github.com/ader1990/go@v0.0.0-20140630135419-8c24447fa791/src/pkg/time/time.go (about)

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // Package time provides functionality for measuring and displaying time.
     6  //
     7  // The calendrical calculations always assume a Gregorian calendar.
     8  package time
     9  
    10  import "errors"
    11  
    12  // A Time represents an instant in time with nanosecond precision.
    13  //
    14  // Programs using times should typically store and pass them as values,
    15  // not pointers.  That is, time variables and struct fields should be of
    16  // type time.Time, not *time.Time.  A Time value can be used by
    17  // multiple goroutines simultaneously.
    18  //
    19  // Time instants can be compared using the Before, After, and Equal methods.
    20  // The Sub method subtracts two instants, producing a Duration.
    21  // The Add method adds a Time and a Duration, producing a Time.
    22  //
    23  // The zero value of type Time is January 1, year 1, 00:00:00.000000000 UTC.
    24  // As this time is unlikely to come up in practice, the IsZero method gives
    25  // a simple way of detecting a time that has not been initialized explicitly.
    26  //
    27  // Each Time has associated with it a Location, consulted when computing the
    28  // presentation form of the time, such as in the Format, Hour, and Year methods.
    29  // The methods Local, UTC, and In return a Time with a specific location.
    30  // Changing the location in this way changes only the presentation; it does not
    31  // change the instant in time being denoted and therefore does not affect the
    32  // computations described in earlier paragraphs.
    33  //
    34  type Time struct {
    35  	// sec gives the number of seconds elapsed since
    36  	// January 1, year 1 00:00:00 UTC.
    37  	sec int64
    38  
    39  	// nsec specifies a non-negative nanosecond
    40  	// offset within the second named by Seconds.
    41  	// It must be in the range [0, 999999999].
    42  	//
    43  	// It is declared as uintptr instead of int32 or uint32
    44  	// to avoid garbage collector aliasing in the case where
    45  	// on a 64-bit system the int32 or uint32 field is written
    46  	// over the low half of a pointer, creating another pointer.
    47  	// TODO(rsc): When the garbage collector is completely
    48  	// precise, change back to int32.
    49  	nsec uintptr
    50  
    51  	// loc specifies the Location that should be used to
    52  	// determine the minute, hour, month, day, and year
    53  	// that correspond to this Time.
    54  	// Only the zero Time has a nil Location.
    55  	// In that case it is interpreted to mean UTC.
    56  	loc *Location
    57  }
    58  
    59  // After reports whether the time instant t is after u.
    60  func (t Time) After(u Time) bool {
    61  	return t.sec > u.sec || t.sec == u.sec && t.nsec > u.nsec
    62  }
    63  
    64  // Before reports whether the time instant t is before u.
    65  func (t Time) Before(u Time) bool {
    66  	return t.sec < u.sec || t.sec == u.sec && t.nsec < u.nsec
    67  }
    68  
    69  // Equal reports whether t and u represent the same time instant.
    70  // Two times can be equal even if they are in different locations.
    71  // For example, 6:00 +0200 CEST and 4:00 UTC are Equal.
    72  // This comparison is different from using t == u, which also compares
    73  // the locations.
    74  func (t Time) Equal(u Time) bool {
    75  	return t.sec == u.sec && t.nsec == u.nsec
    76  }
    77  
    78  // A Month specifies a month of the year (January = 1, ...).
    79  type Month int
    80  
    81  const (
    82  	January Month = 1 + iota
    83  	February
    84  	March
    85  	April
    86  	May
    87  	June
    88  	July
    89  	August
    90  	September
    91  	October
    92  	November
    93  	December
    94  )
    95  
    96  var months = [...]string{
    97  	"January",
    98  	"February",
    99  	"March",
   100  	"April",
   101  	"May",
   102  	"June",
   103  	"July",
   104  	"August",
   105  	"September",
   106  	"October",
   107  	"November",
   108  	"December",
   109  }
   110  
   111  // String returns the English name of the month ("January", "February", ...).
   112  func (m Month) String() string { return months[m-1] }
   113  
   114  // A Weekday specifies a day of the week (Sunday = 0, ...).
   115  type Weekday int
   116  
   117  const (
   118  	Sunday Weekday = iota
   119  	Monday
   120  	Tuesday
   121  	Wednesday
   122  	Thursday
   123  	Friday
   124  	Saturday
   125  )
   126  
   127  var days = [...]string{
   128  	"Sunday",
   129  	"Monday",
   130  	"Tuesday",
   131  	"Wednesday",
   132  	"Thursday",
   133  	"Friday",
   134  	"Saturday",
   135  }
   136  
   137  // String returns the English name of the day ("Sunday", "Monday", ...).
   138  func (d Weekday) String() string { return days[d] }
   139  
   140  // Computations on time.
   141  //
   142  // The zero value for a Time is defined to be
   143  //	January 1, year 1, 00:00:00.000000000 UTC
   144  // which (1) looks like a zero, or as close as you can get in a date
   145  // (1-1-1 00:00:00 UTC), (2) is unlikely enough to arise in practice to
   146  // be a suitable "not set" sentinel, unlike Jan 1 1970, and (3) has a
   147  // non-negative year even in time zones west of UTC, unlike 1-1-0
   148  // 00:00:00 UTC, which would be 12-31-(-1) 19:00:00 in New York.
   149  //
   150  // The zero Time value does not force a specific epoch for the time
   151  // representation.  For example, to use the Unix epoch internally, we
   152  // could define that to distinguish a zero value from Jan 1 1970, that
   153  // time would be represented by sec=-1, nsec=1e9.  However, it does
   154  // suggest a representation, namely using 1-1-1 00:00:00 UTC as the
   155  // epoch, and that's what we do.
   156  //
   157  // The Add and Sub computations are oblivious to the choice of epoch.
   158  //
   159  // The presentation computations - year, month, minute, and so on - all
   160  // rely heavily on division and modulus by positive constants.  For
   161  // calendrical calculations we want these divisions to round down, even
   162  // for negative values, so that the remainder is always positive, but
   163  // Go's division (like most hardware division instructions) rounds to
   164  // zero.  We can still do those computations and then adjust the result
   165  // for a negative numerator, but it's annoying to write the adjustment
   166  // over and over.  Instead, we can change to a different epoch so long
   167  // ago that all the times we care about will be positive, and then round
   168  // to zero and round down coincide.  These presentation routines already
   169  // have to add the zone offset, so adding the translation to the
   170  // alternate epoch is cheap.  For example, having a non-negative time t
   171  // means that we can write
   172  //
   173  //	sec = t % 60
   174  //
   175  // instead of
   176  //
   177  //	sec = t % 60
   178  //	if sec < 0 {
   179  //		sec += 60
   180  //	}
   181  //
   182  // everywhere.
   183  //
   184  // The calendar runs on an exact 400 year cycle: a 400-year calendar
   185  // printed for 1970-2469 will apply as well to 2470-2869.  Even the days
   186  // of the week match up.  It simplifies the computations to choose the
   187  // cycle boundaries so that the exceptional years are always delayed as
   188  // long as possible.  That means choosing a year equal to 1 mod 400, so
   189  // that the first leap year is the 4th year, the first missed leap year
   190  // is the 100th year, and the missed missed leap year is the 400th year.
   191  // So we'd prefer instead to print a calendar for 2001-2400 and reuse it
   192  // for 2401-2800.
   193  //
   194  // Finally, it's convenient if the delta between the Unix epoch and
   195  // long-ago epoch is representable by an int64 constant.
   196  //
   197  // These three considerations—choose an epoch as early as possible, that
   198  // uses a year equal to 1 mod 400, and that is no more than 2⁶³ seconds
   199  // earlier than 1970—bring us to the year -292277022399.  We refer to
   200  // this year as the absolute zero year, and to times measured as a uint64
   201  // seconds since this year as absolute times.
   202  //
   203  // Times measured as an int64 seconds since the year 1—the representation
   204  // used for Time's sec field—are called internal times.
   205  //
   206  // Times measured as an int64 seconds since the year 1970 are called Unix
   207  // times.
   208  //
   209  // It is tempting to just use the year 1 as the absolute epoch, defining
   210  // that the routines are only valid for years >= 1.  However, the
   211  // routines would then be invalid when displaying the epoch in time zones
   212  // west of UTC, since it is year 0.  It doesn't seem tenable to say that
   213  // printing the zero time correctly isn't supported in half the time
   214  // zones.  By comparison, it's reasonable to mishandle some times in
   215  // the year -292277022399.
   216  //
   217  // All this is opaque to clients of the API and can be changed if a
   218  // better implementation presents itself.
   219  
   220  const (
   221  	// The unsigned zero year for internal calculations.
   222  	// Must be 1 mod 400, and times before it will not compute correctly,
   223  	// but otherwise can be changed at will.
   224  	absoluteZeroYear = -292277022399
   225  
   226  	// The year of the zero Time.
   227  	// Assumed by the unixToInternal computation below.
   228  	internalYear = 1
   229  
   230  	// The year of the zero Unix time.
   231  	unixYear = 1970
   232  
   233  	// Offsets to convert between internal and absolute or Unix times.
   234  	absoluteToInternal int64 = (absoluteZeroYear - internalYear) * 365.2425 * secondsPerDay
   235  	internalToAbsolute       = -absoluteToInternal
   236  
   237  	unixToInternal int64 = (1969*365 + 1969/4 - 1969/100 + 1969/400) * secondsPerDay
   238  	internalToUnix int64 = -unixToInternal
   239  )
   240  
   241  // IsZero reports whether t represents the zero time instant,
   242  // January 1, year 1, 00:00:00 UTC.
   243  func (t Time) IsZero() bool {
   244  	return t.sec == 0 && t.nsec == 0
   245  }
   246  
   247  // abs returns the time t as an absolute time, adjusted by the zone offset.
   248  // It is called when computing a presentation property like Month or Hour.
   249  func (t Time) abs() uint64 {
   250  	l := t.loc
   251  	// Avoid function calls when possible.
   252  	if l == nil || l == &localLoc {
   253  		l = l.get()
   254  	}
   255  	sec := t.sec + internalToUnix
   256  	if l != &utcLoc {
   257  		if l.cacheZone != nil && l.cacheStart <= sec && sec < l.cacheEnd {
   258  			sec += int64(l.cacheZone.offset)
   259  		} else {
   260  			_, offset, _, _, _ := l.lookup(sec)
   261  			sec += int64(offset)
   262  		}
   263  	}
   264  	return uint64(sec + (unixToInternal + internalToAbsolute))
   265  }
   266  
   267  // locabs is a combination of the Zone and abs methods,
   268  // extracting both return values from a single zone lookup.
   269  func (t Time) locabs() (name string, offset int, abs uint64) {
   270  	l := t.loc
   271  	if l == nil || l == &localLoc {
   272  		l = l.get()
   273  	}
   274  	// Avoid function call if we hit the local time cache.
   275  	sec := t.sec + internalToUnix
   276  	if l != &utcLoc {
   277  		if l.cacheZone != nil && l.cacheStart <= sec && sec < l.cacheEnd {
   278  			name = l.cacheZone.name
   279  			offset = l.cacheZone.offset
   280  		} else {
   281  			name, offset, _, _, _ = l.lookup(sec)
   282  		}
   283  		sec += int64(offset)
   284  	} else {
   285  		name = "UTC"
   286  	}
   287  	abs = uint64(sec + (unixToInternal + internalToAbsolute))
   288  	return
   289  }
   290  
   291  // Date returns the year, month, and day in which t occurs.
   292  func (t Time) Date() (year int, month Month, day int) {
   293  	year, month, day, _ = t.date(true)
   294  	return
   295  }
   296  
   297  // Year returns the year in which t occurs.
   298  func (t Time) Year() int {
   299  	year, _, _, _ := t.date(false)
   300  	return year
   301  }
   302  
   303  // Month returns the month of the year specified by t.
   304  func (t Time) Month() Month {
   305  	_, month, _, _ := t.date(true)
   306  	return month
   307  }
   308  
   309  // Day returns the day of the month specified by t.
   310  func (t Time) Day() int {
   311  	_, _, day, _ := t.date(true)
   312  	return day
   313  }
   314  
   315  // Weekday returns the day of the week specified by t.
   316  func (t Time) Weekday() Weekday {
   317  	return absWeekday(t.abs())
   318  }
   319  
   320  // absWeekday is like Weekday but operates on an absolute time.
   321  func absWeekday(abs uint64) Weekday {
   322  	// January 1 of the absolute year, like January 1 of 2001, was a Monday.
   323  	sec := (abs + uint64(Monday)*secondsPerDay) % secondsPerWeek
   324  	return Weekday(int(sec) / secondsPerDay)
   325  }
   326  
   327  // ISOWeek returns the ISO 8601 year and week number in which t occurs.
   328  // Week ranges from 1 to 53. Jan 01 to Jan 03 of year n might belong to
   329  // week 52 or 53 of year n-1, and Dec 29 to Dec 31 might belong to week 1
   330  // of year n+1.
   331  func (t Time) ISOWeek() (year, week int) {
   332  	year, month, day, yday := t.date(true)
   333  	wday := int(t.Weekday()+6) % 7 // weekday but Monday = 0.
   334  	const (
   335  		Mon int = iota
   336  		Tue
   337  		Wed
   338  		Thu
   339  		Fri
   340  		Sat
   341  		Sun
   342  	)
   343  
   344  	// Calculate week as number of Mondays in year up to
   345  	// and including today, plus 1 because the first week is week 0.
   346  	// Putting the + 1 inside the numerator as a + 7 keeps the
   347  	// numerator from being negative, which would cause it to
   348  	// round incorrectly.
   349  	week = (yday - wday + 7) / 7
   350  
   351  	// The week number is now correct under the assumption
   352  	// that the first Monday of the year is in week 1.
   353  	// If Jan 1 is a Tuesday, Wednesday, or Thursday, the first Monday
   354  	// is actually in week 2.
   355  	jan1wday := (wday - yday + 7*53) % 7
   356  	if Tue <= jan1wday && jan1wday <= Thu {
   357  		week++
   358  	}
   359  
   360  	// If the week number is still 0, we're in early January but in
   361  	// the last week of last year.
   362  	if week == 0 {
   363  		year--
   364  		week = 52
   365  		// A year has 53 weeks when Jan 1 or Dec 31 is a Thursday,
   366  		// meaning Jan 1 of the next year is a Friday
   367  		// or it was a leap year and Jan 1 of the next year is a Saturday.
   368  		if jan1wday == Fri || (jan1wday == Sat && isLeap(year)) {
   369  			week++
   370  		}
   371  	}
   372  
   373  	// December 29 to 31 are in week 1 of next year if
   374  	// they are after the last Thursday of the year and
   375  	// December 31 is a Monday, Tuesday, or Wednesday.
   376  	if month == December && day >= 29 && wday < Thu {
   377  		if dec31wday := (wday + 31 - day) % 7; Mon <= dec31wday && dec31wday <= Wed {
   378  			year++
   379  			week = 1
   380  		}
   381  	}
   382  
   383  	return
   384  }
   385  
   386  // Clock returns the hour, minute, and second within the day specified by t.
   387  func (t Time) Clock() (hour, min, sec int) {
   388  	return absClock(t.abs())
   389  }
   390  
   391  // absClock is like clock but operates on an absolute time.
   392  func absClock(abs uint64) (hour, min, sec int) {
   393  	sec = int(abs % secondsPerDay)
   394  	hour = sec / secondsPerHour
   395  	sec -= hour * secondsPerHour
   396  	min = sec / secondsPerMinute
   397  	sec -= min * secondsPerMinute
   398  	return
   399  }
   400  
   401  // Hour returns the hour within the day specified by t, in the range [0, 23].
   402  func (t Time) Hour() int {
   403  	return int(t.abs()%secondsPerDay) / secondsPerHour
   404  }
   405  
   406  // Minute returns the minute offset within the hour specified by t, in the range [0, 59].
   407  func (t Time) Minute() int {
   408  	return int(t.abs()%secondsPerHour) / secondsPerMinute
   409  }
   410  
   411  // Second returns the second offset within the minute specified by t, in the range [0, 59].
   412  func (t Time) Second() int {
   413  	return int(t.abs() % secondsPerMinute)
   414  }
   415  
   416  // Nanosecond returns the nanosecond offset within the second specified by t,
   417  // in the range [0, 999999999].
   418  func (t Time) Nanosecond() int {
   419  	return int(t.nsec)
   420  }
   421  
   422  // YearDay returns the day of the year specified by t, in the range [1,365] for non-leap years,
   423  // and [1,366] in leap years.
   424  func (t Time) YearDay() int {
   425  	_, _, _, yday := t.date(false)
   426  	return yday + 1
   427  }
   428  
   429  // A Duration represents the elapsed time between two instants
   430  // as an int64 nanosecond count.  The representation limits the
   431  // largest representable duration to approximately 290 years.
   432  type Duration int64
   433  
   434  const (
   435  	minDuration Duration = -1 << 63
   436  	maxDuration Duration = 1<<63 - 1
   437  )
   438  
   439  // Common durations.  There is no definition for units of Day or larger
   440  // to avoid confusion across daylight savings time zone transitions.
   441  //
   442  // To count the number of units in a Duration, divide:
   443  //	second := time.Second
   444  //	fmt.Print(int64(second/time.Millisecond)) // prints 1000
   445  //
   446  // To convert an integer number of units to a Duration, multiply:
   447  //	seconds := 10
   448  //	fmt.Print(time.Duration(seconds)*time.Second) // prints 10s
   449  //
   450  const (
   451  	Nanosecond  Duration = 1
   452  	Microsecond          = 1000 * Nanosecond
   453  	Millisecond          = 1000 * Microsecond
   454  	Second               = 1000 * Millisecond
   455  	Minute               = 60 * Second
   456  	Hour                 = 60 * Minute
   457  )
   458  
   459  // String returns a string representing the duration in the form "72h3m0.5s".
   460  // Leading zero units are omitted.  As a special case, durations less than one
   461  // second format use a smaller unit (milli-, micro-, or nanoseconds) to ensure
   462  // that the leading digit is non-zero.  The zero duration formats as 0,
   463  // with no unit.
   464  func (d Duration) String() string {
   465  	// Largest time is 2540400h10m10.000000000s
   466  	var buf [32]byte
   467  	w := len(buf)
   468  
   469  	u := uint64(d)
   470  	neg := d < 0
   471  	if neg {
   472  		u = -u
   473  	}
   474  
   475  	if u < uint64(Second) {
   476  		// Special case: if duration is smaller than a second,
   477  		// use smaller units, like 1.2ms
   478  		var (
   479  			prec int
   480  			unit byte
   481  		)
   482  		switch {
   483  		case u == 0:
   484  			return "0"
   485  		case u < uint64(Microsecond):
   486  			// print nanoseconds
   487  			prec = 0
   488  			unit = 'n'
   489  		case u < uint64(Millisecond):
   490  			// print microseconds
   491  			prec = 3
   492  			unit = 'u'
   493  		default:
   494  			// print milliseconds
   495  			prec = 6
   496  			unit = 'm'
   497  		}
   498  		w -= 2
   499  		buf[w] = unit
   500  		buf[w+1] = 's'
   501  		w, u = fmtFrac(buf[:w], u, prec)
   502  		w = fmtInt(buf[:w], u)
   503  	} else {
   504  		w--
   505  		buf[w] = 's'
   506  
   507  		w, u = fmtFrac(buf[:w], u, 9)
   508  
   509  		// u is now integer seconds
   510  		w = fmtInt(buf[:w], u%60)
   511  		u /= 60
   512  
   513  		// u is now integer minutes
   514  		if u > 0 {
   515  			w--
   516  			buf[w] = 'm'
   517  			w = fmtInt(buf[:w], u%60)
   518  			u /= 60
   519  
   520  			// u is now integer hours
   521  			// Stop at hours because days can be different lengths.
   522  			if u > 0 {
   523  				w--
   524  				buf[w] = 'h'
   525  				w = fmtInt(buf[:w], u)
   526  			}
   527  		}
   528  	}
   529  
   530  	if neg {
   531  		w--
   532  		buf[w] = '-'
   533  	}
   534  
   535  	return string(buf[w:])
   536  }
   537  
   538  // fmtFrac formats the fraction of v/10**prec (e.g., ".12345") into the
   539  // tail of buf, omitting trailing zeros.  it omits the decimal
   540  // point too when the fraction is 0.  It returns the index where the
   541  // output bytes begin and the value v/10**prec.
   542  func fmtFrac(buf []byte, v uint64, prec int) (nw int, nv uint64) {
   543  	// Omit trailing zeros up to and including decimal point.
   544  	w := len(buf)
   545  	print := false
   546  	for i := 0; i < prec; i++ {
   547  		digit := v % 10
   548  		print = print || digit != 0
   549  		if print {
   550  			w--
   551  			buf[w] = byte(digit) + '0'
   552  		}
   553  		v /= 10
   554  	}
   555  	if print {
   556  		w--
   557  		buf[w] = '.'
   558  	}
   559  	return w, v
   560  }
   561  
   562  // fmtInt formats v into the tail of buf.
   563  // It returns the index where the output begins.
   564  func fmtInt(buf []byte, v uint64) int {
   565  	w := len(buf)
   566  	if v == 0 {
   567  		w--
   568  		buf[w] = '0'
   569  	} else {
   570  		for v > 0 {
   571  			w--
   572  			buf[w] = byte(v%10) + '0'
   573  			v /= 10
   574  		}
   575  	}
   576  	return w
   577  }
   578  
   579  // Nanoseconds returns the duration as an integer nanosecond count.
   580  func (d Duration) Nanoseconds() int64 { return int64(d) }
   581  
   582  // These methods return float64 because the dominant
   583  // use case is for printing a floating point number like 1.5s, and
   584  // a truncation to integer would make them not useful in those cases.
   585  // Splitting the integer and fraction ourselves guarantees that
   586  // converting the returned float64 to an integer rounds the same
   587  // way that a pure integer conversion would have, even in cases
   588  // where, say, float64(d.Nanoseconds())/1e9 would have rounded
   589  // differently.
   590  
   591  // Seconds returns the duration as a floating point number of seconds.
   592  func (d Duration) Seconds() float64 {
   593  	sec := d / Second
   594  	nsec := d % Second
   595  	return float64(sec) + float64(nsec)*1e-9
   596  }
   597  
   598  // Minutes returns the duration as a floating point number of minutes.
   599  func (d Duration) Minutes() float64 {
   600  	min := d / Minute
   601  	nsec := d % Minute
   602  	return float64(min) + float64(nsec)*(1e-9/60)
   603  }
   604  
   605  // Hours returns the duration as a floating point number of hours.
   606  func (d Duration) Hours() float64 {
   607  	hour := d / Hour
   608  	nsec := d % Hour
   609  	return float64(hour) + float64(nsec)*(1e-9/60/60)
   610  }
   611  
   612  // Add returns the time t+d.
   613  func (t Time) Add(d Duration) Time {
   614  	t.sec += int64(d / 1e9)
   615  	nsec := int32(t.nsec) + int32(d%1e9)
   616  	if nsec >= 1e9 {
   617  		t.sec++
   618  		nsec -= 1e9
   619  	} else if nsec < 0 {
   620  		t.sec--
   621  		nsec += 1e9
   622  	}
   623  	t.nsec = uintptr(nsec)
   624  	return t
   625  }
   626  
   627  // Sub returns the duration t-u. If the result exceeds the maximum (or minimum)
   628  // value that can be stored in a Duration, the maximum (or minimum) duration
   629  // will be returned.
   630  // To compute t-d for a duration d, use t.Add(-d).
   631  func (t Time) Sub(u Time) Duration {
   632  	d := Duration(t.sec-u.sec)*Second + Duration(int32(t.nsec)-int32(u.nsec))
   633  	// Check for overflow or underflow.
   634  	switch {
   635  	case u.Add(d).Equal(t):
   636  		return d // d is correct
   637  	case t.Before(u):
   638  		return minDuration // t - u is negative out of range
   639  	default:
   640  		return maxDuration // t - u is positive out of range
   641  	}
   642  }
   643  
   644  // Since returns the time elapsed since t.
   645  // It is shorthand for time.Now().Sub(t).
   646  func Since(t Time) Duration {
   647  	return Now().Sub(t)
   648  }
   649  
   650  // AddDate returns the time corresponding to adding the
   651  // given number of years, months, and days to t.
   652  // For example, AddDate(-1, 2, 3) applied to January 1, 2011
   653  // returns March 4, 2010.
   654  //
   655  // AddDate normalizes its result in the same way that Date does,
   656  // so, for example, adding one month to October 31 yields
   657  // December 1, the normalized form for November 31.
   658  func (t Time) AddDate(years int, months int, days int) Time {
   659  	year, month, day := t.Date()
   660  	hour, min, sec := t.Clock()
   661  	return Date(year+years, month+Month(months), day+days, hour, min, sec, int(t.nsec), t.loc)
   662  }
   663  
   664  const (
   665  	secondsPerMinute = 60
   666  	secondsPerHour   = 60 * 60
   667  	secondsPerDay    = 24 * secondsPerHour
   668  	secondsPerWeek   = 7 * secondsPerDay
   669  	daysPer400Years  = 365*400 + 97
   670  	daysPer100Years  = 365*100 + 24
   671  	daysPer4Years    = 365*4 + 1
   672  )
   673  
   674  // date computes the year, day of year, and when full=true,
   675  // the month and day in which t occurs.
   676  func (t Time) date(full bool) (year int, month Month, day int, yday int) {
   677  	return absDate(t.abs(), full)
   678  }
   679  
   680  // absDate is like date but operates on an absolute time.
   681  func absDate(abs uint64, full bool) (year int, month Month, day int, yday int) {
   682  	// Split into time and day.
   683  	d := abs / secondsPerDay
   684  
   685  	// Account for 400 year cycles.
   686  	n := d / daysPer400Years
   687  	y := 400 * n
   688  	d -= daysPer400Years * n
   689  
   690  	// Cut off 100-year cycles.
   691  	// The last cycle has one extra leap year, so on the last day
   692  	// of that year, day / daysPer100Years will be 4 instead of 3.
   693  	// Cut it back down to 3 by subtracting n>>2.
   694  	n = d / daysPer100Years
   695  	n -= n >> 2
   696  	y += 100 * n
   697  	d -= daysPer100Years * n
   698  
   699  	// Cut off 4-year cycles.
   700  	// The last cycle has a missing leap year, which does not
   701  	// affect the computation.
   702  	n = d / daysPer4Years
   703  	y += 4 * n
   704  	d -= daysPer4Years * n
   705  
   706  	// Cut off years within a 4-year cycle.
   707  	// The last year is a leap year, so on the last day of that year,
   708  	// day / 365 will be 4 instead of 3.  Cut it back down to 3
   709  	// by subtracting n>>2.
   710  	n = d / 365
   711  	n -= n >> 2
   712  	y += n
   713  	d -= 365 * n
   714  
   715  	year = int(int64(y) + absoluteZeroYear)
   716  	yday = int(d)
   717  
   718  	if !full {
   719  		return
   720  	}
   721  
   722  	day = yday
   723  	if isLeap(year) {
   724  		// Leap year
   725  		switch {
   726  		case day > 31+29-1:
   727  			// After leap day; pretend it wasn't there.
   728  			day--
   729  		case day == 31+29-1:
   730  			// Leap day.
   731  			month = February
   732  			day = 29
   733  			return
   734  		}
   735  	}
   736  
   737  	// Estimate month on assumption that every month has 31 days.
   738  	// The estimate may be too low by at most one month, so adjust.
   739  	month = Month(day / 31)
   740  	end := int(daysBefore[month+1])
   741  	var begin int
   742  	if day >= end {
   743  		month++
   744  		begin = end
   745  	} else {
   746  		begin = int(daysBefore[month])
   747  	}
   748  
   749  	month++ // because January is 1
   750  	day = day - begin + 1
   751  	return
   752  }
   753  
   754  // daysBefore[m] counts the number of days in a non-leap year
   755  // before month m begins.  There is an entry for m=12, counting
   756  // the number of days before January of next year (365).
   757  var daysBefore = [...]int32{
   758  	0,
   759  	31,
   760  	31 + 28,
   761  	31 + 28 + 31,
   762  	31 + 28 + 31 + 30,
   763  	31 + 28 + 31 + 30 + 31,
   764  	31 + 28 + 31 + 30 + 31 + 30,
   765  	31 + 28 + 31 + 30 + 31 + 30 + 31,
   766  	31 + 28 + 31 + 30 + 31 + 30 + 31 + 31,
   767  	31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30,
   768  	31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31,
   769  	31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31 + 30,
   770  	31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31 + 30 + 31,
   771  }
   772  
   773  func daysIn(m Month, year int) int {
   774  	if m == February && isLeap(year) {
   775  		return 29
   776  	}
   777  	return int(daysBefore[m] - daysBefore[m-1])
   778  }
   779  
   780  // Provided by package runtime.
   781  func now() (sec int64, nsec int32)
   782  
   783  // Now returns the current local time.
   784  func Now() Time {
   785  	sec, nsec := now()
   786  	return Time{sec + unixToInternal, uintptr(nsec), Local}
   787  }
   788  
   789  // UTC returns t with the location set to UTC.
   790  func (t Time) UTC() Time {
   791  	t.loc = UTC
   792  	return t
   793  }
   794  
   795  // Local returns t with the location set to local time.
   796  func (t Time) Local() Time {
   797  	t.loc = Local
   798  	return t
   799  }
   800  
   801  // In returns t with the location information set to loc.
   802  //
   803  // In panics if loc is nil.
   804  func (t Time) In(loc *Location) Time {
   805  	if loc == nil {
   806  		panic("time: missing Location in call to Time.In")
   807  	}
   808  	t.loc = loc
   809  	return t
   810  }
   811  
   812  // Location returns the time zone information associated with t.
   813  func (t Time) Location() *Location {
   814  	l := t.loc
   815  	if l == nil {
   816  		l = UTC
   817  	}
   818  	return l
   819  }
   820  
   821  // Zone computes the time zone in effect at time t, returning the abbreviated
   822  // name of the zone (such as "CET") and its offset in seconds east of UTC.
   823  func (t Time) Zone() (name string, offset int) {
   824  	name, offset, _, _, _ = t.loc.lookup(t.sec + internalToUnix)
   825  	return
   826  }
   827  
   828  // Unix returns t as a Unix time, the number of seconds elapsed
   829  // since January 1, 1970 UTC.
   830  func (t Time) Unix() int64 {
   831  	return t.sec + internalToUnix
   832  }
   833  
   834  // UnixNano returns t as a Unix time, the number of nanoseconds elapsed
   835  // since January 1, 1970 UTC. The result is undefined if the Unix time
   836  // in nanoseconds cannot be represented by an int64. Note that this
   837  // means the result of calling UnixNano on the zero Time is undefined.
   838  func (t Time) UnixNano() int64 {
   839  	return (t.sec+internalToUnix)*1e9 + int64(t.nsec)
   840  }
   841  
   842  const timeBinaryVersion byte = 1
   843  
   844  // MarshalBinary implements the encoding.BinaryMarshaler interface.
   845  func (t Time) MarshalBinary() ([]byte, error) {
   846  	var offsetMin int16 // minutes east of UTC. -1 is UTC.
   847  
   848  	if t.Location() == &utcLoc {
   849  		offsetMin = -1
   850  	} else {
   851  		_, offset := t.Zone()
   852  		if offset%60 != 0 {
   853  			return nil, errors.New("Time.MarshalBinary: zone offset has fractional minute")
   854  		}
   855  		offset /= 60
   856  		if offset < -32768 || offset == -1 || offset > 32767 {
   857  			return nil, errors.New("Time.MarshalBinary: unexpected zone offset")
   858  		}
   859  		offsetMin = int16(offset)
   860  	}
   861  
   862  	enc := []byte{
   863  		timeBinaryVersion, // byte 0 : version
   864  		byte(t.sec >> 56), // bytes 1-8: seconds
   865  		byte(t.sec >> 48),
   866  		byte(t.sec >> 40),
   867  		byte(t.sec >> 32),
   868  		byte(t.sec >> 24),
   869  		byte(t.sec >> 16),
   870  		byte(t.sec >> 8),
   871  		byte(t.sec),
   872  		byte(t.nsec >> 24), // bytes 9-12: nanoseconds
   873  		byte(t.nsec >> 16),
   874  		byte(t.nsec >> 8),
   875  		byte(t.nsec),
   876  		byte(offsetMin >> 8), // bytes 13-14: zone offset in minutes
   877  		byte(offsetMin),
   878  	}
   879  
   880  	return enc, nil
   881  }
   882  
   883  // UnmarshalBinary implements the encoding.BinaryUnmarshaler interface.
   884  func (t *Time) UnmarshalBinary(data []byte) error {
   885  	buf := data
   886  	if len(buf) == 0 {
   887  		return errors.New("Time.UnmarshalBinary: no data")
   888  	}
   889  
   890  	if buf[0] != timeBinaryVersion {
   891  		return errors.New("Time.UnmarshalBinary: unsupported version")
   892  	}
   893  
   894  	if len(buf) != /*version*/ 1+ /*sec*/ 8+ /*nsec*/ 4+ /*zone offset*/ 2 {
   895  		return errors.New("Time.UnmarshalBinary: invalid length")
   896  	}
   897  
   898  	buf = buf[1:]
   899  	t.sec = int64(buf[7]) | int64(buf[6])<<8 | int64(buf[5])<<16 | int64(buf[4])<<24 |
   900  		int64(buf[3])<<32 | int64(buf[2])<<40 | int64(buf[1])<<48 | int64(buf[0])<<56
   901  
   902  	buf = buf[8:]
   903  	t.nsec = uintptr(int32(buf[3]) | int32(buf[2])<<8 | int32(buf[1])<<16 | int32(buf[0])<<24)
   904  
   905  	buf = buf[4:]
   906  	offset := int(int16(buf[1])|int16(buf[0])<<8) * 60
   907  
   908  	if offset == -1*60 {
   909  		t.loc = &utcLoc
   910  	} else if _, localoff, _, _, _ := Local.lookup(t.sec + internalToUnix); offset == localoff {
   911  		t.loc = Local
   912  	} else {
   913  		t.loc = FixedZone("", offset)
   914  	}
   915  
   916  	return nil
   917  }
   918  
   919  // TODO(rsc): Remove GobEncoder, GobDecoder, MarshalJSON, UnmarshalJSON in Go 2.
   920  // The same semantics will be provided by the generic MarshalBinary, MarshalText,
   921  // UnmarshalBinary, UnmarshalText.
   922  
   923  // GobEncode implements the gob.GobEncoder interface.
   924  func (t Time) GobEncode() ([]byte, error) {
   925  	return t.MarshalBinary()
   926  }
   927  
   928  // GobDecode implements the gob.GobDecoder interface.
   929  func (t *Time) GobDecode(data []byte) error {
   930  	return t.UnmarshalBinary(data)
   931  }
   932  
   933  // MarshalJSON implements the json.Marshaler interface.
   934  // The time is a quoted string in RFC 3339 format, with sub-second precision added if present.
   935  func (t Time) MarshalJSON() ([]byte, error) {
   936  	if y := t.Year(); y < 0 || y >= 10000 {
   937  		// RFC 3339 is clear that years are 4 digits exactly.
   938  		// See golang.org/issue/4556#c15 for more discussion.
   939  		return nil, errors.New("Time.MarshalJSON: year outside of range [0,9999]")
   940  	}
   941  	return []byte(t.Format(`"` + RFC3339Nano + `"`)), nil
   942  }
   943  
   944  // UnmarshalJSON implements the json.Unmarshaler interface.
   945  // The time is expected to be a quoted string in RFC 3339 format.
   946  func (t *Time) UnmarshalJSON(data []byte) (err error) {
   947  	// Fractional seconds are handled implicitly by Parse.
   948  	*t, err = Parse(`"`+RFC3339+`"`, string(data))
   949  	return
   950  }
   951  
   952  // MarshalText implements the encoding.TextMarshaler interface.
   953  // The time is formatted in RFC 3339 format, with sub-second precision added if present.
   954  func (t Time) MarshalText() ([]byte, error) {
   955  	if y := t.Year(); y < 0 || y >= 10000 {
   956  		return nil, errors.New("Time.MarshalText: year outside of range [0,9999]")
   957  	}
   958  	return []byte(t.Format(RFC3339Nano)), nil
   959  }
   960  
   961  // UnmarshalText implements the encoding.TextUnmarshaler interface.
   962  // The time is expected to be in RFC 3339 format.
   963  func (t *Time) UnmarshalText(data []byte) (err error) {
   964  	// Fractional seconds are handled implicitly by Parse.
   965  	*t, err = Parse(RFC3339, string(data))
   966  	return
   967  }
   968  
   969  // Unix returns the local Time corresponding to the given Unix time,
   970  // sec seconds and nsec nanoseconds since January 1, 1970 UTC.
   971  // It is valid to pass nsec outside the range [0, 999999999].
   972  func Unix(sec int64, nsec int64) Time {
   973  	if nsec < 0 || nsec >= 1e9 {
   974  		n := nsec / 1e9
   975  		sec += n
   976  		nsec -= n * 1e9
   977  		if nsec < 0 {
   978  			nsec += 1e9
   979  			sec--
   980  		}
   981  	}
   982  	return Time{sec + unixToInternal, uintptr(nsec), Local}
   983  }
   984  
   985  func isLeap(year int) bool {
   986  	return year%4 == 0 && (year%100 != 0 || year%400 == 0)
   987  }
   988  
   989  // norm returns nhi, nlo such that
   990  //	hi * base + lo == nhi * base + nlo
   991  //	0 <= nlo < base
   992  func norm(hi, lo, base int) (nhi, nlo int) {
   993  	if lo < 0 {
   994  		n := (-lo-1)/base + 1
   995  		hi -= n
   996  		lo += n * base
   997  	}
   998  	if lo >= base {
   999  		n := lo / base
  1000  		hi += n
  1001  		lo -= n * base
  1002  	}
  1003  	return hi, lo
  1004  }
  1005  
  1006  // Date returns the Time corresponding to
  1007  //	yyyy-mm-dd hh:mm:ss + nsec nanoseconds
  1008  // in the appropriate zone for that time in the given location.
  1009  //
  1010  // The month, day, hour, min, sec, and nsec values may be outside
  1011  // their usual ranges and will be normalized during the conversion.
  1012  // For example, October 32 converts to November 1.
  1013  //
  1014  // A daylight savings time transition skips or repeats times.
  1015  // For example, in the United States, March 13, 2011 2:15am never occurred,
  1016  // while November 6, 2011 1:15am occurred twice.  In such cases, the
  1017  // choice of time zone, and therefore the time, is not well-defined.
  1018  // Date returns a time that is correct in one of the two zones involved
  1019  // in the transition, but it does not guarantee which.
  1020  //
  1021  // Date panics if loc is nil.
  1022  func Date(year int, month Month, day, hour, min, sec, nsec int, loc *Location) Time {
  1023  	if loc == nil {
  1024  		panic("time: missing Location in call to Date")
  1025  	}
  1026  
  1027  	// Normalize month, overflowing into year.
  1028  	m := int(month) - 1
  1029  	year, m = norm(year, m, 12)
  1030  	month = Month(m) + 1
  1031  
  1032  	// Normalize nsec, sec, min, hour, overflowing into day.
  1033  	sec, nsec = norm(sec, nsec, 1e9)
  1034  	min, sec = norm(min, sec, 60)
  1035  	hour, min = norm(hour, min, 60)
  1036  	day, hour = norm(day, hour, 24)
  1037  
  1038  	y := uint64(int64(year) - absoluteZeroYear)
  1039  
  1040  	// Compute days since the absolute epoch.
  1041  
  1042  	// Add in days from 400-year cycles.
  1043  	n := y / 400
  1044  	y -= 400 * n
  1045  	d := daysPer400Years * n
  1046  
  1047  	// Add in 100-year cycles.
  1048  	n = y / 100
  1049  	y -= 100 * n
  1050  	d += daysPer100Years * n
  1051  
  1052  	// Add in 4-year cycles.
  1053  	n = y / 4
  1054  	y -= 4 * n
  1055  	d += daysPer4Years * n
  1056  
  1057  	// Add in non-leap years.
  1058  	n = y
  1059  	d += 365 * n
  1060  
  1061  	// Add in days before this month.
  1062  	d += uint64(daysBefore[month-1])
  1063  	if isLeap(year) && month >= March {
  1064  		d++ // February 29
  1065  	}
  1066  
  1067  	// Add in days before today.
  1068  	d += uint64(day - 1)
  1069  
  1070  	// Add in time elapsed today.
  1071  	abs := d * secondsPerDay
  1072  	abs += uint64(hour*secondsPerHour + min*secondsPerMinute + sec)
  1073  
  1074  	unix := int64(abs) + (absoluteToInternal + internalToUnix)
  1075  
  1076  	// Look for zone offset for t, so we can adjust to UTC.
  1077  	// The lookup function expects UTC, so we pass t in the
  1078  	// hope that it will not be too close to a zone transition,
  1079  	// and then adjust if it is.
  1080  	_, offset, _, start, end := loc.lookup(unix)
  1081  	if offset != 0 {
  1082  		switch utc := unix - int64(offset); {
  1083  		case utc < start:
  1084  			_, offset, _, _, _ = loc.lookup(start - 1)
  1085  		case utc >= end:
  1086  			_, offset, _, _, _ = loc.lookup(end)
  1087  		}
  1088  		unix -= int64(offset)
  1089  	}
  1090  
  1091  	return Time{unix + unixToInternal, uintptr(nsec), loc}
  1092  }
  1093  
  1094  // Truncate returns the result of rounding t down to a multiple of d (since the zero time).
  1095  // If d <= 0, Truncate returns t unchanged.
  1096  func (t Time) Truncate(d Duration) Time {
  1097  	if d <= 0 {
  1098  		return t
  1099  	}
  1100  	_, r := div(t, d)
  1101  	return t.Add(-r)
  1102  }
  1103  
  1104  // Round returns the result of rounding t to the nearest multiple of d (since the zero time).
  1105  // The rounding behavior for halfway values is to round up.
  1106  // If d <= 0, Round returns t unchanged.
  1107  func (t Time) Round(d Duration) Time {
  1108  	if d <= 0 {
  1109  		return t
  1110  	}
  1111  	_, r := div(t, d)
  1112  	if r+r < d {
  1113  		return t.Add(-r)
  1114  	}
  1115  	return t.Add(d - r)
  1116  }
  1117  
  1118  // div divides t by d and returns the quotient parity and remainder.
  1119  // We don't use the quotient parity anymore (round half up instead of round to even)
  1120  // but it's still here in case we change our minds.
  1121  func div(t Time, d Duration) (qmod2 int, r Duration) {
  1122  	neg := false
  1123  	nsec := int32(t.nsec)
  1124  	if t.sec < 0 {
  1125  		// Operate on absolute value.
  1126  		neg = true
  1127  		t.sec = -t.sec
  1128  		nsec = -nsec
  1129  		if nsec < 0 {
  1130  			nsec += 1e9
  1131  			t.sec-- // t.sec >= 1 before the -- so safe
  1132  		}
  1133  	}
  1134  
  1135  	switch {
  1136  	// Special case: 2d divides 1 second.
  1137  	case d < Second && Second%(d+d) == 0:
  1138  		qmod2 = int(nsec/int32(d)) & 1
  1139  		r = Duration(nsec % int32(d))
  1140  
  1141  	// Special case: d is a multiple of 1 second.
  1142  	case d%Second == 0:
  1143  		d1 := int64(d / Second)
  1144  		qmod2 = int(t.sec/d1) & 1
  1145  		r = Duration(t.sec%d1)*Second + Duration(nsec)
  1146  
  1147  	// General case.
  1148  	// This could be faster if more cleverness were applied,
  1149  	// but it's really only here to avoid special case restrictions in the API.
  1150  	// No one will care about these cases.
  1151  	default:
  1152  		// Compute nanoseconds as 128-bit number.
  1153  		sec := uint64(t.sec)
  1154  		tmp := (sec >> 32) * 1e9
  1155  		u1 := tmp >> 32
  1156  		u0 := tmp << 32
  1157  		tmp = uint64(sec&0xFFFFFFFF) * 1e9
  1158  		u0x, u0 := u0, u0+tmp
  1159  		if u0 < u0x {
  1160  			u1++
  1161  		}
  1162  		u0x, u0 = u0, u0+uint64(nsec)
  1163  		if u0 < u0x {
  1164  			u1++
  1165  		}
  1166  
  1167  		// Compute remainder by subtracting r<<k for decreasing k.
  1168  		// Quotient parity is whether we subtract on last round.
  1169  		d1 := uint64(d)
  1170  		for d1>>63 != 1 {
  1171  			d1 <<= 1
  1172  		}
  1173  		d0 := uint64(0)
  1174  		for {
  1175  			qmod2 = 0
  1176  			if u1 > d1 || u1 == d1 && u0 >= d0 {
  1177  				// subtract
  1178  				qmod2 = 1
  1179  				u0x, u0 = u0, u0-d0
  1180  				if u0 > u0x {
  1181  					u1--
  1182  				}
  1183  				u1 -= d1
  1184  			}
  1185  			if d1 == 0 && d0 == uint64(d) {
  1186  				break
  1187  			}
  1188  			d0 >>= 1
  1189  			d0 |= (d1 & 1) << 63
  1190  			d1 >>= 1
  1191  		}
  1192  		r = Duration(u0)
  1193  	}
  1194  
  1195  	if neg && r != 0 {
  1196  		// If input was negative and not an exact multiple of d, we computed q, r such that
  1197  		//	q*d + r = -t
  1198  		// But the right answers are given by -(q-1), d-r:
  1199  		//	q*d + r = -t
  1200  		//	-q*d - r = t
  1201  		//	-(q-1)*d + (d - r) = t
  1202  		qmod2 ^= 1
  1203  		r = d - r
  1204  	}
  1205  	return
  1206  }