github.com/ader1990/go@v0.0.0-20140630135419-8c24447fa791/src/pkg/testing/benchmark.go (about) 1 // Copyright 2009 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package testing 6 7 import ( 8 "flag" 9 "fmt" 10 "os" 11 "runtime" 12 "sync" 13 "sync/atomic" 14 "time" 15 ) 16 17 var matchBenchmarks = flag.String("test.bench", "", "regular expression to select benchmarks to run") 18 var benchTime = flag.Duration("test.benchtime", 1*time.Second, "approximate run time for each benchmark") 19 var benchmarkMemory = flag.Bool("test.benchmem", false, "print memory allocations for benchmarks") 20 21 // Global lock to ensure only one benchmark runs at a time. 22 var benchmarkLock sync.Mutex 23 24 // Used for every benchmark for measuring memory. 25 var memStats runtime.MemStats 26 27 // An internal type but exported because it is cross-package; part of the implementation 28 // of the "go test" command. 29 type InternalBenchmark struct { 30 Name string 31 F func(b *B) 32 } 33 34 // B is a type passed to Benchmark functions to manage benchmark 35 // timing and to specify the number of iterations to run. 36 type B struct { 37 common 38 N int 39 previousN int // number of iterations in the previous run 40 previousDuration time.Duration // total duration of the previous run 41 benchmark InternalBenchmark 42 bytes int64 43 timerOn bool 44 showAllocResult bool 45 result BenchmarkResult 46 parallelism int // RunParallel creates parallelism*GOMAXPROCS goroutines 47 // The initial states of memStats.Mallocs and memStats.TotalAlloc. 48 startAllocs uint64 49 startBytes uint64 50 // The net total of this test after being run. 51 netAllocs uint64 52 netBytes uint64 53 } 54 55 // StartTimer starts timing a test. This function is called automatically 56 // before a benchmark starts, but it can also used to resume timing after 57 // a call to StopTimer. 58 func (b *B) StartTimer() { 59 if !b.timerOn { 60 runtime.ReadMemStats(&memStats) 61 b.startAllocs = memStats.Mallocs 62 b.startBytes = memStats.TotalAlloc 63 b.start = time.Now() 64 b.timerOn = true 65 } 66 } 67 68 // StopTimer stops timing a test. This can be used to pause the timer 69 // while performing complex initialization that you don't 70 // want to measure. 71 func (b *B) StopTimer() { 72 if b.timerOn { 73 b.duration += time.Now().Sub(b.start) 74 runtime.ReadMemStats(&memStats) 75 b.netAllocs += memStats.Mallocs - b.startAllocs 76 b.netBytes += memStats.TotalAlloc - b.startBytes 77 b.timerOn = false 78 } 79 } 80 81 // ResetTimer zeros the elapsed benchmark time and memory allocation counters. 82 // It does not affect whether the timer is running. 83 func (b *B) ResetTimer() { 84 if b.timerOn { 85 runtime.ReadMemStats(&memStats) 86 b.startAllocs = memStats.Mallocs 87 b.startBytes = memStats.TotalAlloc 88 b.start = time.Now() 89 } 90 b.duration = 0 91 b.netAllocs = 0 92 b.netBytes = 0 93 } 94 95 // SetBytes records the number of bytes processed in a single operation. 96 // If this is called, the benchmark will report ns/op and MB/s. 97 func (b *B) SetBytes(n int64) { b.bytes = n } 98 99 // ReportAllocs enables malloc statistics for this benchmark. 100 // It is equivalent to setting -test.benchmem, but it only affects the 101 // benchmark function that calls ReportAllocs. 102 func (b *B) ReportAllocs() { 103 b.showAllocResult = true 104 } 105 106 func (b *B) nsPerOp() int64 { 107 if b.N <= 0 { 108 return 0 109 } 110 return b.duration.Nanoseconds() / int64(b.N) 111 } 112 113 // runN runs a single benchmark for the specified number of iterations. 114 func (b *B) runN(n int) { 115 benchmarkLock.Lock() 116 defer benchmarkLock.Unlock() 117 // Try to get a comparable environment for each run 118 // by clearing garbage from previous runs. 119 runtime.GC() 120 b.N = n 121 b.parallelism = 1 122 b.ResetTimer() 123 b.StartTimer() 124 b.benchmark.F(b) 125 b.StopTimer() 126 b.previousN = n 127 b.previousDuration = b.duration 128 } 129 130 func min(x, y int) int { 131 if x > y { 132 return y 133 } 134 return x 135 } 136 137 func max(x, y int) int { 138 if x < y { 139 return y 140 } 141 return x 142 } 143 144 // roundDown10 rounds a number down to the nearest power of 10. 145 func roundDown10(n int) int { 146 var tens = 0 147 // tens = floor(log_10(n)) 148 for n >= 10 { 149 n = n / 10 150 tens++ 151 } 152 // result = 10^tens 153 result := 1 154 for i := 0; i < tens; i++ { 155 result *= 10 156 } 157 return result 158 } 159 160 // roundUp rounds x up to a number of the form [1eX, 2eX, 5eX]. 161 func roundUp(n int) int { 162 base := roundDown10(n) 163 switch { 164 case n <= base: 165 return base 166 case n <= (2 * base): 167 return 2 * base 168 case n <= (5 * base): 169 return 5 * base 170 default: 171 return 10 * base 172 } 173 } 174 175 // run times the benchmark function in a separate goroutine. 176 func (b *B) run() BenchmarkResult { 177 go b.launch() 178 <-b.signal 179 return b.result 180 } 181 182 // launch launches the benchmark function. It gradually increases the number 183 // of benchmark iterations until the benchmark runs for a second in order 184 // to get a reasonable measurement. It prints timing information in this form 185 // testing.BenchmarkHello 100000 19 ns/op 186 // launch is run by the fun function as a separate goroutine. 187 func (b *B) launch() { 188 // Run the benchmark for a single iteration in case it's expensive. 189 n := 1 190 191 // Signal that we're done whether we return normally 192 // or by FailNow's runtime.Goexit. 193 defer func() { 194 b.signal <- b 195 }() 196 197 b.runN(n) 198 // Run the benchmark for at least the specified amount of time. 199 d := *benchTime 200 for !b.failed && b.duration < d && n < 1e9 { 201 last := n 202 // Predict iterations/sec. 203 if b.nsPerOp() == 0 { 204 n = 1e9 205 } else { 206 n = int(d.Nanoseconds() / b.nsPerOp()) 207 } 208 // Run more iterations than we think we'll need for a second (1.5x). 209 // Don't grow too fast in case we had timing errors previously. 210 // Be sure to run at least one more than last time. 211 n = max(min(n+n/2, 100*last), last+1) 212 // Round up to something easy to read. 213 n = roundUp(n) 214 b.runN(n) 215 } 216 b.result = BenchmarkResult{b.N, b.duration, b.bytes, b.netAllocs, b.netBytes} 217 } 218 219 // The results of a benchmark run. 220 type BenchmarkResult struct { 221 N int // The number of iterations. 222 T time.Duration // The total time taken. 223 Bytes int64 // Bytes processed in one iteration. 224 MemAllocs uint64 // The total number of memory allocations. 225 MemBytes uint64 // The total number of bytes allocated. 226 } 227 228 func (r BenchmarkResult) NsPerOp() int64 { 229 if r.N <= 0 { 230 return 0 231 } 232 return r.T.Nanoseconds() / int64(r.N) 233 } 234 235 func (r BenchmarkResult) mbPerSec() float64 { 236 if r.Bytes <= 0 || r.T <= 0 || r.N <= 0 { 237 return 0 238 } 239 return (float64(r.Bytes) * float64(r.N) / 1e6) / r.T.Seconds() 240 } 241 242 func (r BenchmarkResult) AllocsPerOp() int64 { 243 if r.N <= 0 { 244 return 0 245 } 246 return int64(r.MemAllocs) / int64(r.N) 247 } 248 249 func (r BenchmarkResult) AllocedBytesPerOp() int64 { 250 if r.N <= 0 { 251 return 0 252 } 253 return int64(r.MemBytes) / int64(r.N) 254 } 255 256 func (r BenchmarkResult) String() string { 257 mbs := r.mbPerSec() 258 mb := "" 259 if mbs != 0 { 260 mb = fmt.Sprintf("\t%7.2f MB/s", mbs) 261 } 262 nsop := r.NsPerOp() 263 ns := fmt.Sprintf("%10d ns/op", nsop) 264 if r.N > 0 && nsop < 100 { 265 // The format specifiers here make sure that 266 // the ones digits line up for all three possible formats. 267 if nsop < 10 { 268 ns = fmt.Sprintf("%13.2f ns/op", float64(r.T.Nanoseconds())/float64(r.N)) 269 } else { 270 ns = fmt.Sprintf("%12.1f ns/op", float64(r.T.Nanoseconds())/float64(r.N)) 271 } 272 } 273 return fmt.Sprintf("%8d\t%s%s", r.N, ns, mb) 274 } 275 276 func (r BenchmarkResult) MemString() string { 277 return fmt.Sprintf("%8d B/op\t%8d allocs/op", 278 r.AllocedBytesPerOp(), r.AllocsPerOp()) 279 } 280 281 // An internal function but exported because it is cross-package; part of the implementation 282 // of the "go test" command. 283 func RunBenchmarks(matchString func(pat, str string) (bool, error), benchmarks []InternalBenchmark) { 284 // If no flag was specified, don't run benchmarks. 285 if len(*matchBenchmarks) == 0 { 286 return 287 } 288 for _, Benchmark := range benchmarks { 289 matched, err := matchString(*matchBenchmarks, Benchmark.Name) 290 if err != nil { 291 fmt.Fprintf(os.Stderr, "testing: invalid regexp for -test.bench: %s\n", err) 292 os.Exit(1) 293 } 294 if !matched { 295 continue 296 } 297 for _, procs := range cpuList { 298 runtime.GOMAXPROCS(procs) 299 b := &B{ 300 common: common{ 301 signal: make(chan interface{}), 302 }, 303 benchmark: Benchmark, 304 } 305 benchName := Benchmark.Name 306 if procs != 1 { 307 benchName = fmt.Sprintf("%s-%d", Benchmark.Name, procs) 308 } 309 fmt.Printf("%s\t", benchName) 310 r := b.run() 311 if b.failed { 312 // The output could be very long here, but probably isn't. 313 // We print it all, regardless, because we don't want to trim the reason 314 // the benchmark failed. 315 fmt.Printf("--- FAIL: %s\n%s", benchName, b.output) 316 continue 317 } 318 results := r.String() 319 if *benchmarkMemory || b.showAllocResult { 320 results += "\t" + r.MemString() 321 } 322 fmt.Println(results) 323 // Unlike with tests, we ignore the -chatty flag and always print output for 324 // benchmarks since the output generation time will skew the results. 325 if len(b.output) > 0 { 326 b.trimOutput() 327 fmt.Printf("--- BENCH: %s\n%s", benchName, b.output) 328 } 329 if p := runtime.GOMAXPROCS(-1); p != procs { 330 fmt.Fprintf(os.Stderr, "testing: %s left GOMAXPROCS set to %d\n", benchName, p) 331 } 332 } 333 } 334 } 335 336 // trimOutput shortens the output from a benchmark, which can be very long. 337 func (b *B) trimOutput() { 338 // The output is likely to appear multiple times because the benchmark 339 // is run multiple times, but at least it will be seen. This is not a big deal 340 // because benchmarks rarely print, but just in case, we trim it if it's too long. 341 const maxNewlines = 10 342 for nlCount, j := 0, 0; j < len(b.output); j++ { 343 if b.output[j] == '\n' { 344 nlCount++ 345 if nlCount >= maxNewlines { 346 b.output = append(b.output[:j], "\n\t... [output truncated]\n"...) 347 break 348 } 349 } 350 } 351 } 352 353 // A PB is used by RunParallel for running parallel benchmarks. 354 type PB struct { 355 globalN *uint64 // shared between all worker goroutines iteration counter 356 grain uint64 // acquire that many iterations from globalN at once 357 cache uint64 // local cache of acquired iterations 358 bN uint64 // total number of iterations to execute (b.N) 359 } 360 361 // Next reports whether there are more iterations to execute. 362 func (pb *PB) Next() bool { 363 if pb.cache == 0 { 364 n := atomic.AddUint64(pb.globalN, pb.grain) 365 if n <= pb.bN { 366 pb.cache = pb.grain 367 } else if n < pb.bN+pb.grain { 368 pb.cache = pb.bN + pb.grain - n 369 } else { 370 return false 371 } 372 } 373 pb.cache-- 374 return true 375 } 376 377 // RunParallel runs a benchmark in parallel. 378 // It creates multiple goroutines and distributes b.N iterations among them. 379 // The number of goroutines defaults to GOMAXPROCS. To increase parallelism for 380 // non-CPU-bound benchmarks, call SetParallelism before RunParallel. 381 // RunParallel is usually used with the go test -cpu flag. 382 // 383 // The body function will be run in each goroutine. It should set up any 384 // goroutine-local state and then iterate until pb.Next returns false. 385 // It should not use the StartTimer, StopTimer, or ResetTimer functions, 386 // because they have global effect. 387 func (b *B) RunParallel(body func(*PB)) { 388 // Calculate grain size as number of iterations that take ~100µs. 389 // 100µs is enough to amortize the overhead and provide sufficient 390 // dynamic load balancing. 391 grain := uint64(0) 392 if b.previousN > 0 && b.previousDuration > 0 { 393 grain = 1e5 * uint64(b.previousN) / uint64(b.previousDuration) 394 } 395 if grain < 1 { 396 grain = 1 397 } 398 // We expect the inner loop and function call to take at least 10ns, 399 // so do not do more than 100µs/10ns=1e4 iterations. 400 if grain > 1e4 { 401 grain = 1e4 402 } 403 404 n := uint64(0) 405 numProcs := b.parallelism * runtime.GOMAXPROCS(0) 406 var wg sync.WaitGroup 407 wg.Add(numProcs) 408 for p := 0; p < numProcs; p++ { 409 go func() { 410 defer wg.Done() 411 pb := &PB{ 412 globalN: &n, 413 grain: grain, 414 bN: uint64(b.N), 415 } 416 body(pb) 417 }() 418 } 419 wg.Wait() 420 if n <= uint64(b.N) && !b.Failed() { 421 b.Fatal("RunParallel: body exited without pb.Next() == false") 422 } 423 } 424 425 // SetParallelism sets the number of goroutines used by RunParallel to p*GOMAXPROCS. 426 // There is usually no need to call SetParallelism for CPU-bound benchmarks. 427 // If p is less than 1, this call will have no effect. 428 func (b *B) SetParallelism(p int) { 429 if p >= 1 { 430 b.parallelism = p 431 } 432 } 433 434 // Benchmark benchmarks a single function. Useful for creating 435 // custom benchmarks that do not use the "go test" command. 436 func Benchmark(f func(b *B)) BenchmarkResult { 437 b := &B{ 438 common: common{ 439 signal: make(chan interface{}), 440 }, 441 benchmark: InternalBenchmark{"", f}, 442 } 443 return b.run() 444 }