github.com/aergoio/aergo@v1.3.1/libtool/src/gmp-6.1.2/mpn/generic/hgcd_matrix.c (about) 1 /* hgcd_matrix.c. 2 3 THE FUNCTIONS IN THIS FILE ARE INTERNAL WITH MUTABLE INTERFACES. IT IS ONLY 4 SAFE TO REACH THEM THROUGH DOCUMENTED INTERFACES. IN FACT, IT IS ALMOST 5 GUARANTEED THAT THEY'LL CHANGE OR DISAPPEAR IN A FUTURE GNU MP RELEASE. 6 7 Copyright 2003-2005, 2008, 2012 Free Software Foundation, Inc. 8 9 This file is part of the GNU MP Library. 10 11 The GNU MP Library is free software; you can redistribute it and/or modify 12 it under the terms of either: 13 14 * the GNU Lesser General Public License as published by the Free 15 Software Foundation; either version 3 of the License, or (at your 16 option) any later version. 17 18 or 19 20 * the GNU General Public License as published by the Free Software 21 Foundation; either version 2 of the License, or (at your option) any 22 later version. 23 24 or both in parallel, as here. 25 26 The GNU MP Library is distributed in the hope that it will be useful, but 27 WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 28 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 29 for more details. 30 31 You should have received copies of the GNU General Public License and the 32 GNU Lesser General Public License along with the GNU MP Library. If not, 33 see https://www.gnu.org/licenses/. */ 34 35 #include "gmp.h" 36 #include "gmp-impl.h" 37 #include "longlong.h" 38 39 /* For input of size n, matrix elements are of size at most ceil(n/2) 40 - 1, but we need two limbs extra. */ 41 void 42 mpn_hgcd_matrix_init (struct hgcd_matrix *M, mp_size_t n, mp_ptr p) 43 { 44 mp_size_t s = (n+1)/2 + 1; 45 M->alloc = s; 46 M->n = 1; 47 MPN_ZERO (p, 4 * s); 48 M->p[0][0] = p; 49 M->p[0][1] = p + s; 50 M->p[1][0] = p + 2 * s; 51 M->p[1][1] = p + 3 * s; 52 53 M->p[0][0][0] = M->p[1][1][0] = 1; 54 } 55 56 /* Update column COL, adding in Q * column (1-COL). Temporary storage: 57 * qn + n <= M->alloc, where n is the size of the largest element in 58 * column 1 - COL. */ 59 void 60 mpn_hgcd_matrix_update_q (struct hgcd_matrix *M, mp_srcptr qp, mp_size_t qn, 61 unsigned col, mp_ptr tp) 62 { 63 ASSERT (col < 2); 64 65 if (qn == 1) 66 { 67 mp_limb_t q = qp[0]; 68 mp_limb_t c0, c1; 69 70 c0 = mpn_addmul_1 (M->p[0][col], M->p[0][1-col], M->n, q); 71 c1 = mpn_addmul_1 (M->p[1][col], M->p[1][1-col], M->n, q); 72 73 M->p[0][col][M->n] = c0; 74 M->p[1][col][M->n] = c1; 75 76 M->n += (c0 | c1) != 0; 77 } 78 else 79 { 80 unsigned row; 81 82 /* Carries for the unlikely case that we get both high words 83 from the multiplication and carries from the addition. */ 84 mp_limb_t c[2]; 85 mp_size_t n; 86 87 /* The matrix will not necessarily grow in size by qn, so we 88 need normalization in order not to overflow M. */ 89 90 for (n = M->n; n + qn > M->n; n--) 91 { 92 ASSERT (n > 0); 93 if (M->p[0][1-col][n-1] > 0 || M->p[1][1-col][n-1] > 0) 94 break; 95 } 96 97 ASSERT (qn + n <= M->alloc); 98 99 for (row = 0; row < 2; row++) 100 { 101 if (qn <= n) 102 mpn_mul (tp, M->p[row][1-col], n, qp, qn); 103 else 104 mpn_mul (tp, qp, qn, M->p[row][1-col], n); 105 106 ASSERT (n + qn >= M->n); 107 c[row] = mpn_add (M->p[row][col], tp, n + qn, M->p[row][col], M->n); 108 } 109 110 n += qn; 111 112 if (c[0] | c[1]) 113 { 114 M->p[0][col][n] = c[0]; 115 M->p[1][col][n] = c[1]; 116 n++; 117 } 118 else 119 { 120 n -= (M->p[0][col][n-1] | M->p[1][col][n-1]) == 0; 121 ASSERT (n >= M->n); 122 } 123 M->n = n; 124 } 125 126 ASSERT (M->n < M->alloc); 127 } 128 129 /* Multiply M by M1 from the right. Since the M1 elements fit in 130 GMP_NUMB_BITS - 1 bits, M grows by at most one limb. Needs 131 temporary space M->n */ 132 void 133 mpn_hgcd_matrix_mul_1 (struct hgcd_matrix *M, const struct hgcd_matrix1 *M1, 134 mp_ptr tp) 135 { 136 mp_size_t n0, n1; 137 138 /* Could avoid copy by some swapping of pointers. */ 139 MPN_COPY (tp, M->p[0][0], M->n); 140 n0 = mpn_hgcd_mul_matrix1_vector (M1, M->p[0][0], tp, M->p[0][1], M->n); 141 MPN_COPY (tp, M->p[1][0], M->n); 142 n1 = mpn_hgcd_mul_matrix1_vector (M1, M->p[1][0], tp, M->p[1][1], M->n); 143 144 /* Depends on zero initialization */ 145 M->n = MAX(n0, n1); 146 ASSERT (M->n < M->alloc); 147 } 148 149 /* Multiply M by M1 from the right. Needs 3*(M->n + M1->n) + 5 limbs 150 of temporary storage (see mpn_matrix22_mul_itch). */ 151 void 152 mpn_hgcd_matrix_mul (struct hgcd_matrix *M, const struct hgcd_matrix *M1, 153 mp_ptr tp) 154 { 155 mp_size_t n; 156 157 /* About the new size of M:s elements. Since M1's diagonal elements 158 are > 0, no element can decrease. The new elements are of size 159 M->n + M1->n, one limb more or less. The computation of the 160 matrix product produces elements of size M->n + M1->n + 1. But 161 the true size, after normalization, may be three limbs smaller. 162 163 The reason that the product has normalized size >= M->n + M1->n - 164 2 is subtle. It depends on the fact that M and M1 can be factored 165 as products of (1,1; 0,1) and (1,0; 1,1), and that we can't have 166 M ending with a large power and M1 starting with a large power of 167 the same matrix. */ 168 169 /* FIXME: Strassen multiplication gives only a small speedup. In FFT 170 multiplication range, this function could be sped up quite a lot 171 using invariance. */ 172 ASSERT (M->n + M1->n < M->alloc); 173 174 ASSERT ((M->p[0][0][M->n-1] | M->p[0][1][M->n-1] 175 | M->p[1][0][M->n-1] | M->p[1][1][M->n-1]) > 0); 176 177 ASSERT ((M1->p[0][0][M1->n-1] | M1->p[0][1][M1->n-1] 178 | M1->p[1][0][M1->n-1] | M1->p[1][1][M1->n-1]) > 0); 179 180 mpn_matrix22_mul (M->p[0][0], M->p[0][1], 181 M->p[1][0], M->p[1][1], M->n, 182 M1->p[0][0], M1->p[0][1], 183 M1->p[1][0], M1->p[1][1], M1->n, tp); 184 185 /* Index of last potentially non-zero limb, size is one greater. */ 186 n = M->n + M1->n; 187 188 n -= ((M->p[0][0][n] | M->p[0][1][n] | M->p[1][0][n] | M->p[1][1][n]) == 0); 189 n -= ((M->p[0][0][n] | M->p[0][1][n] | M->p[1][0][n] | M->p[1][1][n]) == 0); 190 n -= ((M->p[0][0][n] | M->p[0][1][n] | M->p[1][0][n] | M->p[1][1][n]) == 0); 191 192 ASSERT ((M->p[0][0][n] | M->p[0][1][n] | M->p[1][0][n] | M->p[1][1][n]) > 0); 193 194 M->n = n + 1; 195 } 196 197 /* Multiplies the least significant p limbs of (a;b) by M^-1. 198 Temporary space needed: 2 * (p + M->n)*/ 199 mp_size_t 200 mpn_hgcd_matrix_adjust (const struct hgcd_matrix *M, 201 mp_size_t n, mp_ptr ap, mp_ptr bp, 202 mp_size_t p, mp_ptr tp) 203 { 204 /* M^-1 (a;b) = (r11, -r01; -r10, r00) (a ; b) 205 = (r11 a - r01 b; - r10 a + r00 b */ 206 207 mp_ptr t0 = tp; 208 mp_ptr t1 = tp + p + M->n; 209 mp_limb_t ah, bh; 210 mp_limb_t cy; 211 212 ASSERT (p + M->n < n); 213 214 /* First compute the two values depending on a, before overwriting a */ 215 216 if (M->n >= p) 217 { 218 mpn_mul (t0, M->p[1][1], M->n, ap, p); 219 mpn_mul (t1, M->p[1][0], M->n, ap, p); 220 } 221 else 222 { 223 mpn_mul (t0, ap, p, M->p[1][1], M->n); 224 mpn_mul (t1, ap, p, M->p[1][0], M->n); 225 } 226 227 /* Update a */ 228 MPN_COPY (ap, t0, p); 229 ah = mpn_add (ap + p, ap + p, n - p, t0 + p, M->n); 230 231 if (M->n >= p) 232 mpn_mul (t0, M->p[0][1], M->n, bp, p); 233 else 234 mpn_mul (t0, bp, p, M->p[0][1], M->n); 235 236 cy = mpn_sub (ap, ap, n, t0, p + M->n); 237 ASSERT (cy <= ah); 238 ah -= cy; 239 240 /* Update b */ 241 if (M->n >= p) 242 mpn_mul (t0, M->p[0][0], M->n, bp, p); 243 else 244 mpn_mul (t0, bp, p, M->p[0][0], M->n); 245 246 MPN_COPY (bp, t0, p); 247 bh = mpn_add (bp + p, bp + p, n - p, t0 + p, M->n); 248 cy = mpn_sub (bp, bp, n, t1, p + M->n); 249 ASSERT (cy <= bh); 250 bh -= cy; 251 252 if (ah > 0 || bh > 0) 253 { 254 ap[n] = ah; 255 bp[n] = bh; 256 n++; 257 } 258 else 259 { 260 /* The subtraction can reduce the size by at most one limb. */ 261 if (ap[n-1] == 0 && bp[n-1] == 0) 262 n--; 263 } 264 ASSERT (ap[n-1] > 0 || bp[n-1] > 0); 265 return n; 266 }