github.com/aergoio/aergo@v1.3.1/libtool/src/gmp-6.1.2/mpn/generic/hgcd.c (about) 1 /* hgcd.c. 2 3 THE FUNCTIONS IN THIS FILE ARE INTERNAL WITH MUTABLE INTERFACES. IT IS ONLY 4 SAFE TO REACH THEM THROUGH DOCUMENTED INTERFACES. IN FACT, IT IS ALMOST 5 GUARANTEED THAT THEY'LL CHANGE OR DISAPPEAR IN A FUTURE GNU MP RELEASE. 6 7 Copyright 2003-2005, 2008, 2011, 2012 Free Software Foundation, Inc. 8 9 This file is part of the GNU MP Library. 10 11 The GNU MP Library is free software; you can redistribute it and/or modify 12 it under the terms of either: 13 14 * the GNU Lesser General Public License as published by the Free 15 Software Foundation; either version 3 of the License, or (at your 16 option) any later version. 17 18 or 19 20 * the GNU General Public License as published by the Free Software 21 Foundation; either version 2 of the License, or (at your option) any 22 later version. 23 24 or both in parallel, as here. 25 26 The GNU MP Library is distributed in the hope that it will be useful, but 27 WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 28 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 29 for more details. 30 31 You should have received copies of the GNU General Public License and the 32 GNU Lesser General Public License along with the GNU MP Library. If not, 33 see https://www.gnu.org/licenses/. */ 34 35 #include "gmp.h" 36 #include "gmp-impl.h" 37 #include "longlong.h" 38 39 40 /* Size analysis for hgcd: 41 42 For the recursive calls, we have n1 <= ceil(n / 2). Then the 43 storage need is determined by the storage for the recursive call 44 computing M1, and hgcd_matrix_adjust and hgcd_matrix_mul calls that use M1 45 (after this, the storage needed for M1 can be recycled). 46 47 Let S(r) denote the required storage. For M1 we need 4 * (ceil(n1/2) + 1) 48 = 4 * (ceil(n/4) + 1), for the hgcd_matrix_adjust call, we need n + 2, 49 and for the hgcd_matrix_mul, we may need 3 ceil(n/2) + 8. In total, 50 4 * ceil(n/4) + 3 ceil(n/2) + 12 <= 10 ceil(n/4) + 12. 51 52 For the recursive call, we need S(n1) = S(ceil(n/2)). 53 54 S(n) <= 10*ceil(n/4) + 12 + S(ceil(n/2)) 55 <= 10*(ceil(n/4) + ... + ceil(n/2^(1+k))) + 12k + S(ceil(n/2^k)) 56 <= 10*(2 ceil(n/4) + k) + 12k + S(ceil(n/2^k)) 57 <= 20 ceil(n/4) + 22k + S(ceil(n/2^k)) 58 */ 59 60 mp_size_t 61 mpn_hgcd_itch (mp_size_t n) 62 { 63 unsigned k; 64 int count; 65 mp_size_t nscaled; 66 67 if (BELOW_THRESHOLD (n, HGCD_THRESHOLD)) 68 return n; 69 70 /* Get the recursion depth. */ 71 nscaled = (n - 1) / (HGCD_THRESHOLD - 1); 72 count_leading_zeros (count, nscaled); 73 k = GMP_LIMB_BITS - count; 74 75 return 20 * ((n+3) / 4) + 22 * k + HGCD_THRESHOLD; 76 } 77 78 /* Reduces a,b until |a-b| fits in n/2 + 1 limbs. Constructs matrix M 79 with elements of size at most (n+1)/2 - 1. Returns new size of a, 80 b, or zero if no reduction is possible. */ 81 82 mp_size_t 83 mpn_hgcd (mp_ptr ap, mp_ptr bp, mp_size_t n, 84 struct hgcd_matrix *M, mp_ptr tp) 85 { 86 mp_size_t s = n/2 + 1; 87 88 mp_size_t nn; 89 int success = 0; 90 91 if (n <= s) 92 /* Happens when n <= 2, a fairly uninteresting case but exercised 93 by the random inputs of the testsuite. */ 94 return 0; 95 96 ASSERT ((ap[n-1] | bp[n-1]) > 0); 97 98 ASSERT ((n+1)/2 - 1 < M->alloc); 99 100 if (ABOVE_THRESHOLD (n, HGCD_THRESHOLD)) 101 { 102 mp_size_t n2 = (3*n)/4 + 1; 103 mp_size_t p = n/2; 104 105 nn = mpn_hgcd_reduce (M, ap, bp, n, p, tp); 106 if (nn) 107 { 108 n = nn; 109 success = 1; 110 } 111 112 /* NOTE: It appears this loop never runs more than once (at 113 least when not recursing to hgcd_appr). */ 114 while (n > n2) 115 { 116 /* Needs n + 1 storage */ 117 nn = mpn_hgcd_step (n, ap, bp, s, M, tp); 118 if (!nn) 119 return success ? n : 0; 120 121 n = nn; 122 success = 1; 123 } 124 125 if (n > s + 2) 126 { 127 struct hgcd_matrix M1; 128 mp_size_t scratch; 129 130 p = 2*s - n + 1; 131 scratch = MPN_HGCD_MATRIX_INIT_ITCH (n-p); 132 133 mpn_hgcd_matrix_init(&M1, n - p, tp); 134 135 /* FIXME: Should use hgcd_reduce, but that may require more 136 scratch space, which requires review. */ 137 138 nn = mpn_hgcd (ap + p, bp + p, n - p, &M1, tp + scratch); 139 if (nn > 0) 140 { 141 /* We always have max(M) > 2^{-(GMP_NUMB_BITS + 1)} max(M1) */ 142 ASSERT (M->n + 2 >= M1.n); 143 144 /* Furthermore, assume M ends with a quotient (1, q; 0, 1), 145 then either q or q + 1 is a correct quotient, and M1 will 146 start with either (1, 0; 1, 1) or (2, 1; 1, 1). This 147 rules out the case that the size of M * M1 is much 148 smaller than the expected M->n + M1->n. */ 149 150 ASSERT (M->n + M1.n < M->alloc); 151 152 /* Needs 2 (p + M->n) <= 2 (2*s - n2 + 1 + n2 - s - 1) 153 = 2*s <= 2*(floor(n/2) + 1) <= n + 2. */ 154 n = mpn_hgcd_matrix_adjust (&M1, p + nn, ap, bp, p, tp + scratch); 155 156 /* We need a bound for of M->n + M1.n. Let n be the original 157 input size. Then 158 159 ceil(n/2) - 1 >= size of product >= M.n + M1.n - 2 160 161 and it follows that 162 163 M.n + M1.n <= ceil(n/2) + 1 164 165 Then 3*(M.n + M1.n) + 5 <= 3 * ceil(n/2) + 8 is the 166 amount of needed scratch space. */ 167 mpn_hgcd_matrix_mul (M, &M1, tp + scratch); 168 success = 1; 169 } 170 } 171 } 172 173 for (;;) 174 { 175 /* Needs s+3 < n */ 176 nn = mpn_hgcd_step (n, ap, bp, s, M, tp); 177 if (!nn) 178 return success ? n : 0; 179 180 n = nn; 181 success = 1; 182 } 183 }