github.com/aergoio/aergo@v1.3.1/cmd/aergocli/util/encoding/json/encode.go (about)

     1  // Copyright 2010 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // Package json implements encoding and decoding of JSON as defined in
     6  // RFC 7159. The mapping between JSON and Go values is described
     7  // in the documentation for the Marshal and Unmarshal functions.
     8  //
     9  // See "JSON and Go" for an introduction to this package:
    10  // https://golang.org/doc/articles/json_and_go.html
    11  package json
    12  
    13  import (
    14  	"bytes"
    15  	"encoding"
    16  	"fmt"
    17  	"math"
    18  	"reflect"
    19  	"sort"
    20  	"strconv"
    21  	"strings"
    22  	"sync"
    23  	"unicode"
    24  	"unicode/utf8"
    25  
    26  	"github.com/mr-tron/base58/base58"
    27  )
    28  
    29  // Marshal returns the JSON encoding of v.
    30  //
    31  // Marshal traverses the value v recursively.
    32  // If an encountered value implements the Marshaler interface
    33  // and is not a nil pointer, Marshal calls its MarshalJSON method
    34  // to produce JSON. If no MarshalJSON method is present but the
    35  // value implements encoding.TextMarshaler instead, Marshal calls
    36  // its MarshalText method and encodes the result as a JSON string.
    37  // The nil pointer exception is not strictly necessary
    38  // but mimics a similar, necessary exception in the behavior of
    39  // UnmarshalJSON.
    40  //
    41  // Otherwise, Marshal uses the following type-dependent default encodings:
    42  //
    43  // Boolean values encode as JSON booleans.
    44  //
    45  // Floating point, integer, and Number values encode as JSON numbers.
    46  //
    47  // String values encode as JSON strings coerced to valid UTF-8,
    48  // replacing invalid bytes with the Unicode replacement rune.
    49  // The angle brackets "<" and ">" are escaped to "\u003c" and "\u003e"
    50  // to keep some browsers from misinterpreting JSON output as HTML.
    51  // Ampersand "&" is also escaped to "\u0026" for the same reason.
    52  // This escaping can be disabled using an Encoder that had SetEscapeHTML(false)
    53  // called on it.
    54  //
    55  // Array and slice values encode as JSON arrays, except that
    56  // []byte encodes as a base64-encoded string, and a nil slice
    57  // encodes as the null JSON value.
    58  //
    59  // Struct values encode as JSON objects.
    60  // Each exported struct field becomes a member of the object, using the
    61  // field name as the object key, unless the field is omitted for one of the
    62  // reasons given below.
    63  //
    64  // The encoding of each struct field can be customized by the format string
    65  // stored under the "json" key in the struct field's tag.
    66  // The format string gives the name of the field, possibly followed by a
    67  // comma-separated list of options. The name may be empty in order to
    68  // specify options without overriding the default field name.
    69  //
    70  // The "omitempty" option specifies that the field should be omitted
    71  // from the encoding if the field has an empty value, defined as
    72  // false, 0, a nil pointer, a nil interface value, and any empty array,
    73  // slice, map, or string.
    74  //
    75  // As a special case, if the field tag is "-", the field is always omitted.
    76  // Note that a field with name "-" can still be generated using the tag "-,".
    77  //
    78  // Examples of struct field tags and their meanings:
    79  //
    80  //   // Field appears in JSON as key "myName".
    81  //   Field int `json:"myName"`
    82  //
    83  //   // Field appears in JSON as key "myName" and
    84  //   // the field is omitted from the object if its value is empty,
    85  //   // as defined above.
    86  //   Field int `json:"myName,omitempty"`
    87  //
    88  //   // Field appears in JSON as key "Field" (the default), but
    89  //   // the field is skipped if empty.
    90  //   // Note the leading comma.
    91  //   Field int `json:",omitempty"`
    92  //
    93  //   // Field is ignored by this package.
    94  //   Field int `json:"-"`
    95  //
    96  //   // Field appears in JSON as key "-".
    97  //   Field int `json:"-,"`
    98  //
    99  // The "string" option signals that a field is stored as JSON inside a
   100  // JSON-encoded string. It applies only to fields of string, floating point,
   101  // integer, or boolean types. This extra level of encoding is sometimes used
   102  // when communicating with JavaScript programs:
   103  //
   104  //    Int64String int64 `json:",string"`
   105  //
   106  // The key name will be used if it's a non-empty string consisting of
   107  // only Unicode letters, digits, and ASCII punctuation except quotation
   108  // marks, backslash, and comma.
   109  //
   110  // Anonymous struct fields are usually marshaled as if their inner exported fields
   111  // were fields in the outer struct, subject to the usual Go visibility rules amended
   112  // as described in the next paragraph.
   113  // An anonymous struct field with a name given in its JSON tag is treated as
   114  // having that name, rather than being anonymous.
   115  // An anonymous struct field of interface type is treated the same as having
   116  // that type as its name, rather than being anonymous.
   117  //
   118  // The Go visibility rules for struct fields are amended for JSON when
   119  // deciding which field to marshal or unmarshal. If there are
   120  // multiple fields at the same level, and that level is the least
   121  // nested (and would therefore be the nesting level selected by the
   122  // usual Go rules), the following extra rules apply:
   123  //
   124  // 1) Of those fields, if any are JSON-tagged, only tagged fields are considered,
   125  // even if there are multiple untagged fields that would otherwise conflict.
   126  //
   127  // 2) If there is exactly one field (tagged or not according to the first rule), that is selected.
   128  //
   129  // 3) Otherwise there are multiple fields, and all are ignored; no error occurs.
   130  //
   131  // Handling of anonymous struct fields is new in Go 1.1.
   132  // Prior to Go 1.1, anonymous struct fields were ignored. To force ignoring of
   133  // an anonymous struct field in both current and earlier versions, give the field
   134  // a JSON tag of "-".
   135  //
   136  // Map values encode as JSON objects. The map's key type must either be a
   137  // string, an integer type, or implement encoding.TextMarshaler. The map keys
   138  // are sorted and used as JSON object keys by applying the following rules,
   139  // subject to the UTF-8 coercion described for string values above:
   140  //   - string keys are used directly
   141  //   - encoding.TextMarshalers are marshaled
   142  //   - integer keys are converted to strings
   143  //
   144  // Pointer values encode as the value pointed to.
   145  // A nil pointer encodes as the null JSON value.
   146  //
   147  // Interface values encode as the value contained in the interface.
   148  // A nil interface value encodes as the null JSON value.
   149  //
   150  // Channel, complex, and function values cannot be encoded in JSON.
   151  // Attempting to encode such a value causes Marshal to return
   152  // an UnsupportedTypeError.
   153  //
   154  // JSON cannot represent cyclic data structures and Marshal does not
   155  // handle them. Passing cyclic structures to Marshal will result in
   156  // an infinite recursion.
   157  //
   158  func Marshal(v interface{}) ([]byte, error) {
   159  	e := newEncodeState()
   160  
   161  	err := e.marshal(v, encOpts{escapeHTML: true})
   162  	if err != nil {
   163  		return nil, err
   164  	}
   165  	buf := append([]byte(nil), e.Bytes()...)
   166  
   167  	e.Reset()
   168  	encodeStatePool.Put(e)
   169  
   170  	return buf, nil
   171  }
   172  
   173  // MarshalIndent is like Marshal but applies Indent to format the output.
   174  // Each JSON element in the output will begin on a new line beginning with prefix
   175  // followed by one or more copies of indent according to the indentation nesting.
   176  func MarshalIndent(v interface{}, prefix, indent string) ([]byte, error) {
   177  	b, err := Marshal(v)
   178  	if err != nil {
   179  		return nil, err
   180  	}
   181  	var buf bytes.Buffer
   182  	err = Indent(&buf, b, prefix, indent)
   183  	if err != nil {
   184  		return nil, err
   185  	}
   186  	return buf.Bytes(), nil
   187  }
   188  
   189  // HTMLEscape appends to dst the JSON-encoded src with <, >, &, U+2028 and U+2029
   190  // characters inside string literals changed to \u003c, \u003e, \u0026, \u2028, \u2029
   191  // so that the JSON will be safe to embed inside HTML <script> tags.
   192  // For historical reasons, web browsers don't honor standard HTML
   193  // escaping within <script> tags, so an alternative JSON encoding must
   194  // be used.
   195  func HTMLEscape(dst *bytes.Buffer, src []byte) {
   196  	// The characters can only appear in string literals,
   197  	// so just scan the string one byte at a time.
   198  	start := 0
   199  	for i, c := range src {
   200  		if c == '<' || c == '>' || c == '&' {
   201  			if start < i {
   202  				dst.Write(src[start:i])
   203  			}
   204  			dst.WriteString(`\u00`)
   205  			dst.WriteByte(hex[c>>4])
   206  			dst.WriteByte(hex[c&0xF])
   207  			start = i + 1
   208  		}
   209  		// Convert U+2028 and U+2029 (E2 80 A8 and E2 80 A9).
   210  		if c == 0xE2 && i+2 < len(src) && src[i+1] == 0x80 && src[i+2]&^1 == 0xA8 {
   211  			if start < i {
   212  				dst.Write(src[start:i])
   213  			}
   214  			dst.WriteString(`\u202`)
   215  			dst.WriteByte(hex[src[i+2]&0xF])
   216  			start = i + 3
   217  		}
   218  	}
   219  	if start < len(src) {
   220  		dst.Write(src[start:])
   221  	}
   222  }
   223  
   224  // Marshaler is the interface implemented by types that
   225  // can marshal themselves into valid JSON.
   226  type Marshaler interface {
   227  	MarshalJSON() ([]byte, error)
   228  }
   229  
   230  // An UnsupportedTypeError is returned by Marshal when attempting
   231  // to encode an unsupported value type.
   232  type UnsupportedTypeError struct {
   233  	Type reflect.Type
   234  }
   235  
   236  func (e *UnsupportedTypeError) Error() string {
   237  	return "json: unsupported type: " + e.Type.String()
   238  }
   239  
   240  type UnsupportedValueError struct {
   241  	Value reflect.Value
   242  	Str   string
   243  }
   244  
   245  func (e *UnsupportedValueError) Error() string {
   246  	return "json: unsupported value: " + e.Str
   247  }
   248  
   249  // Before Go 1.2, an InvalidUTF8Error was returned by Marshal when
   250  // attempting to encode a string value with invalid UTF-8 sequences.
   251  // As of Go 1.2, Marshal instead coerces the string to valid UTF-8 by
   252  // replacing invalid bytes with the Unicode replacement rune U+FFFD.
   253  //
   254  // Deprecated: No longer used; kept for compatibility.
   255  type InvalidUTF8Error struct {
   256  	S string // the whole string value that caused the error
   257  }
   258  
   259  func (e *InvalidUTF8Error) Error() string {
   260  	return "json: invalid UTF-8 in string: " + strconv.Quote(e.S)
   261  }
   262  
   263  type MarshalerError struct {
   264  	Type reflect.Type
   265  	Err  error
   266  }
   267  
   268  func (e *MarshalerError) Error() string {
   269  	return "json: error calling MarshalJSON for type " + e.Type.String() + ": " + e.Err.Error()
   270  }
   271  
   272  var hex = "0123456789abcdef"
   273  
   274  // An encodeState encodes JSON into a bytes.Buffer.
   275  type encodeState struct {
   276  	bytes.Buffer // accumulated output
   277  	scratch      [64]byte
   278  }
   279  
   280  var encodeStatePool sync.Pool
   281  
   282  func newEncodeState() *encodeState {
   283  	if v := encodeStatePool.Get(); v != nil {
   284  		e := v.(*encodeState)
   285  		e.Reset()
   286  		return e
   287  	}
   288  	return new(encodeState)
   289  }
   290  
   291  // jsonError is an error wrapper type for internal use only.
   292  // Panics with errors are wrapped in jsonError so that the top-level recover
   293  // can distinguish intentional panics from this package.
   294  type jsonError struct{ error }
   295  
   296  func (e *encodeState) marshal(v interface{}, opts encOpts) (err error) {
   297  	defer func() {
   298  		if r := recover(); r != nil {
   299  			if je, ok := r.(jsonError); ok {
   300  				err = je.error
   301  			} else {
   302  				panic(r)
   303  			}
   304  		}
   305  	}()
   306  	e.reflectValue(reflect.ValueOf(v), opts)
   307  	return nil
   308  }
   309  
   310  // error aborts the encoding by panicking with err wrapped in jsonError.
   311  func (e *encodeState) error(err error) {
   312  	panic(jsonError{err})
   313  }
   314  
   315  func isEmptyValue(v reflect.Value) bool {
   316  	switch v.Kind() {
   317  	case reflect.Array, reflect.Map, reflect.Slice, reflect.String:
   318  		return v.Len() == 0
   319  	case reflect.Bool:
   320  		return !v.Bool()
   321  	case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
   322  		return v.Int() == 0
   323  	case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
   324  		return v.Uint() == 0
   325  	case reflect.Float32, reflect.Float64:
   326  		return v.Float() == 0
   327  	case reflect.Interface, reflect.Ptr:
   328  		return v.IsNil()
   329  	}
   330  	return false
   331  }
   332  
   333  func (e *encodeState) reflectValue(v reflect.Value, opts encOpts) {
   334  	valueEncoder(v)(e, v, opts)
   335  }
   336  
   337  type encOpts struct {
   338  	// quoted causes primitive fields to be encoded inside JSON strings.
   339  	quoted bool
   340  	// escapeHTML causes '<', '>', and '&' to be escaped in JSON strings.
   341  	escapeHTML bool
   342  }
   343  
   344  type encoderFunc func(e *encodeState, v reflect.Value, opts encOpts)
   345  
   346  var encoderCache sync.Map // map[reflect.Type]encoderFunc
   347  
   348  func valueEncoder(v reflect.Value) encoderFunc {
   349  	if !v.IsValid() {
   350  		return invalidValueEncoder
   351  	}
   352  	return typeEncoder(v.Type())
   353  }
   354  
   355  func typeEncoder(t reflect.Type) encoderFunc {
   356  	if fi, ok := encoderCache.Load(t); ok {
   357  		return fi.(encoderFunc)
   358  	}
   359  
   360  	// To deal with recursive types, populate the map with an
   361  	// indirect func before we build it. This type waits on the
   362  	// real func (f) to be ready and then calls it. This indirect
   363  	// func is only used for recursive types.
   364  	var (
   365  		wg sync.WaitGroup
   366  		f  encoderFunc
   367  	)
   368  	wg.Add(1)
   369  	fi, loaded := encoderCache.LoadOrStore(t, encoderFunc(func(e *encodeState, v reflect.Value, opts encOpts) {
   370  		wg.Wait()
   371  		f(e, v, opts)
   372  	}))
   373  	if loaded {
   374  		return fi.(encoderFunc)
   375  	}
   376  
   377  	// Compute the real encoder and replace the indirect func with it.
   378  	f = newTypeEncoder(t, true)
   379  	wg.Done()
   380  	encoderCache.Store(t, f)
   381  	return f
   382  }
   383  
   384  var (
   385  	marshalerType     = reflect.TypeOf((*Marshaler)(nil)).Elem()
   386  	textMarshalerType = reflect.TypeOf((*encoding.TextMarshaler)(nil)).Elem()
   387  )
   388  
   389  // newTypeEncoder constructs an encoderFunc for a type.
   390  // The returned encoder only checks CanAddr when allowAddr is true.
   391  func newTypeEncoder(t reflect.Type, allowAddr bool) encoderFunc {
   392  	if t.Implements(marshalerType) {
   393  		return marshalerEncoder
   394  	}
   395  	if t.Kind() != reflect.Ptr && allowAddr {
   396  		if reflect.PtrTo(t).Implements(marshalerType) {
   397  			return newCondAddrEncoder(addrMarshalerEncoder, newTypeEncoder(t, false))
   398  		}
   399  	}
   400  
   401  	if t.Implements(textMarshalerType) {
   402  		return textMarshalerEncoder
   403  	}
   404  	if t.Kind() != reflect.Ptr && allowAddr {
   405  		if reflect.PtrTo(t).Implements(textMarshalerType) {
   406  			return newCondAddrEncoder(addrTextMarshalerEncoder, newTypeEncoder(t, false))
   407  		}
   408  	}
   409  
   410  	switch t.Kind() {
   411  	case reflect.Bool:
   412  		return boolEncoder
   413  	case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
   414  		return intEncoder
   415  	case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
   416  		return uintEncoder
   417  	case reflect.Float32:
   418  		return float32Encoder
   419  	case reflect.Float64:
   420  		return float64Encoder
   421  	case reflect.String:
   422  		return stringEncoder
   423  	case reflect.Interface:
   424  		return interfaceEncoder
   425  	case reflect.Struct:
   426  		return newStructEncoder(t)
   427  	case reflect.Map:
   428  		return newMapEncoder(t)
   429  	case reflect.Slice:
   430  		return newSliceEncoder(t)
   431  	case reflect.Array:
   432  		return newArrayEncoder(t)
   433  	case reflect.Ptr:
   434  		return newPtrEncoder(t)
   435  	default:
   436  		return unsupportedTypeEncoder
   437  	}
   438  }
   439  
   440  func invalidValueEncoder(e *encodeState, v reflect.Value, _ encOpts) {
   441  	e.WriteString("null")
   442  }
   443  
   444  func marshalerEncoder(e *encodeState, v reflect.Value, opts encOpts) {
   445  	if v.Kind() == reflect.Ptr && v.IsNil() {
   446  		e.WriteString("null")
   447  		return
   448  	}
   449  	m, ok := v.Interface().(Marshaler)
   450  	if !ok {
   451  		e.WriteString("null")
   452  		return
   453  	}
   454  	b, err := m.MarshalJSON()
   455  	if err == nil {
   456  		// copy JSON into buffer, checking validity.
   457  		err = compact(&e.Buffer, b, opts.escapeHTML)
   458  	}
   459  	if err != nil {
   460  		e.error(&MarshalerError{v.Type(), err})
   461  	}
   462  }
   463  
   464  func addrMarshalerEncoder(e *encodeState, v reflect.Value, _ encOpts) {
   465  	va := v.Addr()
   466  	if va.IsNil() {
   467  		e.WriteString("null")
   468  		return
   469  	}
   470  	m := va.Interface().(Marshaler)
   471  	b, err := m.MarshalJSON()
   472  	if err == nil {
   473  		// copy JSON into buffer, checking validity.
   474  		err = compact(&e.Buffer, b, true)
   475  	}
   476  	if err != nil {
   477  		e.error(&MarshalerError{v.Type(), err})
   478  	}
   479  }
   480  
   481  func textMarshalerEncoder(e *encodeState, v reflect.Value, opts encOpts) {
   482  	if v.Kind() == reflect.Ptr && v.IsNil() {
   483  		e.WriteString("null")
   484  		return
   485  	}
   486  	m := v.Interface().(encoding.TextMarshaler)
   487  	b, err := m.MarshalText()
   488  	if err != nil {
   489  		e.error(&MarshalerError{v.Type(), err})
   490  	}
   491  	e.stringBytes(b, opts.escapeHTML)
   492  }
   493  
   494  func addrTextMarshalerEncoder(e *encodeState, v reflect.Value, opts encOpts) {
   495  	va := v.Addr()
   496  	if va.IsNil() {
   497  		e.WriteString("null")
   498  		return
   499  	}
   500  	m := va.Interface().(encoding.TextMarshaler)
   501  	b, err := m.MarshalText()
   502  	if err != nil {
   503  		e.error(&MarshalerError{v.Type(), err})
   504  	}
   505  	e.stringBytes(b, opts.escapeHTML)
   506  }
   507  
   508  func boolEncoder(e *encodeState, v reflect.Value, opts encOpts) {
   509  	if opts.quoted {
   510  		e.WriteByte('"')
   511  	}
   512  	if v.Bool() {
   513  		e.WriteString("true")
   514  	} else {
   515  		e.WriteString("false")
   516  	}
   517  	if opts.quoted {
   518  		e.WriteByte('"')
   519  	}
   520  }
   521  
   522  func intEncoder(e *encodeState, v reflect.Value, opts encOpts) {
   523  	b := strconv.AppendInt(e.scratch[:0], v.Int(), 10)
   524  	if opts.quoted {
   525  		e.WriteByte('"')
   526  	}
   527  	e.Write(b)
   528  	if opts.quoted {
   529  		e.WriteByte('"')
   530  	}
   531  }
   532  
   533  func uintEncoder(e *encodeState, v reflect.Value, opts encOpts) {
   534  	b := strconv.AppendUint(e.scratch[:0], v.Uint(), 10)
   535  	if opts.quoted {
   536  		e.WriteByte('"')
   537  	}
   538  	e.Write(b)
   539  	if opts.quoted {
   540  		e.WriteByte('"')
   541  	}
   542  }
   543  
   544  type floatEncoder int // number of bits
   545  
   546  func (bits floatEncoder) encode(e *encodeState, v reflect.Value, opts encOpts) {
   547  	f := v.Float()
   548  	if math.IsInf(f, 0) || math.IsNaN(f) {
   549  		e.error(&UnsupportedValueError{v, strconv.FormatFloat(f, 'g', -1, int(bits))})
   550  	}
   551  
   552  	// Convert as if by ES6 number to string conversion.
   553  	// This matches most other JSON generators.
   554  	// See golang.org/issue/6384 and golang.org/issue/14135.
   555  	// Like fmt %g, but the exponent cutoffs are different
   556  	// and exponents themselves are not padded to two digits.
   557  	b := e.scratch[:0]
   558  	abs := math.Abs(f)
   559  	fmt := byte('f')
   560  	// Note: Must use float32 comparisons for underlying float32 value to get precise cutoffs right.
   561  	if abs != 0 {
   562  		if bits == 64 && (abs < 1e-6 || abs >= 1e21) || bits == 32 && (float32(abs) < 1e-6 || float32(abs) >= 1e21) {
   563  			fmt = 'e'
   564  		}
   565  	}
   566  	b = strconv.AppendFloat(b, f, fmt, -1, int(bits))
   567  	if fmt == 'e' {
   568  		// clean up e-09 to e-9
   569  		n := len(b)
   570  		if n >= 4 && b[n-4] == 'e' && b[n-3] == '-' && b[n-2] == '0' {
   571  			b[n-2] = b[n-1]
   572  			b = b[:n-1]
   573  		}
   574  	}
   575  
   576  	if opts.quoted {
   577  		e.WriteByte('"')
   578  	}
   579  	e.Write(b)
   580  	if opts.quoted {
   581  		e.WriteByte('"')
   582  	}
   583  }
   584  
   585  var (
   586  	float32Encoder = (floatEncoder(32)).encode
   587  	float64Encoder = (floatEncoder(64)).encode
   588  )
   589  
   590  func stringEncoder(e *encodeState, v reflect.Value, opts encOpts) {
   591  	if v.Type() == numberType {
   592  		numStr := v.String()
   593  		// In Go1.5 the empty string encodes to "0", while this is not a valid number literal
   594  		// we keep compatibility so check validity after this.
   595  		if numStr == "" {
   596  			numStr = "0" // Number's zero-val
   597  		}
   598  		if !isValidNumber(numStr) {
   599  			e.error(fmt.Errorf("json: invalid number literal %q", numStr))
   600  		}
   601  		e.WriteString(numStr)
   602  		return
   603  	}
   604  	if opts.quoted {
   605  		sb, err := Marshal(v.String())
   606  		if err != nil {
   607  			e.error(err)
   608  		}
   609  		e.string(string(sb), opts.escapeHTML)
   610  	} else {
   611  		e.string(v.String(), opts.escapeHTML)
   612  	}
   613  }
   614  
   615  func interfaceEncoder(e *encodeState, v reflect.Value, opts encOpts) {
   616  	if v.IsNil() {
   617  		e.WriteString("null")
   618  		return
   619  	}
   620  	e.reflectValue(v.Elem(), opts)
   621  }
   622  
   623  func unsupportedTypeEncoder(e *encodeState, v reflect.Value, _ encOpts) {
   624  	e.error(&UnsupportedTypeError{v.Type()})
   625  }
   626  
   627  type structEncoder struct {
   628  	fields []field
   629  }
   630  
   631  func (se structEncoder) encode(e *encodeState, v reflect.Value, opts encOpts) {
   632  	next := byte('{')
   633  FieldLoop:
   634  	for i := range se.fields {
   635  		f := &se.fields[i]
   636  
   637  		// Find the nested struct field by following f.index.
   638  		fv := v
   639  		for _, i := range f.index {
   640  			if fv.Kind() == reflect.Ptr {
   641  				if fv.IsNil() {
   642  					continue FieldLoop
   643  				}
   644  				fv = fv.Elem()
   645  			}
   646  			fv = fv.Field(i)
   647  		}
   648  
   649  		if f.omitEmpty && isEmptyValue(fv) {
   650  			continue
   651  		}
   652  		e.WriteByte(next)
   653  		next = ','
   654  		if opts.escapeHTML {
   655  			e.WriteString(f.nameEscHTML)
   656  		} else {
   657  			e.WriteString(f.nameNonEsc)
   658  		}
   659  		opts.quoted = f.quoted
   660  		f.encoder(e, fv, opts)
   661  	}
   662  	if next == '{' {
   663  		e.WriteString("{}")
   664  	} else {
   665  		e.WriteByte('}')
   666  	}
   667  }
   668  
   669  func newStructEncoder(t reflect.Type) encoderFunc {
   670  	se := structEncoder{fields: cachedTypeFields(t)}
   671  	return se.encode
   672  }
   673  
   674  type mapEncoder struct {
   675  	elemEnc encoderFunc
   676  }
   677  
   678  func (me mapEncoder) encode(e *encodeState, v reflect.Value, opts encOpts) {
   679  	if v.IsNil() {
   680  		e.WriteString("null")
   681  		return
   682  	}
   683  	e.WriteByte('{')
   684  
   685  	// Extract and sort the keys.
   686  	keys := v.MapKeys()
   687  	sv := make([]reflectWithString, len(keys))
   688  	for i, v := range keys {
   689  		sv[i].v = v
   690  		if err := sv[i].resolve(); err != nil {
   691  			e.error(&MarshalerError{v.Type(), err})
   692  		}
   693  	}
   694  	sort.Slice(sv, func(i, j int) bool { return sv[i].s < sv[j].s })
   695  
   696  	for i, kv := range sv {
   697  		if i > 0 {
   698  			e.WriteByte(',')
   699  		}
   700  		e.string(kv.s, opts.escapeHTML)
   701  		e.WriteByte(':')
   702  		me.elemEnc(e, v.MapIndex(kv.v), opts)
   703  	}
   704  	e.WriteByte('}')
   705  }
   706  
   707  func newMapEncoder(t reflect.Type) encoderFunc {
   708  	switch t.Key().Kind() {
   709  	case reflect.String,
   710  		reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64,
   711  		reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
   712  	default:
   713  		if !t.Key().Implements(textMarshalerType) {
   714  			return unsupportedTypeEncoder
   715  		}
   716  	}
   717  	me := mapEncoder{typeEncoder(t.Elem())}
   718  	return me.encode
   719  }
   720  
   721  func encodeByteSlice(e *encodeState, v reflect.Value, _ encOpts) {
   722  	if v.IsNil() {
   723  		e.WriteString("null")
   724  		return
   725  	}
   726  	s := v.Bytes()
   727  	e.WriteByte('"')
   728  	e.WriteString(base58.Encode(s))
   729  	e.WriteByte('"')
   730  }
   731  
   732  // sliceEncoder just wraps an arrayEncoder, checking to make sure the value isn't nil.
   733  type sliceEncoder struct {
   734  	arrayEnc encoderFunc
   735  }
   736  
   737  func (se sliceEncoder) encode(e *encodeState, v reflect.Value, opts encOpts) {
   738  	if v.IsNil() {
   739  		e.WriteString("null")
   740  		return
   741  	}
   742  	se.arrayEnc(e, v, opts)
   743  }
   744  
   745  func newSliceEncoder(t reflect.Type) encoderFunc {
   746  	// Byte slices get special treatment; arrays don't.
   747  	if t.Elem().Kind() == reflect.Uint8 {
   748  		p := reflect.PtrTo(t.Elem())
   749  		if !p.Implements(marshalerType) && !p.Implements(textMarshalerType) {
   750  			return encodeByteSlice
   751  		}
   752  	}
   753  	enc := sliceEncoder{newArrayEncoder(t)}
   754  	return enc.encode
   755  }
   756  
   757  type arrayEncoder struct {
   758  	elemEnc encoderFunc
   759  }
   760  
   761  func (ae arrayEncoder) encode(e *encodeState, v reflect.Value, opts encOpts) {
   762  	e.WriteByte('[')
   763  	n := v.Len()
   764  	for i := 0; i < n; i++ {
   765  		if i > 0 {
   766  			e.WriteByte(',')
   767  		}
   768  		ae.elemEnc(e, v.Index(i), opts)
   769  	}
   770  	e.WriteByte(']')
   771  }
   772  
   773  func newArrayEncoder(t reflect.Type) encoderFunc {
   774  	enc := arrayEncoder{typeEncoder(t.Elem())}
   775  	return enc.encode
   776  }
   777  
   778  type ptrEncoder struct {
   779  	elemEnc encoderFunc
   780  }
   781  
   782  func (pe ptrEncoder) encode(e *encodeState, v reflect.Value, opts encOpts) {
   783  	if v.IsNil() {
   784  		e.WriteString("null")
   785  		return
   786  	}
   787  	pe.elemEnc(e, v.Elem(), opts)
   788  }
   789  
   790  func newPtrEncoder(t reflect.Type) encoderFunc {
   791  	enc := ptrEncoder{typeEncoder(t.Elem())}
   792  	return enc.encode
   793  }
   794  
   795  type condAddrEncoder struct {
   796  	canAddrEnc, elseEnc encoderFunc
   797  }
   798  
   799  func (ce condAddrEncoder) encode(e *encodeState, v reflect.Value, opts encOpts) {
   800  	if v.CanAddr() {
   801  		ce.canAddrEnc(e, v, opts)
   802  	} else {
   803  		ce.elseEnc(e, v, opts)
   804  	}
   805  }
   806  
   807  // newCondAddrEncoder returns an encoder that checks whether its value
   808  // CanAddr and delegates to canAddrEnc if so, else to elseEnc.
   809  func newCondAddrEncoder(canAddrEnc, elseEnc encoderFunc) encoderFunc {
   810  	enc := condAddrEncoder{canAddrEnc: canAddrEnc, elseEnc: elseEnc}
   811  	return enc.encode
   812  }
   813  
   814  func isValidTag(s string) bool {
   815  	if s == "" {
   816  		return false
   817  	}
   818  	for _, c := range s {
   819  		switch {
   820  		case strings.ContainsRune("!#$%&()*+-./:<=>?@[]^_{|}~ ", c):
   821  			// Backslash and quote chars are reserved, but
   822  			// otherwise any punctuation chars are allowed
   823  			// in a tag name.
   824  		case !unicode.IsLetter(c) && !unicode.IsDigit(c):
   825  			return false
   826  		}
   827  	}
   828  	return true
   829  }
   830  
   831  func typeByIndex(t reflect.Type, index []int) reflect.Type {
   832  	for _, i := range index {
   833  		if t.Kind() == reflect.Ptr {
   834  			t = t.Elem()
   835  		}
   836  		t = t.Field(i).Type
   837  	}
   838  	return t
   839  }
   840  
   841  type reflectWithString struct {
   842  	v reflect.Value
   843  	s string
   844  }
   845  
   846  func (w *reflectWithString) resolve() error {
   847  	if w.v.Kind() == reflect.String {
   848  		w.s = w.v.String()
   849  		return nil
   850  	}
   851  	if tm, ok := w.v.Interface().(encoding.TextMarshaler); ok {
   852  		buf, err := tm.MarshalText()
   853  		w.s = string(buf)
   854  		return err
   855  	}
   856  	switch w.v.Kind() {
   857  	case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
   858  		w.s = strconv.FormatInt(w.v.Int(), 10)
   859  		return nil
   860  	case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
   861  		w.s = strconv.FormatUint(w.v.Uint(), 10)
   862  		return nil
   863  	}
   864  	panic("unexpected map key type")
   865  }
   866  
   867  // NOTE: keep in sync with stringBytes below.
   868  func (e *encodeState) string(s string, escapeHTML bool) {
   869  	e.WriteByte('"')
   870  	start := 0
   871  	for i := 0; i < len(s); {
   872  		if b := s[i]; b < utf8.RuneSelf {
   873  			if htmlSafeSet[b] || (!escapeHTML && safeSet[b]) {
   874  				i++
   875  				continue
   876  			}
   877  			if start < i {
   878  				e.WriteString(s[start:i])
   879  			}
   880  			e.WriteByte('\\')
   881  			switch b {
   882  			case '\\', '"':
   883  				e.WriteByte(b)
   884  			case '\n':
   885  				e.WriteByte('n')
   886  			case '\r':
   887  				e.WriteByte('r')
   888  			case '\t':
   889  				e.WriteByte('t')
   890  			default:
   891  				// This encodes bytes < 0x20 except for \t, \n and \r.
   892  				// If escapeHTML is set, it also escapes <, >, and &
   893  				// because they can lead to security holes when
   894  				// user-controlled strings are rendered into JSON
   895  				// and served to some browsers.
   896  				e.WriteString(`u00`)
   897  				e.WriteByte(hex[b>>4])
   898  				e.WriteByte(hex[b&0xF])
   899  			}
   900  			i++
   901  			start = i
   902  			continue
   903  		}
   904  		c, size := utf8.DecodeRuneInString(s[i:])
   905  		if c == utf8.RuneError && size == 1 {
   906  			if start < i {
   907  				e.WriteString(s[start:i])
   908  			}
   909  			e.WriteString(`\ufffd`)
   910  			i += size
   911  			start = i
   912  			continue
   913  		}
   914  		// U+2028 is LINE SEPARATOR.
   915  		// U+2029 is PARAGRAPH SEPARATOR.
   916  		// They are both technically valid characters in JSON strings,
   917  		// but don't work in JSONP, which has to be evaluated as JavaScript,
   918  		// and can lead to security holes there. It is valid JSON to
   919  		// escape them, so we do so unconditionally.
   920  		// See http://timelessrepo.com/json-isnt-a-javascript-subset for discussion.
   921  		if c == '\u2028' || c == '\u2029' {
   922  			if start < i {
   923  				e.WriteString(s[start:i])
   924  			}
   925  			e.WriteString(`\u202`)
   926  			e.WriteByte(hex[c&0xF])
   927  			i += size
   928  			start = i
   929  			continue
   930  		}
   931  		i += size
   932  	}
   933  	if start < len(s) {
   934  		e.WriteString(s[start:])
   935  	}
   936  	e.WriteByte('"')
   937  }
   938  
   939  // NOTE: keep in sync with string above.
   940  func (e *encodeState) stringBytes(s []byte, escapeHTML bool) {
   941  	e.WriteByte('"')
   942  	start := 0
   943  	for i := 0; i < len(s); {
   944  		if b := s[i]; b < utf8.RuneSelf {
   945  			if htmlSafeSet[b] || (!escapeHTML && safeSet[b]) {
   946  				i++
   947  				continue
   948  			}
   949  			if start < i {
   950  				e.Write(s[start:i])
   951  			}
   952  			e.WriteByte('\\')
   953  			switch b {
   954  			case '\\', '"':
   955  				e.WriteByte(b)
   956  			case '\n':
   957  				e.WriteByte('n')
   958  			case '\r':
   959  				e.WriteByte('r')
   960  			case '\t':
   961  				e.WriteByte('t')
   962  			default:
   963  				// This encodes bytes < 0x20 except for \t, \n and \r.
   964  				// If escapeHTML is set, it also escapes <, >, and &
   965  				// because they can lead to security holes when
   966  				// user-controlled strings are rendered into JSON
   967  				// and served to some browsers.
   968  				e.WriteString(`u00`)
   969  				e.WriteByte(hex[b>>4])
   970  				e.WriteByte(hex[b&0xF])
   971  			}
   972  			i++
   973  			start = i
   974  			continue
   975  		}
   976  		c, size := utf8.DecodeRune(s[i:])
   977  		if c == utf8.RuneError && size == 1 {
   978  			if start < i {
   979  				e.Write(s[start:i])
   980  			}
   981  			e.WriteString(`\ufffd`)
   982  			i += size
   983  			start = i
   984  			continue
   985  		}
   986  		// U+2028 is LINE SEPARATOR.
   987  		// U+2029 is PARAGRAPH SEPARATOR.
   988  		// They are both technically valid characters in JSON strings,
   989  		// but don't work in JSONP, which has to be evaluated as JavaScript,
   990  		// and can lead to security holes there. It is valid JSON to
   991  		// escape them, so we do so unconditionally.
   992  		// See http://timelessrepo.com/json-isnt-a-javascript-subset for discussion.
   993  		if c == '\u2028' || c == '\u2029' {
   994  			if start < i {
   995  				e.Write(s[start:i])
   996  			}
   997  			e.WriteString(`\u202`)
   998  			e.WriteByte(hex[c&0xF])
   999  			i += size
  1000  			start = i
  1001  			continue
  1002  		}
  1003  		i += size
  1004  	}
  1005  	if start < len(s) {
  1006  		e.Write(s[start:])
  1007  	}
  1008  	e.WriteByte('"')
  1009  }
  1010  
  1011  // A field represents a single field found in a struct.
  1012  type field struct {
  1013  	name      string
  1014  	nameBytes []byte                 // []byte(name)
  1015  	equalFold func(s, t []byte) bool // bytes.EqualFold or equivalent
  1016  
  1017  	nameNonEsc  string // `"` + name + `":`
  1018  	nameEscHTML string // `"` + HTMLEscape(name) + `":`
  1019  
  1020  	tag       bool
  1021  	index     []int
  1022  	typ       reflect.Type
  1023  	omitEmpty bool
  1024  	quoted    bool
  1025  
  1026  	encoder encoderFunc
  1027  }
  1028  
  1029  // byIndex sorts field by index sequence.
  1030  type byIndex []field
  1031  
  1032  func (x byIndex) Len() int { return len(x) }
  1033  
  1034  func (x byIndex) Swap(i, j int) { x[i], x[j] = x[j], x[i] }
  1035  
  1036  func (x byIndex) Less(i, j int) bool {
  1037  	for k, xik := range x[i].index {
  1038  		if k >= len(x[j].index) {
  1039  			return false
  1040  		}
  1041  		if xik != x[j].index[k] {
  1042  			return xik < x[j].index[k]
  1043  		}
  1044  	}
  1045  	return len(x[i].index) < len(x[j].index)
  1046  }
  1047  
  1048  // typeFields returns a list of fields that JSON should recognize for the given type.
  1049  // The algorithm is breadth-first search over the set of structs to include - the top struct
  1050  // and then any reachable anonymous structs.
  1051  func typeFields(t reflect.Type) []field {
  1052  	// Anonymous fields to explore at the current level and the next.
  1053  	current := []field{}
  1054  	next := []field{{typ: t}}
  1055  
  1056  	// Count of queued names for current level and the next.
  1057  	count := map[reflect.Type]int{}
  1058  	nextCount := map[reflect.Type]int{}
  1059  
  1060  	// Types already visited at an earlier level.
  1061  	visited := map[reflect.Type]bool{}
  1062  
  1063  	// Fields found.
  1064  	var fields []field
  1065  
  1066  	// Buffer to run HTMLEscape on field names.
  1067  	var nameEscBuf bytes.Buffer
  1068  
  1069  	for len(next) > 0 {
  1070  		current, next = next, current[:0]
  1071  		count, nextCount = nextCount, map[reflect.Type]int{}
  1072  
  1073  		for _, f := range current {
  1074  			if visited[f.typ] {
  1075  				continue
  1076  			}
  1077  			visited[f.typ] = true
  1078  
  1079  			// Scan f.typ for fields to include.
  1080  			for i := 0; i < f.typ.NumField(); i++ {
  1081  				sf := f.typ.Field(i)
  1082  				isUnexported := sf.PkgPath != ""
  1083  				if sf.Anonymous {
  1084  					t := sf.Type
  1085  					if t.Kind() == reflect.Ptr {
  1086  						t = t.Elem()
  1087  					}
  1088  					if isUnexported && t.Kind() != reflect.Struct {
  1089  						// Ignore embedded fields of unexported non-struct types.
  1090  						continue
  1091  					}
  1092  					// Do not ignore embedded fields of unexported struct types
  1093  					// since they may have exported fields.
  1094  				} else if isUnexported {
  1095  					// Ignore unexported non-embedded fields.
  1096  					continue
  1097  				}
  1098  				tag := sf.Tag.Get("json")
  1099  				if tag == "-" {
  1100  					continue
  1101  				}
  1102  				name, opts := parseTag(tag)
  1103  				if !isValidTag(name) {
  1104  					name = ""
  1105  				}
  1106  				index := make([]int, len(f.index)+1)
  1107  				copy(index, f.index)
  1108  				index[len(f.index)] = i
  1109  
  1110  				ft := sf.Type
  1111  				if ft.Name() == "" && ft.Kind() == reflect.Ptr {
  1112  					// Follow pointer.
  1113  					ft = ft.Elem()
  1114  				}
  1115  
  1116  				// Only strings, floats, integers, and booleans can be quoted.
  1117  				quoted := false
  1118  				if opts.Contains("string") {
  1119  					switch ft.Kind() {
  1120  					case reflect.Bool,
  1121  						reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64,
  1122  						reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr,
  1123  						reflect.Float32, reflect.Float64,
  1124  						reflect.String:
  1125  						quoted = true
  1126  					}
  1127  				}
  1128  
  1129  				// Record found field and index sequence.
  1130  				if name != "" || !sf.Anonymous || ft.Kind() != reflect.Struct {
  1131  					tagged := name != ""
  1132  					if name == "" {
  1133  						name = sf.Name
  1134  					}
  1135  					field := field{
  1136  						name:      name,
  1137  						tag:       tagged,
  1138  						index:     index,
  1139  						typ:       ft,
  1140  						omitEmpty: opts.Contains("omitempty"),
  1141  						quoted:    quoted,
  1142  					}
  1143  					field.nameBytes = []byte(field.name)
  1144  					field.equalFold = foldFunc(field.nameBytes)
  1145  
  1146  					// Build nameEscHTML and nameNonEsc ahead of time.
  1147  					nameEscBuf.Reset()
  1148  					nameEscBuf.WriteString(`"`)
  1149  					HTMLEscape(&nameEscBuf, field.nameBytes)
  1150  					nameEscBuf.WriteString(`":`)
  1151  					field.nameEscHTML = nameEscBuf.String()
  1152  					field.nameNonEsc = `"` + field.name + `":`
  1153  
  1154  					fields = append(fields, field)
  1155  					if count[f.typ] > 1 {
  1156  						// If there were multiple instances, add a second,
  1157  						// so that the annihilation code will see a duplicate.
  1158  						// It only cares about the distinction between 1 or 2,
  1159  						// so don't bother generating any more copies.
  1160  						fields = append(fields, fields[len(fields)-1])
  1161  					}
  1162  					continue
  1163  				}
  1164  
  1165  				// Record new anonymous struct to explore in next round.
  1166  				nextCount[ft]++
  1167  				if nextCount[ft] == 1 {
  1168  					next = append(next, field{name: ft.Name(), index: index, typ: ft})
  1169  				}
  1170  			}
  1171  		}
  1172  	}
  1173  
  1174  	sort.Slice(fields, func(i, j int) bool {
  1175  		x := fields
  1176  		// sort field by name, breaking ties with depth, then
  1177  		// breaking ties with "name came from json tag", then
  1178  		// breaking ties with index sequence.
  1179  		if x[i].name != x[j].name {
  1180  			return x[i].name < x[j].name
  1181  		}
  1182  		if len(x[i].index) != len(x[j].index) {
  1183  			return len(x[i].index) < len(x[j].index)
  1184  		}
  1185  		if x[i].tag != x[j].tag {
  1186  			return x[i].tag
  1187  		}
  1188  		return byIndex(x).Less(i, j)
  1189  	})
  1190  
  1191  	// Delete all fields that are hidden by the Go rules for embedded fields,
  1192  	// except that fields with JSON tags are promoted.
  1193  
  1194  	// The fields are sorted in primary order of name, secondary order
  1195  	// of field index length. Loop over names; for each name, delete
  1196  	// hidden fields by choosing the one dominant field that survives.
  1197  	out := fields[:0]
  1198  	for advance, i := 0, 0; i < len(fields); i += advance {
  1199  		// One iteration per name.
  1200  		// Find the sequence of fields with the name of this first field.
  1201  		fi := fields[i]
  1202  		name := fi.name
  1203  		for advance = 1; i+advance < len(fields); advance++ {
  1204  			fj := fields[i+advance]
  1205  			if fj.name != name {
  1206  				break
  1207  			}
  1208  		}
  1209  		if advance == 1 { // Only one field with this name
  1210  			out = append(out, fi)
  1211  			continue
  1212  		}
  1213  		dominant, ok := dominantField(fields[i : i+advance])
  1214  		if ok {
  1215  			out = append(out, dominant)
  1216  		}
  1217  	}
  1218  
  1219  	fields = out
  1220  	sort.Sort(byIndex(fields))
  1221  
  1222  	for i := range fields {
  1223  		f := &fields[i]
  1224  		f.encoder = typeEncoder(typeByIndex(t, f.index))
  1225  	}
  1226  	return fields
  1227  }
  1228  
  1229  // dominantField looks through the fields, all of which are known to
  1230  // have the same name, to find the single field that dominates the
  1231  // others using Go's embedding rules, modified by the presence of
  1232  // JSON tags. If there are multiple top-level fields, the boolean
  1233  // will be false: This condition is an error in Go and we skip all
  1234  // the fields.
  1235  func dominantField(fields []field) (field, bool) {
  1236  	// The fields are sorted in increasing index-length order, then by presence of tag.
  1237  	// That means that the first field is the dominant one. We need only check
  1238  	// for error cases: two fields at top level, either both tagged or neither tagged.
  1239  	if len(fields) > 1 && len(fields[0].index) == len(fields[1].index) && fields[0].tag == fields[1].tag {
  1240  		return field{}, false
  1241  	}
  1242  	return fields[0], true
  1243  }
  1244  
  1245  var fieldCache sync.Map // map[reflect.Type][]field
  1246  
  1247  // cachedTypeFields is like typeFields but uses a cache to avoid repeated work.
  1248  func cachedTypeFields(t reflect.Type) []field {
  1249  	if f, ok := fieldCache.Load(t); ok {
  1250  		return f.([]field)
  1251  	}
  1252  	f, _ := fieldCache.LoadOrStore(t, typeFields(t))
  1253  	return f.([]field)
  1254  }