf
   492  	for i := 0; i < len(s); i++ {
   493  		b := s[i]
   494  		if r.old[b>>5]&uint32(1<<(b&31)) != 0 {
   495  			n := copy(bi, r.new[b])
   496  			bi = bi[n:]
   497  		} else {
   498  			bi[0] = b
   499  			bi = bi[1:]
   500  		}
   501  	}
   502  	return string(buf)
   503  }
   504  
   505  // WriteString maintains one buffer that's at most 32KB.  The bytes in
   506  // s are enumerated and the buffer is filled.  If it reaches its
   507  // capacity or a byte has a replacement, the buffer is flushed to w.
   508  func (r *byteStringReplacer) WriteString(w io.Writer, s string) (n int, err error) {
   509  	// TODO(bradfitz): use io.WriteString with slices of s instead.
   510  	bufsize := 32 << 10
   511  	if len(s) < bufsize {
   512  		bufsize = len(s)
   513  	}
   514  	buf := make([]byte, bufsize)
   515  	bi := buf[:0]
   516  
   517  	for i := 0; i < len(s); i++ {
   518  		b := s[i]
   519  		var new []byte
   520  		if r.old[b>>5]&uint32(1<<(b&31)) != 0 {
   521  			new = r.new[b]
   522  		} else {
   523  			bi = append(bi, b)
   524  		}
   525  		if len(bi) == cap(bi) || (len(bi) > 0 && len(new) > 0) {
   526  			nw, err := w.Write(bi)
   527  			n += nw
   528  			if err != nil {
   529  				return n, err
   530  			}
   531  			bi = buf[:0]
   532  		}
   533  		if len(new) > 0 {
   534  			nw, err := w.Write(new)
   535  			n += nw
   536  			if err != nil {
   537  				return n, err
   538  			}
   539  		}
   540  	}
   541  	if len(bi) > 0 {
   542  		nw, err := w.Write(bi)
   543  		n += nw
   544  		if err != nil {
   545  			return n, err
   546  		}
   547  	}
   548  	return n, nil
   549  }