github.com/aergoio/aergo@v1.3.1/libtool/src/gmp-6.1.2/mpn/generic/jacbase.c (about) 1 /* mpn_jacobi_base -- limb/limb Jacobi symbol with restricted arguments. 2 3 THIS INTERFACE IS PRELIMINARY AND MIGHT DISAPPEAR OR BE SUBJECT TO 4 INCOMPATIBLE CHANGES IN A FUTURE RELEASE OF GMP. 5 6 Copyright 1999-2002, 2010 Free Software Foundation, Inc. 7 8 This file is part of the GNU MP Library. 9 10 The GNU MP Library is free software; you can redistribute it and/or modify 11 it under the terms of either: 12 13 * the GNU Lesser General Public License as published by the Free 14 Software Foundation; either version 3 of the License, or (at your 15 option) any later version. 16 17 or 18 19 * the GNU General Public License as published by the Free Software 20 Foundation; either version 2 of the License, or (at your option) any 21 later version. 22 23 or both in parallel, as here. 24 25 The GNU MP Library is distributed in the hope that it will be useful, but 26 WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 27 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 28 for more details. 29 30 You should have received copies of the GNU General Public License and the 31 GNU Lesser General Public License along with the GNU MP Library. If not, 32 see https://www.gnu.org/licenses/. */ 33 34 #include "gmp.h" 35 #include "gmp-impl.h" 36 #include "longlong.h" 37 38 39 /* Use the simple loop by default. The generic count_trailing_zeros is not 40 very fast, and the extra trickery of method 3 has proven to be less use 41 than might have been though. */ 42 #ifndef JACOBI_BASE_METHOD 43 #define JACOBI_BASE_METHOD 2 44 #endif 45 46 47 /* Use count_trailing_zeros. */ 48 #if JACOBI_BASE_METHOD == 1 49 #define PROCESS_TWOS_ANY \ 50 { \ 51 mp_limb_t twos; \ 52 count_trailing_zeros (twos, a); \ 53 result_bit1 ^= JACOBI_TWOS_U_BIT1 (twos, b); \ 54 a >>= twos; \ 55 } 56 #define PROCESS_TWOS_EVEN PROCESS_TWOS_ANY 57 #endif 58 59 /* Use a simple loop. A disadvantage of this is that there's a branch on a 60 50/50 chance of a 0 or 1 low bit. */ 61 #if JACOBI_BASE_METHOD == 2 62 #define PROCESS_TWOS_EVEN \ 63 { \ 64 int two; \ 65 two = JACOBI_TWO_U_BIT1 (b); \ 66 do \ 67 { \ 68 a >>= 1; \ 69 result_bit1 ^= two; \ 70 ASSERT (a != 0); \ 71 } \ 72 while ((a & 1) == 0); \ 73 } 74 #define PROCESS_TWOS_ANY \ 75 if ((a & 1) == 0) \ 76 PROCESS_TWOS_EVEN; 77 #endif 78 79 /* Process one bit arithmetically, then a simple loop. This cuts the loop 80 condition down to a 25/75 chance, which should branch predict better. 81 The CPU will need a reasonable variable left shift. */ 82 #if JACOBI_BASE_METHOD == 3 83 #define PROCESS_TWOS_EVEN \ 84 { \ 85 int two, mask, shift; \ 86 \ 87 two = JACOBI_TWO_U_BIT1 (b); \ 88 mask = (~a & 2); \ 89 a >>= 1; \ 90 \ 91 shift = (~a & 1); \ 92 a >>= shift; \ 93 result_bit1 ^= two ^ (two & mask); \ 94 \ 95 while ((a & 1) == 0) \ 96 { \ 97 a >>= 1; \ 98 result_bit1 ^= two; \ 99 ASSERT (a != 0); \ 100 } \ 101 } 102 #define PROCESS_TWOS_ANY \ 103 { \ 104 int two, mask, shift; \ 105 \ 106 two = JACOBI_TWO_U_BIT1 (b); \ 107 shift = (~a & 1); \ 108 a >>= shift; \ 109 \ 110 mask = shift << 1; \ 111 result_bit1 ^= (two & mask); \ 112 \ 113 while ((a & 1) == 0) \ 114 { \ 115 a >>= 1; \ 116 result_bit1 ^= two; \ 117 ASSERT (a != 0); \ 118 } \ 119 } 120 #endif 121 122 #if JACOBI_BASE_METHOD < 4 123 /* Calculate the value of the Jacobi symbol (a/b) of two mp_limb_t's, but 124 with a restricted range of inputs accepted, namely b>1, b odd. 125 126 The initial result_bit1 is taken as a parameter for the convenience of 127 mpz_kronecker_ui() et al. The sign changes both here and in those 128 routines accumulate nicely in bit 1, see the JACOBI macros. 129 130 The return value here is the normal +1, 0, or -1. Note that +1 and -1 131 have bit 1 in the "BIT1" sense, which could be useful if the caller is 132 accumulating it into some extended calculation. 133 134 Duplicating the loop body to avoid the MP_LIMB_T_SWAP(a,b) would be 135 possible, but a couple of tests suggest it's not a significant speedup, 136 and may even be a slowdown, so what's here is good enough for now. */ 137 138 int 139 mpn_jacobi_base (mp_limb_t a, mp_limb_t b, int result_bit1) 140 { 141 ASSERT (b & 1); /* b odd */ 142 ASSERT (b != 1); 143 144 if (a == 0) 145 return 0; 146 147 PROCESS_TWOS_ANY; 148 if (a == 1) 149 goto done; 150 151 if (a >= b) 152 goto a_gt_b; 153 154 for (;;) 155 { 156 result_bit1 ^= JACOBI_RECIP_UU_BIT1 (a, b); 157 MP_LIMB_T_SWAP (a, b); 158 159 a_gt_b: 160 do 161 { 162 /* working on (a/b), a,b odd, a>=b */ 163 ASSERT (a & 1); 164 ASSERT (b & 1); 165 ASSERT (a >= b); 166 167 if ((a -= b) == 0) 168 return 0; 169 170 PROCESS_TWOS_EVEN; 171 if (a == 1) 172 goto done; 173 } 174 while (a >= b); 175 } 176 177 done: 178 return JACOBI_BIT1_TO_PN (result_bit1); 179 } 180 #endif 181 182 #if JACOBI_BASE_METHOD == 4 183 /* Computes (a/b) for odd b > 1 and any a. The initial bit is taken as a 184 * parameter. We have no need for the convention that the sign is in 185 * bit 1, internally we use bit 0. */ 186 187 /* FIXME: Could try table-based count_trailing_zeros. */ 188 int 189 mpn_jacobi_base (mp_limb_t a, mp_limb_t b, int bit) 190 { 191 int c; 192 193 ASSERT (b & 1); 194 ASSERT (b > 1); 195 196 if (a == 0) 197 /* This is the only line which depends on b > 1 */ 198 return 0; 199 200 bit >>= 1; 201 202 /* Below, we represent a and b shifted right so that the least 203 significant one bit is implicit. */ 204 205 b >>= 1; 206 207 count_trailing_zeros (c, a); 208 bit ^= c & (b ^ (b >> 1)); 209 210 /* We may have c==GMP_LIMB_BITS-1, so we can't use a>>c+1. */ 211 a >>= c; 212 a >>= 1; 213 214 do 215 { 216 mp_limb_t t = a - b; 217 mp_limb_t bgta = LIMB_HIGHBIT_TO_MASK (t); 218 219 if (t == 0) 220 return 0; 221 222 /* If b > a, invoke reciprocity */ 223 bit ^= (bgta & a & b); 224 225 /* b <-- min (a, b) */ 226 b += (bgta & t); 227 228 /* a <-- |a - b| */ 229 a = (t ^ bgta) - bgta; 230 231 /* Number of trailing zeros is the same no matter if we look at 232 * t or a, but using t gives more parallelism. */ 233 count_trailing_zeros (c, t); 234 c ++; 235 /* (2/b) = -1 if b = 3 or 5 mod 8 */ 236 bit ^= c & (b ^ (b >> 1)); 237 a >>= c; 238 } 239 while (b > 0); 240 241 return 1-2*(bit & 1); 242 } 243 #endif /* JACOBI_BASE_METHOD == 4 */