github.com/aergoio/aergo@v1.3.1/libtool/src/gmp-6.1.2/mpn/generic/hgcd.c (about)

     1  /* hgcd.c.
     2  
     3     THE FUNCTIONS IN THIS FILE ARE INTERNAL WITH MUTABLE INTERFACES.  IT IS ONLY
     4     SAFE TO REACH THEM THROUGH DOCUMENTED INTERFACES.  IN FACT, IT IS ALMOST
     5     GUARANTEED THAT THEY'LL CHANGE OR DISAPPEAR IN A FUTURE GNU MP RELEASE.
     6  
     7  Copyright 2003-2005, 2008, 2011, 2012 Free Software Foundation, Inc.
     8  
     9  This file is part of the GNU MP Library.
    10  
    11  The GNU MP Library is free software; you can redistribute it and/or modify
    12  it under the terms of either:
    13  
    14    * the GNU Lesser General Public License as published by the Free
    15      Software Foundation; either version 3 of the License, or (at your
    16      option) any later version.
    17  
    18  or
    19  
    20    * the GNU General Public License as published by the Free Software
    21      Foundation; either version 2 of the License, or (at your option) any
    22      later version.
    23  
    24  or both in parallel, as here.
    25  
    26  The GNU MP Library is distributed in the hope that it will be useful, but
    27  WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
    28  or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    29  for more details.
    30  
    31  You should have received copies of the GNU General Public License and the
    32  GNU Lesser General Public License along with the GNU MP Library.  If not,
    33  see https://www.gnu.org/licenses/.  */
    34  
    35  #include "gmp.h"
    36  #include "gmp-impl.h"
    37  #include "longlong.h"
    38  
    39  
    40  /* Size analysis for hgcd:
    41  
    42     For the recursive calls, we have n1 <= ceil(n / 2). Then the
    43     storage need is determined by the storage for the recursive call
    44     computing M1, and hgcd_matrix_adjust and hgcd_matrix_mul calls that use M1
    45     (after this, the storage needed for M1 can be recycled).
    46  
    47     Let S(r) denote the required storage. For M1 we need 4 * (ceil(n1/2) + 1)
    48     = 4 * (ceil(n/4) + 1), for the hgcd_matrix_adjust call, we need n + 2,
    49     and for the hgcd_matrix_mul, we may need 3 ceil(n/2) + 8. In total,
    50     4 * ceil(n/4) + 3 ceil(n/2) + 12 <= 10 ceil(n/4) + 12.
    51  
    52     For the recursive call, we need S(n1) = S(ceil(n/2)).
    53  
    54     S(n) <= 10*ceil(n/4) + 12 + S(ceil(n/2))
    55  	<= 10*(ceil(n/4) + ... + ceil(n/2^(1+k))) + 12k + S(ceil(n/2^k))
    56  	<= 10*(2 ceil(n/4) + k) + 12k + S(ceil(n/2^k))
    57  	<= 20 ceil(n/4) + 22k + S(ceil(n/2^k))
    58  */
    59  
    60  mp_size_t
    61  mpn_hgcd_itch (mp_size_t n)
    62  {
    63    unsigned k;
    64    int count;
    65    mp_size_t nscaled;
    66  
    67    if (BELOW_THRESHOLD (n, HGCD_THRESHOLD))
    68      return n;
    69  
    70    /* Get the recursion depth. */
    71    nscaled = (n - 1) / (HGCD_THRESHOLD - 1);
    72    count_leading_zeros (count, nscaled);
    73    k = GMP_LIMB_BITS - count;
    74  
    75    return 20 * ((n+3) / 4) + 22 * k + HGCD_THRESHOLD;
    76  }
    77  
    78  /* Reduces a,b until |a-b| fits in n/2 + 1 limbs. Constructs matrix M
    79     with elements of size at most (n+1)/2 - 1. Returns new size of a,
    80     b, or zero if no reduction is possible. */
    81  
    82  mp_size_t
    83  mpn_hgcd (mp_ptr ap, mp_ptr bp, mp_size_t n,
    84  	  struct hgcd_matrix *M, mp_ptr tp)
    85  {
    86    mp_size_t s = n/2 + 1;
    87  
    88    mp_size_t nn;
    89    int success = 0;
    90  
    91    if (n <= s)
    92      /* Happens when n <= 2, a fairly uninteresting case but exercised
    93         by the random inputs of the testsuite. */
    94      return 0;
    95  
    96    ASSERT ((ap[n-1] | bp[n-1]) > 0);
    97  
    98    ASSERT ((n+1)/2 - 1 < M->alloc);
    99  
   100    if (ABOVE_THRESHOLD (n, HGCD_THRESHOLD))
   101      {
   102        mp_size_t n2 = (3*n)/4 + 1;
   103        mp_size_t p = n/2;
   104  
   105        nn = mpn_hgcd_reduce (M, ap, bp, n, p, tp);
   106        if (nn)
   107  	{
   108  	  n = nn;
   109  	  success = 1;
   110  	}
   111  
   112        /* NOTE: It appears this loop never runs more than once (at
   113  	 least when not recursing to hgcd_appr). */
   114        while (n > n2)
   115  	{
   116  	  /* Needs n + 1 storage */
   117  	  nn = mpn_hgcd_step (n, ap, bp, s, M, tp);
   118  	  if (!nn)
   119  	    return success ? n : 0;
   120  
   121  	  n = nn;
   122  	  success = 1;
   123  	}
   124  
   125        if (n > s + 2)
   126  	{
   127  	  struct hgcd_matrix M1;
   128  	  mp_size_t scratch;
   129  
   130  	  p = 2*s - n + 1;
   131  	  scratch = MPN_HGCD_MATRIX_INIT_ITCH (n-p);
   132  
   133  	  mpn_hgcd_matrix_init(&M1, n - p, tp);
   134  
   135  	  /* FIXME: Should use hgcd_reduce, but that may require more
   136  	     scratch space, which requires review. */
   137  
   138  	  nn = mpn_hgcd (ap + p, bp + p, n - p, &M1, tp + scratch);
   139  	  if (nn > 0)
   140  	    {
   141  	      /* We always have max(M) > 2^{-(GMP_NUMB_BITS + 1)} max(M1) */
   142  	      ASSERT (M->n + 2 >= M1.n);
   143  
   144  	      /* Furthermore, assume M ends with a quotient (1, q; 0, 1),
   145  		 then either q or q + 1 is a correct quotient, and M1 will
   146  		 start with either (1, 0; 1, 1) or (2, 1; 1, 1). This
   147  		 rules out the case that the size of M * M1 is much
   148  		 smaller than the expected M->n + M1->n. */
   149  
   150  	      ASSERT (M->n + M1.n < M->alloc);
   151  
   152  	      /* Needs 2 (p + M->n) <= 2 (2*s - n2 + 1 + n2 - s - 1)
   153  		 = 2*s <= 2*(floor(n/2) + 1) <= n + 2. */
   154  	      n = mpn_hgcd_matrix_adjust (&M1, p + nn, ap, bp, p, tp + scratch);
   155  
   156  	      /* We need a bound for of M->n + M1.n. Let n be the original
   157  		 input size. Then
   158  
   159  		 ceil(n/2) - 1 >= size of product >= M.n + M1.n - 2
   160  
   161  		 and it follows that
   162  
   163  		 M.n + M1.n <= ceil(n/2) + 1
   164  
   165  		 Then 3*(M.n + M1.n) + 5 <= 3 * ceil(n/2) + 8 is the
   166  		 amount of needed scratch space. */
   167  	      mpn_hgcd_matrix_mul (M, &M1, tp + scratch);
   168  	      success = 1;
   169  	    }
   170  	}
   171      }
   172  
   173    for (;;)
   174      {
   175        /* Needs s+3 < n */
   176        nn = mpn_hgcd_step (n, ap, bp, s, M, tp);
   177        if (!nn)
   178  	return success ? n : 0;
   179  
   180        n = nn;
   181        success = 1;
   182      }
   183  }