github.com/ader1990/go@v0.0.0-20140630135419-8c24447fa791/src/pkg/text/template/parse/parse.go (about)

     1  // Copyright 2011 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // Package parse builds parse trees for templates as defined by text/template
     6  // and html/template. Clients should use those packages to construct templates
     7  // rather than this one, which provides shared internal data structures not
     8  // intended for general use.
     9  package parse
    10  
    11  import (
    12  	"bytes"
    13  	"fmt"
    14  	"runtime"
    15  	"strconv"
    16  	"strings"
    17  )
    18  
    19  // Tree is the representation of a single parsed template.
    20  type Tree struct {
    21  	Name      string    // name of the template represented by the tree.
    22  	ParseName string    // name of the top-level template during parsing, for error messages.
    23  	Root      *ListNode // top-level root of the tree.
    24  	text      string    // text parsed to create the template (or its parent)
    25  	// Parsing only; cleared after parse.
    26  	funcs     []map[string]interface{}
    27  	lex       *lexer
    28  	token     [3]item // three-token lookahead for parser.
    29  	peekCount int
    30  	vars      []string // variables defined at the moment.
    31  }
    32  
    33  // Copy returns a copy of the Tree. Any parsing state is discarded.
    34  func (t *Tree) Copy() *Tree {
    35  	if t == nil {
    36  		return nil
    37  	}
    38  	return &Tree{
    39  		Name:      t.Name,
    40  		ParseName: t.ParseName,
    41  		Root:      t.Root.CopyList(),
    42  		text:      t.text,
    43  	}
    44  }
    45  
    46  // Parse returns a map from template name to parse.Tree, created by parsing the
    47  // templates described in the argument string. The top-level template will be
    48  // given the specified name. If an error is encountered, parsing stops and an
    49  // empty map is returned with the error.
    50  func Parse(name, text, leftDelim, rightDelim string, funcs ...map[string]interface{}) (treeSet map[string]*Tree, err error) {
    51  	treeSet = make(map[string]*Tree)
    52  	t := New(name)
    53  	t.text = text
    54  	_, err = t.Parse(text, leftDelim, rightDelim, treeSet, funcs...)
    55  	return
    56  }
    57  
    58  // next returns the next token.
    59  func (t *Tree) next() item {
    60  	if t.peekCount > 0 {
    61  		t.peekCount--
    62  	} else {
    63  		t.token[0] = t.lex.nextItem()
    64  	}
    65  	return t.token[t.peekCount]
    66  }
    67  
    68  // backup backs the input stream up one token.
    69  func (t *Tree) backup() {
    70  	t.peekCount++
    71  }
    72  
    73  // backup2 backs the input stream up two tokens.
    74  // The zeroth token is already there.
    75  func (t *Tree) backup2(t1 item) {
    76  	t.token[1] = t1
    77  	t.peekCount = 2
    78  }
    79  
    80  // backup3 backs the input stream up three tokens
    81  // The zeroth token is already there.
    82  func (t *Tree) backup3(t2, t1 item) { // Reverse order: we're pushing back.
    83  	t.token[1] = t1
    84  	t.token[2] = t2
    85  	t.peekCount = 3
    86  }
    87  
    88  // peek returns but does not consume the next token.
    89  func (t *Tree) peek() item {
    90  	if t.peekCount > 0 {
    91  		return t.token[t.peekCount-1]
    92  	}
    93  	t.peekCount = 1
    94  	t.token[0] = t.lex.nextItem()
    95  	return t.token[0]
    96  }
    97  
    98  // nextNonSpace returns the next non-space token.
    99  func (t *Tree) nextNonSpace() (token item) {
   100  	for {
   101  		token = t.next()
   102  		if token.typ != itemSpace {
   103  			break
   104  		}
   105  	}
   106  	return token
   107  }
   108  
   109  // peekNonSpace returns but does not consume the next non-space token.
   110  func (t *Tree) peekNonSpace() (token item) {
   111  	for {
   112  		token = t.next()
   113  		if token.typ != itemSpace {
   114  			break
   115  		}
   116  	}
   117  	t.backup()
   118  	return token
   119  }
   120  
   121  // Parsing.
   122  
   123  // New allocates a new parse tree with the given name.
   124  func New(name string, funcs ...map[string]interface{}) *Tree {
   125  	return &Tree{
   126  		Name:  name,
   127  		funcs: funcs,
   128  	}
   129  }
   130  
   131  // ErrorContext returns a textual representation of the location of the node in the input text.
   132  func (t *Tree) ErrorContext(n Node) (location, context string) {
   133  	pos := int(n.Position())
   134  	text := t.text[:pos]
   135  	byteNum := strings.LastIndex(text, "\n")
   136  	if byteNum == -1 {
   137  		byteNum = pos // On first line.
   138  	} else {
   139  		byteNum++ // After the newline.
   140  		byteNum = pos - byteNum
   141  	}
   142  	lineNum := 1 + strings.Count(text, "\n")
   143  	context = n.String()
   144  	if len(context) > 20 {
   145  		context = fmt.Sprintf("%.20s...", context)
   146  	}
   147  	return fmt.Sprintf("%s:%d:%d", t.ParseName, lineNum, byteNum), context
   148  }
   149  
   150  // errorf formats the error and terminates processing.
   151  func (t *Tree) errorf(format string, args ...interface{}) {
   152  	t.Root = nil
   153  	format = fmt.Sprintf("template: %s:%d: %s", t.ParseName, t.lex.lineNumber(), format)
   154  	panic(fmt.Errorf(format, args...))
   155  }
   156  
   157  // error terminates processing.
   158  func (t *Tree) error(err error) {
   159  	t.errorf("%s", err)
   160  }
   161  
   162  // expect consumes the next token and guarantees it has the required type.
   163  func (t *Tree) expect(expected itemType, context string) item {
   164  	token := t.nextNonSpace()
   165  	if token.typ != expected {
   166  		t.unexpected(token, context)
   167  	}
   168  	return token
   169  }
   170  
   171  // expectOneOf consumes the next token and guarantees it has one of the required types.
   172  func (t *Tree) expectOneOf(expected1, expected2 itemType, context string) item {
   173  	token := t.nextNonSpace()
   174  	if token.typ != expected1 && token.typ != expected2 {
   175  		t.unexpected(token, context)
   176  	}
   177  	return token
   178  }
   179  
   180  // unexpected complains about the token and terminates processing.
   181  func (t *Tree) unexpected(token item, context string) {
   182  	t.errorf("unexpected %s in %s", token, context)
   183  }
   184  
   185  // recover is the handler that turns panics into returns from the top level of Parse.
   186  func (t *Tree) recover(errp *error) {
   187  	e := recover()
   188  	if e != nil {
   189  		if _, ok := e.(runtime.Error); ok {
   190  			panic(e)
   191  		}
   192  		if t != nil {
   193  			t.stopParse()
   194  		}
   195  		*errp = e.(error)
   196  	}
   197  	return
   198  }
   199  
   200  // startParse initializes the parser, using the lexer.
   201  func (t *Tree) startParse(funcs []map[string]interface{}, lex *lexer) {
   202  	t.Root = nil
   203  	t.lex = lex
   204  	t.vars = []string{"$"}
   205  	t.funcs = funcs
   206  }
   207  
   208  // stopParse terminates parsing.
   209  func (t *Tree) stopParse() {
   210  	t.lex = nil
   211  	t.vars = nil
   212  	t.funcs = nil
   213  }
   214  
   215  // Parse parses the template definition string to construct a representation of
   216  // the template for execution. If either action delimiter string is empty, the
   217  // default ("{{" or "}}") is used. Embedded template definitions are added to
   218  // the treeSet map.
   219  func (t *Tree) Parse(text, leftDelim, rightDelim string, treeSet map[string]*Tree, funcs ...map[string]interface{}) (tree *Tree, err error) {
   220  	defer t.recover(&err)
   221  	t.ParseName = t.Name
   222  	t.startParse(funcs, lex(t.Name, text, leftDelim, rightDelim))
   223  	t.text = text
   224  	t.parse(treeSet)
   225  	t.add(treeSet)
   226  	t.stopParse()
   227  	return t, nil
   228  }
   229  
   230  // add adds tree to the treeSet.
   231  func (t *Tree) add(treeSet map[string]*Tree) {
   232  	tree := treeSet[t.Name]
   233  	if tree == nil || IsEmptyTree(tree.Root) {
   234  		treeSet[t.Name] = t
   235  		return
   236  	}
   237  	if !IsEmptyTree(t.Root) {
   238  		t.errorf("template: multiple definition of template %q", t.Name)
   239  	}
   240  }
   241  
   242  // IsEmptyTree reports whether this tree (node) is empty of everything but space.
   243  func IsEmptyTree(n Node) bool {
   244  	switch n := n.(type) {
   245  	case nil:
   246  		return true
   247  	case *ActionNode:
   248  	case *IfNode:
   249  	case *ListNode:
   250  		for _, node := range n.Nodes {
   251  			if !IsEmptyTree(node) {
   252  				return false
   253  			}
   254  		}
   255  		return true
   256  	case *RangeNode:
   257  	case *TemplateNode:
   258  	case *TextNode:
   259  		return len(bytes.TrimSpace(n.Text)) == 0
   260  	case *WithNode:
   261  	default:
   262  		panic("unknown node: " + n.String())
   263  	}
   264  	return false
   265  }
   266  
   267  // parse is the top-level parser for a template, essentially the same
   268  // as itemList except it also parses {{define}} actions.
   269  // It runs to EOF.
   270  func (t *Tree) parse(treeSet map[string]*Tree) (next Node) {
   271  	t.Root = newList(t.peek().pos)
   272  	for t.peek().typ != itemEOF {
   273  		if t.peek().typ == itemLeftDelim {
   274  			delim := t.next()
   275  			if t.nextNonSpace().typ == itemDefine {
   276  				newT := New("definition") // name will be updated once we know it.
   277  				newT.text = t.text
   278  				newT.ParseName = t.ParseName
   279  				newT.startParse(t.funcs, t.lex)
   280  				newT.parseDefinition(treeSet)
   281  				continue
   282  			}
   283  			t.backup2(delim)
   284  		}
   285  		n := t.textOrAction()
   286  		if n.Type() == nodeEnd {
   287  			t.errorf("unexpected %s", n)
   288  		}
   289  		t.Root.append(n)
   290  	}
   291  	return nil
   292  }
   293  
   294  // parseDefinition parses a {{define}} ...  {{end}} template definition and
   295  // installs the definition in the treeSet map.  The "define" keyword has already
   296  // been scanned.
   297  func (t *Tree) parseDefinition(treeSet map[string]*Tree) {
   298  	const context = "define clause"
   299  	name := t.expectOneOf(itemString, itemRawString, context)
   300  	var err error
   301  	t.Name, err = strconv.Unquote(name.val)
   302  	if err != nil {
   303  		t.error(err)
   304  	}
   305  	t.expect(itemRightDelim, context)
   306  	var end Node
   307  	t.Root, end = t.itemList()
   308  	if end.Type() != nodeEnd {
   309  		t.errorf("unexpected %s in %s", end, context)
   310  	}
   311  	t.add(treeSet)
   312  	t.stopParse()
   313  }
   314  
   315  // itemList:
   316  //	textOrAction*
   317  // Terminates at {{end}} or {{else}}, returned separately.
   318  func (t *Tree) itemList() (list *ListNode, next Node) {
   319  	list = newList(t.peekNonSpace().pos)
   320  	for t.peekNonSpace().typ != itemEOF {
   321  		n := t.textOrAction()
   322  		switch n.Type() {
   323  		case nodeEnd, nodeElse:
   324  			return list, n
   325  		}
   326  		list.append(n)
   327  	}
   328  	t.errorf("unexpected EOF")
   329  	return
   330  }
   331  
   332  // textOrAction:
   333  //	text | action
   334  func (t *Tree) textOrAction() Node {
   335  	switch token := t.nextNonSpace(); token.typ {
   336  	case itemText:
   337  		return newText(token.pos, token.val)
   338  	case itemLeftDelim:
   339  		return t.action()
   340  	default:
   341  		t.unexpected(token, "input")
   342  	}
   343  	return nil
   344  }
   345  
   346  // Action:
   347  //	control
   348  //	command ("|" command)*
   349  // Left delim is past. Now get actions.
   350  // First word could be a keyword such as range.
   351  func (t *Tree) action() (n Node) {
   352  	switch token := t.nextNonSpace(); token.typ {
   353  	case itemElse:
   354  		return t.elseControl()
   355  	case itemEnd:
   356  		return t.endControl()
   357  	case itemIf:
   358  		return t.ifControl()
   359  	case itemRange:
   360  		return t.rangeControl()
   361  	case itemTemplate:
   362  		return t.templateControl()
   363  	case itemWith:
   364  		return t.withControl()
   365  	}
   366  	t.backup()
   367  	// Do not pop variables; they persist until "end".
   368  	return newAction(t.peek().pos, t.lex.lineNumber(), t.pipeline("command"))
   369  }
   370  
   371  // Pipeline:
   372  //	declarations? command ('|' command)*
   373  func (t *Tree) pipeline(context string) (pipe *PipeNode) {
   374  	var decl []*VariableNode
   375  	pos := t.peekNonSpace().pos
   376  	// Are there declarations?
   377  	for {
   378  		if v := t.peekNonSpace(); v.typ == itemVariable {
   379  			t.next()
   380  			// Since space is a token, we need 3-token look-ahead here in the worst case:
   381  			// in "$x foo" we need to read "foo" (as opposed to ":=") to know that $x is an
   382  			// argument variable rather than a declaration. So remember the token
   383  			// adjacent to the variable so we can push it back if necessary.
   384  			tokenAfterVariable := t.peek()
   385  			if next := t.peekNonSpace(); next.typ == itemColonEquals || (next.typ == itemChar && next.val == ",") {
   386  				t.nextNonSpace()
   387  				variable := newVariable(v.pos, v.val)
   388  				decl = append(decl, variable)
   389  				t.vars = append(t.vars, v.val)
   390  				if next.typ == itemChar && next.val == "," {
   391  					if context == "range" && len(decl) < 2 {
   392  						continue
   393  					}
   394  					t.errorf("too many declarations in %s", context)
   395  				}
   396  			} else if tokenAfterVariable.typ == itemSpace {
   397  				t.backup3(v, tokenAfterVariable)
   398  			} else {
   399  				t.backup2(v)
   400  			}
   401  		}
   402  		break
   403  	}
   404  	pipe = newPipeline(pos, t.lex.lineNumber(), decl)
   405  	for {
   406  		switch token := t.nextNonSpace(); token.typ {
   407  		case itemRightDelim, itemRightParen:
   408  			if len(pipe.Cmds) == 0 {
   409  				t.errorf("missing value for %s", context)
   410  			}
   411  			if token.typ == itemRightParen {
   412  				t.backup()
   413  			}
   414  			return
   415  		case itemBool, itemCharConstant, itemComplex, itemDot, itemField, itemIdentifier,
   416  			itemNumber, itemNil, itemRawString, itemString, itemVariable, itemLeftParen:
   417  			t.backup()
   418  			pipe.append(t.command())
   419  		default:
   420  			t.unexpected(token, context)
   421  		}
   422  	}
   423  }
   424  
   425  func (t *Tree) parseControl(allowElseIf bool, context string) (pos Pos, line int, pipe *PipeNode, list, elseList *ListNode) {
   426  	defer t.popVars(len(t.vars))
   427  	line = t.lex.lineNumber()
   428  	pipe = t.pipeline(context)
   429  	var next Node
   430  	list, next = t.itemList()
   431  	switch next.Type() {
   432  	case nodeEnd: //done
   433  	case nodeElse:
   434  		if allowElseIf {
   435  			// Special case for "else if". If the "else" is followed immediately by an "if",
   436  			// the elseControl will have left the "if" token pending. Treat
   437  			//	{{if a}}_{{else if b}}_{{end}}
   438  			// as
   439  			//	{{if a}}_{{else}}{{if b}}_{{end}}{{end}}.
   440  			// To do this, parse the if as usual and stop at it {{end}}; the subsequent{{end}}
   441  			// is assumed. This technique works even for long if-else-if chains.
   442  			// TODO: Should we allow else-if in with and range?
   443  			if t.peek().typ == itemIf {
   444  				t.next() // Consume the "if" token.
   445  				elseList = newList(next.Position())
   446  				elseList.append(t.ifControl())
   447  				// Do not consume the next item - only one {{end}} required.
   448  				break
   449  			}
   450  		}
   451  		elseList, next = t.itemList()
   452  		if next.Type() != nodeEnd {
   453  			t.errorf("expected end; found %s", next)
   454  		}
   455  	}
   456  	return pipe.Position(), line, pipe, list, elseList
   457  }
   458  
   459  // If:
   460  //	{{if pipeline}} itemList {{end}}
   461  //	{{if pipeline}} itemList {{else}} itemList {{end}}
   462  // If keyword is past.
   463  func (t *Tree) ifControl() Node {
   464  	return newIf(t.parseControl(true, "if"))
   465  }
   466  
   467  // Range:
   468  //	{{range pipeline}} itemList {{end}}
   469  //	{{range pipeline}} itemList {{else}} itemList {{end}}
   470  // Range keyword is past.
   471  func (t *Tree) rangeControl() Node {
   472  	return newRange(t.parseControl(false, "range"))
   473  }
   474  
   475  // With:
   476  //	{{with pipeline}} itemList {{end}}
   477  //	{{with pipeline}} itemList {{else}} itemList {{end}}
   478  // If keyword is past.
   479  func (t *Tree) withControl() Node {
   480  	return newWith(t.parseControl(false, "with"))
   481  }
   482  
   483  // End:
   484  //	{{end}}
   485  // End keyword is past.
   486  func (t *Tree) endControl() Node {
   487  	return newEnd(t.expect(itemRightDelim, "end").pos)
   488  }
   489  
   490  // Else:
   491  //	{{else}}
   492  // Else keyword is past.
   493  func (t *Tree) elseControl() Node {
   494  	// Special case for "else if".
   495  	peek := t.peekNonSpace()
   496  	if peek.typ == itemIf {
   497  		// We see "{{else if ... " but in effect rewrite it to {{else}}{{if ... ".
   498  		return newElse(peek.pos, t.lex.lineNumber())
   499  	}
   500  	return newElse(t.expect(itemRightDelim, "else").pos, t.lex.lineNumber())
   501  }
   502  
   503  // Template:
   504  //	{{template stringValue pipeline}}
   505  // Template keyword is past.  The name must be something that can evaluate
   506  // to a string.
   507  func (t *Tree) templateControl() Node {
   508  	var name string
   509  	token := t.nextNonSpace()
   510  	switch token.typ {
   511  	case itemString, itemRawString:
   512  		s, err := strconv.Unquote(token.val)
   513  		if err != nil {
   514  			t.error(err)
   515  		}
   516  		name = s
   517  	default:
   518  		t.unexpected(token, "template invocation")
   519  	}
   520  	var pipe *PipeNode
   521  	if t.nextNonSpace().typ != itemRightDelim {
   522  		t.backup()
   523  		// Do not pop variables; they persist until "end".
   524  		pipe = t.pipeline("template")
   525  	}
   526  	return newTemplate(token.pos, t.lex.lineNumber(), name, pipe)
   527  }
   528  
   529  // command:
   530  //	operand (space operand)*
   531  // space-separated arguments up to a pipeline character or right delimiter.
   532  // we consume the pipe character but leave the right delim to terminate the action.
   533  func (t *Tree) command() *CommandNode {
   534  	cmd := newCommand(t.peekNonSpace().pos)
   535  	for {
   536  		t.peekNonSpace() // skip leading spaces.
   537  		operand := t.operand()
   538  		if operand != nil {
   539  			cmd.append(operand)
   540  		}
   541  		switch token := t.next(); token.typ {
   542  		case itemSpace:
   543  			continue
   544  		case itemError:
   545  			t.errorf("%s", token.val)
   546  		case itemRightDelim, itemRightParen:
   547  			t.backup()
   548  		case itemPipe:
   549  		default:
   550  			t.errorf("unexpected %s in operand; missing space?", token)
   551  		}
   552  		break
   553  	}
   554  	if len(cmd.Args) == 0 {
   555  		t.errorf("empty command")
   556  	}
   557  	return cmd
   558  }
   559  
   560  // operand:
   561  //	term .Field*
   562  // An operand is a space-separated component of a command,
   563  // a term possibly followed by field accesses.
   564  // A nil return means the next item is not an operand.
   565  func (t *Tree) operand() Node {
   566  	node := t.term()
   567  	if node == nil {
   568  		return nil
   569  	}
   570  	if t.peek().typ == itemField {
   571  		chain := newChain(t.peek().pos, node)
   572  		for t.peek().typ == itemField {
   573  			chain.Add(t.next().val)
   574  		}
   575  		// Compatibility with original API: If the term is of type NodeField
   576  		// or NodeVariable, just put more fields on the original.
   577  		// Otherwise, keep the Chain node.
   578  		// TODO: Switch to Chains always when we can.
   579  		switch node.Type() {
   580  		case NodeField:
   581  			node = newField(chain.Position(), chain.String())
   582  		case NodeVariable:
   583  			node = newVariable(chain.Position(), chain.String())
   584  		default:
   585  			node = chain
   586  		}
   587  	}
   588  	return node
   589  }
   590  
   591  // term:
   592  //	literal (number, string, nil, boolean)
   593  //	function (identifier)
   594  //	.
   595  //	.Field
   596  //	$
   597  //	'(' pipeline ')'
   598  // A term is a simple "expression".
   599  // A nil return means the next item is not a term.
   600  func (t *Tree) term() Node {
   601  	switch token := t.nextNonSpace(); token.typ {
   602  	case itemError:
   603  		t.errorf("%s", token.val)
   604  	case itemIdentifier:
   605  		if !t.hasFunction(token.val) {
   606  			t.errorf("function %q not defined", token.val)
   607  		}
   608  		return NewIdentifier(token.val).SetPos(token.pos)
   609  	case itemDot:
   610  		return newDot(token.pos)
   611  	case itemNil:
   612  		return newNil(token.pos)
   613  	case itemVariable:
   614  		return t.useVar(token.pos, token.val)
   615  	case itemField:
   616  		return newField(token.pos, token.val)
   617  	case itemBool:
   618  		return newBool(token.pos, token.val == "true")
   619  	case itemCharConstant, itemComplex, itemNumber:
   620  		number, err := newNumber(token.pos, token.val, token.typ)
   621  		if err != nil {
   622  			t.error(err)
   623  		}
   624  		return number
   625  	case itemLeftParen:
   626  		pipe := t.pipeline("parenthesized pipeline")
   627  		if token := t.next(); token.typ != itemRightParen {
   628  			t.errorf("unclosed right paren: unexpected %s", token)
   629  		}
   630  		return pipe
   631  	case itemString, itemRawString:
   632  		s, err := strconv.Unquote(token.val)
   633  		if err != nil {
   634  			t.error(err)
   635  		}
   636  		return newString(token.pos, token.val, s)
   637  	}
   638  	t.backup()
   639  	return nil
   640  }
   641  
   642  // hasFunction reports if a function name exists in the Tree's maps.
   643  func (t *Tree) hasFunction(name string) bool {
   644  	for _, funcMap := range t.funcs {
   645  		if funcMap == nil {
   646  			continue
   647  		}
   648  		if funcMap[name] != nil {
   649  			return true
   650  		}
   651  	}
   652  	return false
   653  }
   654  
   655  // popVars trims the variable list to the specified length
   656  func (t *Tree) popVars(n int) {
   657  	t.vars = t.vars[:n]
   658  }
   659  
   660  // useVar returns a node for a variable reference. It errors if the
   661  // variable is not defined.
   662  func (t *Tree) useVar(pos Pos, name string) Node {
   663  	v := newVariable(pos, name)
   664  	for _, varName := range t.vars {
   665  		if varName == v.Ident[0] {
   666  			return v
   667  		}
   668  	}
   669  	t.errorf("undefined variable %q", v.Ident[0])
   670  	return nil
   671  }