github.com/aergoio/aergo@v1.3.1/libtool/src/gmp-6.1.2/mpn/generic/hgcd_appr.c (about) 1 /* hgcd_appr.c. 2 3 THE FUNCTIONS IN THIS FILE ARE INTERNAL WITH MUTABLE INTERFACES. IT IS ONLY 4 SAFE TO REACH THEM THROUGH DOCUMENTED INTERFACES. IN FACT, IT IS ALMOST 5 GUARANTEED THAT THEY'LL CHANGE OR DISAPPEAR IN A FUTURE GNU MP RELEASE. 6 7 Copyright 2011, 2012 Free Software Foundation, Inc. 8 9 This file is part of the GNU MP Library. 10 11 The GNU MP Library is free software; you can redistribute it and/or modify 12 it under the terms of either: 13 14 * the GNU Lesser General Public License as published by the Free 15 Software Foundation; either version 3 of the License, or (at your 16 option) any later version. 17 18 or 19 20 * the GNU General Public License as published by the Free Software 21 Foundation; either version 2 of the License, or (at your option) any 22 later version. 23 24 or both in parallel, as here. 25 26 The GNU MP Library is distributed in the hope that it will be useful, but 27 WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 28 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 29 for more details. 30 31 You should have received copies of the GNU General Public License and the 32 GNU Lesser General Public License along with the GNU MP Library. If not, 33 see https://www.gnu.org/licenses/. */ 34 35 #include "gmp.h" 36 #include "gmp-impl.h" 37 #include "longlong.h" 38 39 /* Identical to mpn_hgcd_itch. FIXME: Do we really need to add 40 HGCD_THRESHOLD at the end? */ 41 mp_size_t 42 mpn_hgcd_appr_itch (mp_size_t n) 43 { 44 if (BELOW_THRESHOLD (n, HGCD_APPR_THRESHOLD)) 45 return n; 46 else 47 { 48 unsigned k; 49 int count; 50 mp_size_t nscaled; 51 52 /* Get the recursion depth. */ 53 nscaled = (n - 1) / (HGCD_APPR_THRESHOLD - 1); 54 count_leading_zeros (count, nscaled); 55 k = GMP_LIMB_BITS - count; 56 57 return 20 * ((n+3) / 4) + 22 * k + HGCD_THRESHOLD; 58 } 59 } 60 61 /* Destroys inputs. */ 62 int 63 mpn_hgcd_appr (mp_ptr ap, mp_ptr bp, mp_size_t n, 64 struct hgcd_matrix *M, mp_ptr tp) 65 { 66 mp_size_t s; 67 int success = 0; 68 69 ASSERT (n > 0); 70 71 ASSERT ((ap[n-1] | bp[n-1]) != 0); 72 73 if (n <= 2) 74 /* Implies s = n. A fairly uninteresting case but exercised by the 75 random inputs of the testsuite. */ 76 return 0; 77 78 ASSERT ((n+1)/2 - 1 < M->alloc); 79 80 /* We aim for reduction of to GMP_NUMB_BITS * s bits. But each time 81 we discard some of the least significant limbs, we must keep one 82 additional bit to account for the truncation error. We maintain 83 the GMP_NUMB_BITS * s - extra_bits as the current target size. */ 84 85 s = n/2 + 1; 86 if (BELOW_THRESHOLD (n, HGCD_APPR_THRESHOLD)) 87 { 88 unsigned extra_bits = 0; 89 90 while (n > 2) 91 { 92 mp_size_t nn; 93 94 ASSERT (n > s); 95 ASSERT (n <= 2*s); 96 97 nn = mpn_hgcd_step (n, ap, bp, s, M, tp); 98 if (!nn) 99 break; 100 101 n = nn; 102 success = 1; 103 104 /* We can truncate and discard the lower p bits whenever nbits <= 105 2*sbits - p. To account for the truncation error, we must 106 adjust 107 108 sbits <-- sbits + 1 - p, 109 110 rather than just sbits <-- sbits - p. This adjustment makes 111 the produced matrix slightly smaller than it could be. */ 112 113 if (GMP_NUMB_BITS * (n + 1) + 2 * extra_bits <= 2*GMP_NUMB_BITS * s) 114 { 115 mp_size_t p = (GMP_NUMB_BITS * (2*s - n) - 2*extra_bits) / GMP_NUMB_BITS; 116 117 if (extra_bits == 0) 118 { 119 /* We cross a limb boundary and bump s. We can't do that 120 if the result is that it makes makes min(U, V) 121 smaller than 2^{GMP_NUMB_BITS} s. */ 122 if (s + 1 == n 123 || mpn_zero_p (ap + s + 1, n - s - 1) 124 || mpn_zero_p (bp + s + 1, n - s - 1)) 125 continue; 126 127 extra_bits = GMP_NUMB_BITS - 1; 128 s++; 129 } 130 else 131 { 132 extra_bits--; 133 } 134 135 /* Drop the p least significant limbs */ 136 ap += p; bp += p; n -= p; s -= p; 137 } 138 } 139 140 ASSERT (s > 0); 141 142 if (extra_bits > 0) 143 { 144 /* We can get here only of we have dropped at least one of the least 145 significant bits, so we can decrement ap and bp. We can then shift 146 left extra bits using mpn_rshift. */ 147 /* NOTE: In the unlikely case that n is large, it would be preferable 148 to do an initial subdiv step to reduce the size before shifting, 149 but that would mean duplicating mpn_gcd_subdiv_step with a bit 150 count rather than a limb count. */ 151 ap--; bp--; 152 ap[0] = mpn_rshift (ap+1, ap+1, n, GMP_NUMB_BITS - extra_bits); 153 bp[0] = mpn_rshift (bp+1, bp+1, n, GMP_NUMB_BITS - extra_bits); 154 n += (ap[n] | bp[n]) > 0; 155 156 ASSERT (success); 157 158 while (n > 2) 159 { 160 mp_size_t nn; 161 162 ASSERT (n > s); 163 ASSERT (n <= 2*s); 164 165 nn = mpn_hgcd_step (n, ap, bp, s, M, tp); 166 167 if (!nn) 168 return 1; 169 170 n = nn; 171 } 172 } 173 174 if (n == 2) 175 { 176 struct hgcd_matrix1 M1; 177 ASSERT (s == 1); 178 179 if (mpn_hgcd2 (ap[1], ap[0], bp[1], bp[0], &M1)) 180 { 181 /* Multiply M <- M * M1 */ 182 mpn_hgcd_matrix_mul_1 (M, &M1, tp); 183 success = 1; 184 } 185 } 186 return success; 187 } 188 else 189 { 190 mp_size_t n2 = (3*n)/4 + 1; 191 mp_size_t p = n/2; 192 mp_size_t nn; 193 194 nn = mpn_hgcd_reduce (M, ap, bp, n, p, tp); 195 if (nn) 196 { 197 n = nn; 198 /* FIXME: Discard some of the low limbs immediately? */ 199 success = 1; 200 } 201 202 while (n > n2) 203 { 204 mp_size_t nn; 205 206 /* Needs n + 1 storage */ 207 nn = mpn_hgcd_step (n, ap, bp, s, M, tp); 208 if (!nn) 209 return success; 210 211 n = nn; 212 success = 1; 213 } 214 if (n > s + 2) 215 { 216 struct hgcd_matrix M1; 217 mp_size_t scratch; 218 219 p = 2*s - n + 1; 220 scratch = MPN_HGCD_MATRIX_INIT_ITCH (n-p); 221 222 mpn_hgcd_matrix_init(&M1, n - p, tp); 223 if (mpn_hgcd_appr (ap + p, bp + p, n - p, &M1, tp + scratch)) 224 { 225 /* We always have max(M) > 2^{-(GMP_NUMB_BITS + 1)} max(M1) */ 226 ASSERT (M->n + 2 >= M1.n); 227 228 /* Furthermore, assume M ends with a quotient (1, q; 0, 1), 229 then either q or q + 1 is a correct quotient, and M1 will 230 start with either (1, 0; 1, 1) or (2, 1; 1, 1). This 231 rules out the case that the size of M * M1 is much 232 smaller than the expected M->n + M1->n. */ 233 234 ASSERT (M->n + M1.n < M->alloc); 235 236 /* We need a bound for of M->n + M1.n. Let n be the original 237 input size. Then 238 239 ceil(n/2) - 1 >= size of product >= M.n + M1.n - 2 240 241 and it follows that 242 243 M.n + M1.n <= ceil(n/2) + 1 244 245 Then 3*(M.n + M1.n) + 5 <= 3 * ceil(n/2) + 8 is the 246 amount of needed scratch space. */ 247 mpn_hgcd_matrix_mul (M, &M1, tp + scratch); 248 return 1; 249 } 250 } 251 252 for(;;) 253 { 254 mp_size_t nn; 255 256 ASSERT (n > s); 257 ASSERT (n <= 2*s); 258 259 nn = mpn_hgcd_step (n, ap, bp, s, M, tp); 260 261 if (!nn) 262 return success; 263 264 n = nn; 265 success = 1; 266 } 267 } 268 }