github.com/aergoio/aergo@v1.3.1/libtool/src/gmp-6.1.2/mpn/generic/mu_div_qr.c (about)

     1  /* mpn_mu_div_qr, mpn_preinv_mu_div_qr.
     2  
     3     Compute Q = floor(N / D) and R = N-QD.  N is nn limbs and D is dn limbs and
     4     must be normalized, and Q must be nn-dn limbs.  The requirement that Q is
     5     nn-dn limbs (and not nn-dn+1 limbs) was put in place in order to allow us to
     6     let N be unmodified during the operation.
     7  
     8     Contributed to the GNU project by Torbjorn Granlund.
     9  
    10     THE FUNCTIONS IN THIS FILE ARE INTERNAL WITH MUTABLE INTERFACES.  IT IS ONLY
    11     SAFE TO REACH THEM THROUGH DOCUMENTED INTERFACES.  IN FACT, IT IS ALMOST
    12     GUARANTEED THAT THEY WILL CHANGE OR DISAPPEAR IN A FUTURE GMP RELEASE.
    13  
    14  Copyright 2005-2007, 2009, 2010 Free Software Foundation, Inc.
    15  
    16  This file is part of the GNU MP Library.
    17  
    18  The GNU MP Library is free software; you can redistribute it and/or modify
    19  it under the terms of either:
    20  
    21    * the GNU Lesser General Public License as published by the Free
    22      Software Foundation; either version 3 of the License, or (at your
    23      option) any later version.
    24  
    25  or
    26  
    27    * the GNU General Public License as published by the Free Software
    28      Foundation; either version 2 of the License, or (at your option) any
    29      later version.
    30  
    31  or both in parallel, as here.
    32  
    33  The GNU MP Library is distributed in the hope that it will be useful, but
    34  WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
    35  or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    36  for more details.
    37  
    38  You should have received copies of the GNU General Public License and the
    39  GNU Lesser General Public License along with the GNU MP Library.  If not,
    40  see https://www.gnu.org/licenses/.  */
    41  
    42  
    43  /*
    44     The idea of the algorithm used herein is to compute a smaller inverted value
    45     than used in the standard Barrett algorithm, and thus save time in the
    46     Newton iterations, and pay just a small price when using the inverted value
    47     for developing quotient bits.  This algorithm was presented at ICMS 2006.
    48  */
    49  
    50  /* CAUTION: This code and the code in mu_divappr_q.c should be edited in sync.
    51  
    52   Things to work on:
    53  
    54    * This isn't optimal when the quotient isn't needed, as it might take a lot
    55      of space.  The computation is always needed, though, so there is no time to
    56      save with special code.
    57  
    58    * The itch/scratch scheme isn't perhaps such a good idea as it once seemed,
    59      demonstrated by the fact that the mpn_invertappr function's scratch needs
    60      mean that we need to keep a large allocation long after it is needed.
    61      Things are worse as mpn_mul_fft does not accept any scratch parameter,
    62      which means we'll have a large memory hole while in mpn_mul_fft.  In
    63      general, a peak scratch need in the beginning of a function isn't
    64      well-handled by the itch/scratch scheme.
    65  */
    66  
    67  #ifdef STAT
    68  #undef STAT
    69  #define STAT(x) x
    70  #else
    71  #define STAT(x)
    72  #endif
    73  
    74  #include <stdlib.h>		/* for NULL */
    75  #include "gmp.h"
    76  #include "gmp-impl.h"
    77  
    78  
    79  /* FIXME: The MU_DIV_QR_SKEW_THRESHOLD was not analysed properly.  It gives a
    80     speedup according to old measurements, but does the decision mechanism
    81     really make sense?  It seem like the quotient between dn and qn might be
    82     what we really should be checking.  */
    83  #ifndef MU_DIV_QR_SKEW_THRESHOLD
    84  #define MU_DIV_QR_SKEW_THRESHOLD 100
    85  #endif
    86  
    87  #ifdef CHECK				/* FIXME: Enable in minithres */
    88  #undef  MU_DIV_QR_SKEW_THRESHOLD
    89  #define MU_DIV_QR_SKEW_THRESHOLD 1
    90  #endif
    91  
    92  
    93  static mp_limb_t mpn_mu_div_qr2 (mp_ptr, mp_ptr, mp_srcptr, mp_size_t, mp_srcptr, mp_size_t, mp_ptr);
    94  
    95  
    96  mp_limb_t
    97  mpn_mu_div_qr (mp_ptr qp,
    98  	       mp_ptr rp,
    99  	       mp_srcptr np,
   100  	       mp_size_t nn,
   101  	       mp_srcptr dp,
   102  	       mp_size_t dn,
   103  	       mp_ptr scratch)
   104  {
   105    mp_size_t qn;
   106    mp_limb_t cy, qh;
   107  
   108    qn = nn - dn;
   109    if (qn + MU_DIV_QR_SKEW_THRESHOLD < dn)
   110      {
   111        /* |______________|_ign_first__|   dividend			  nn
   112  		|_______|_ign_first__|   divisor			  dn
   113  
   114  		|______|	     quotient (prel)			  qn
   115  
   116  		 |___________________|   quotient * ignored-divisor-part  dn-1
   117        */
   118  
   119        /* Compute a preliminary quotient and a partial remainder by dividing the
   120  	 most significant limbs of each operand.  */
   121        qh = mpn_mu_div_qr2 (qp, rp + nn - (2 * qn + 1),
   122  			   np + nn - (2 * qn + 1), 2 * qn + 1,
   123  			   dp + dn - (qn + 1), qn + 1,
   124  			   scratch);
   125  
   126        /* Multiply the quotient by the divisor limbs ignored above.  */
   127        if (dn - (qn + 1) > qn)
   128  	mpn_mul (scratch, dp, dn - (qn + 1), qp, qn);  /* prod is dn-1 limbs */
   129        else
   130  	mpn_mul (scratch, qp, qn, dp, dn - (qn + 1));  /* prod is dn-1 limbs */
   131  
   132        if (qh)
   133  	cy = mpn_add_n (scratch + qn, scratch + qn, dp, dn - (qn + 1));
   134        else
   135  	cy = 0;
   136        scratch[dn - 1] = cy;
   137  
   138        cy = mpn_sub_n (rp, np, scratch, nn - (2 * qn + 1));
   139        cy = mpn_sub_nc (rp + nn - (2 * qn + 1),
   140  		       rp + nn - (2 * qn + 1),
   141  		       scratch + nn - (2 * qn + 1),
   142  		       qn + 1, cy);
   143        if (cy)
   144  	{
   145  	  qh -= mpn_sub_1 (qp, qp, qn, 1);
   146  	  mpn_add_n (rp, rp, dp, dn);
   147  	}
   148      }
   149    else
   150      {
   151        qh = mpn_mu_div_qr2 (qp, rp, np, nn, dp, dn, scratch);
   152      }
   153  
   154    return qh;
   155  }
   156  
   157  static mp_limb_t
   158  mpn_mu_div_qr2 (mp_ptr qp,
   159  		mp_ptr rp,
   160  		mp_srcptr np,
   161  		mp_size_t nn,
   162  		mp_srcptr dp,
   163  		mp_size_t dn,
   164  		mp_ptr scratch)
   165  {
   166    mp_size_t qn, in;
   167    mp_limb_t cy, qh;
   168    mp_ptr ip, tp;
   169  
   170    ASSERT (dn > 1);
   171  
   172    qn = nn - dn;
   173  
   174    /* Compute the inverse size.  */
   175    in = mpn_mu_div_qr_choose_in (qn, dn, 0);
   176    ASSERT (in <= dn);
   177  
   178  #if 1
   179    /* This alternative inverse computation method gets slightly more accurate
   180       results.  FIXMEs: (1) Temp allocation needs not analysed (2) itch function
   181       not adapted (3) mpn_invertappr scratch needs not met.  */
   182    ip = scratch;
   183    tp = scratch + in + 1;
   184  
   185    /* compute an approximate inverse on (in+1) limbs */
   186    if (dn == in)
   187      {
   188        MPN_COPY (tp + 1, dp, in);
   189        tp[0] = 1;
   190        mpn_invertappr (ip, tp, in + 1, tp + in + 1);
   191        MPN_COPY_INCR (ip, ip + 1, in);
   192      }
   193    else
   194      {
   195        cy = mpn_add_1 (tp, dp + dn - (in + 1), in + 1, 1);
   196        if (UNLIKELY (cy != 0))
   197  	MPN_ZERO (ip, in);
   198        else
   199  	{
   200  	  mpn_invertappr (ip, tp, in + 1, tp + in + 1);
   201  	  MPN_COPY_INCR (ip, ip + 1, in);
   202  	}
   203      }
   204  #else
   205    /* This older inverse computation method gets slightly worse results than the
   206       one above.  */
   207    ip = scratch;
   208    tp = scratch + in;
   209  
   210    /* Compute inverse of D to in+1 limbs, then round to 'in' limbs.  Ideally the
   211       inversion function should do this automatically.  */
   212    if (dn == in)
   213      {
   214        tp[in + 1] = 0;
   215        MPN_COPY (tp + in + 2, dp, in);
   216        mpn_invertappr (tp, tp + in + 1, in + 1, NULL);
   217      }
   218    else
   219      {
   220        mpn_invertappr (tp, dp + dn - (in + 1), in + 1, NULL);
   221      }
   222    cy = mpn_sub_1 (tp, tp, in + 1, GMP_NUMB_HIGHBIT);
   223    if (UNLIKELY (cy != 0))
   224      MPN_ZERO (tp + 1, in);
   225    MPN_COPY (ip, tp + 1, in);
   226  #endif
   227  
   228    qh = mpn_preinv_mu_div_qr (qp, rp, np, nn, dp, dn, ip, in, scratch + in);
   229  
   230    return qh;
   231  }
   232  
   233  mp_limb_t
   234  mpn_preinv_mu_div_qr (mp_ptr qp,
   235  		      mp_ptr rp,
   236  		      mp_srcptr np,
   237  		      mp_size_t nn,
   238  		      mp_srcptr dp,
   239  		      mp_size_t dn,
   240  		      mp_srcptr ip,
   241  		      mp_size_t in,
   242  		      mp_ptr scratch)
   243  {
   244    mp_size_t qn;
   245    mp_limb_t cy, cx, qh;
   246    mp_limb_t r;
   247    mp_size_t tn, wn;
   248  
   249  #define tp           scratch
   250  #define scratch_out  (scratch + tn)
   251  
   252    qn = nn - dn;
   253  
   254    np += qn;
   255    qp += qn;
   256  
   257    qh = mpn_cmp (np, dp, dn) >= 0;
   258    if (qh != 0)
   259      mpn_sub_n (rp, np, dp, dn);
   260    else
   261      MPN_COPY_INCR (rp, np, dn);
   262  
   263    /* if (qn == 0) */			/* The while below handles this case */
   264    /*   return qh; */			/* Degenerate use.  Should we allow this? */
   265  
   266    while (qn > 0)
   267      {
   268        if (qn < in)
   269  	{
   270  	  ip += in - qn;
   271  	  in = qn;
   272  	}
   273        np -= in;
   274        qp -= in;
   275  
   276        /* Compute the next block of quotient limbs by multiplying the inverse I
   277  	 by the upper part of the partial remainder R.  */
   278        mpn_mul_n (tp, rp + dn - in, ip, in);		/* mulhi  */
   279        cy = mpn_add_n (qp, tp + in, rp + dn - in, in);	/* I's msb implicit */
   280        ASSERT_ALWAYS (cy == 0);
   281  
   282        qn -= in;
   283  
   284        /* Compute the product of the quotient block and the divisor D, to be
   285  	 subtracted from the partial remainder combined with new limbs from the
   286  	 dividend N.  We only really need the low dn+1 limbs.  */
   287  
   288        if (BELOW_THRESHOLD (in, MUL_TO_MULMOD_BNM1_FOR_2NXN_THRESHOLD))
   289  	mpn_mul (tp, dp, dn, qp, in);		/* dn+in limbs, high 'in' cancels */
   290        else
   291  	{
   292  	  tn = mpn_mulmod_bnm1_next_size (dn + 1);
   293  	  mpn_mulmod_bnm1 (tp, tn, dp, dn, qp, in, scratch_out);
   294  	  wn = dn + in - tn;			/* number of wrapped limbs */
   295  	  if (wn > 0)
   296  	    {
   297  	      cy = mpn_sub_n (tp, tp, rp + dn - wn, wn);
   298  	      cy = mpn_sub_1 (tp + wn, tp + wn, tn - wn, cy);
   299  	      cx = mpn_cmp (rp + dn - in, tp + dn, tn - dn) < 0;
   300  	      ASSERT_ALWAYS (cx >= cy);
   301  	      mpn_incr_u (tp, cx - cy);
   302  	    }
   303  	}
   304  
   305        r = rp[dn - in] - tp[dn];
   306  
   307        /* Subtract the product from the partial remainder combined with new
   308  	 limbs from the dividend N, generating a new partial remainder R.  */
   309        if (dn != in)
   310  	{
   311  	  cy = mpn_sub_n (tp, np, tp, in);	/* get next 'in' limbs from N */
   312  	  cy = mpn_sub_nc (tp + in, rp, tp + in, dn - in, cy);
   313  	  MPN_COPY (rp, tp, dn);		/* FIXME: try to avoid this */
   314  	}
   315        else
   316  	{
   317  	  cy = mpn_sub_n (rp, np, tp, in);	/* get next 'in' limbs from N */
   318  	}
   319  
   320        STAT (int i; int err = 0;
   321  	    static int errarr[5]; static int err_rec; static int tot);
   322  
   323        /* Check the remainder R and adjust the quotient as needed.  */
   324        r -= cy;
   325        while (r != 0)
   326  	{
   327  	  /* We loop 0 times with about 69% probability, 1 time with about 31%
   328  	     probability, 2 times with about 0.6% probability, if inverse is
   329  	     computed as recommended.  */
   330  	  mpn_incr_u (qp, 1);
   331  	  cy = mpn_sub_n (rp, rp, dp, dn);
   332  	  r -= cy;
   333  	  STAT (err++);
   334  	}
   335        if (mpn_cmp (rp, dp, dn) >= 0)
   336  	{
   337  	  /* This is executed with about 76% probability.  */
   338  	  mpn_incr_u (qp, 1);
   339  	  cy = mpn_sub_n (rp, rp, dp, dn);
   340  	  STAT (err++);
   341  	}
   342  
   343        STAT (
   344  	    tot++;
   345  	    errarr[err]++;
   346  	    if (err > err_rec)
   347  	      err_rec = err;
   348  	    if (tot % 0x10000 == 0)
   349  	      {
   350  		for (i = 0; i <= err_rec; i++)
   351  		  printf ("  %d(%.1f%%)", errarr[i], 100.0*errarr[i]/tot);
   352  		printf ("\n");
   353  	      }
   354  	    );
   355      }
   356  
   357    return qh;
   358  }
   359  
   360  /* In case k=0 (automatic choice), we distinguish 3 cases:
   361     (a) dn < qn:         in = ceil(qn / ceil(qn/dn))
   362     (b) dn/3 < qn <= dn: in = ceil(qn / 2)
   363     (c) qn < dn/3:       in = qn
   364     In all cases we have in <= dn.
   365   */
   366  mp_size_t
   367  mpn_mu_div_qr_choose_in (mp_size_t qn, mp_size_t dn, int k)
   368  {
   369    mp_size_t in;
   370  
   371    if (k == 0)
   372      {
   373        mp_size_t b;
   374        if (qn > dn)
   375  	{
   376  	  /* Compute an inverse size that is a nice partition of the quotient.  */
   377  	  b = (qn - 1) / dn + 1;	/* ceil(qn/dn), number of blocks */
   378  	  in = (qn - 1) / b + 1;	/* ceil(qn/b) = ceil(qn / ceil(qn/dn)) */
   379  	}
   380        else if (3 * qn > dn)
   381  	{
   382  	  in = (qn - 1) / 2 + 1;	/* b = 2 */
   383  	}
   384        else
   385  	{
   386  	  in = (qn - 1) / 1 + 1;	/* b = 1 */
   387  	}
   388      }
   389    else
   390      {
   391        mp_size_t xn;
   392        xn = MIN (dn, qn);
   393        in = (xn - 1) / k + 1;
   394      }
   395  
   396    return in;
   397  }
   398  
   399  mp_size_t
   400  mpn_mu_div_qr_itch (mp_size_t nn, mp_size_t dn, int mua_k)
   401  {
   402    mp_size_t in = mpn_mu_div_qr_choose_in (nn - dn, dn, mua_k);
   403    mp_size_t itch_preinv = mpn_preinv_mu_div_qr_itch (nn, dn, in);
   404    mp_size_t itch_invapp = mpn_invertappr_itch (in + 1) + in + 2; /* 3in + 4 */
   405  
   406    ASSERT (itch_preinv >= itch_invapp);
   407    return in + MAX (itch_invapp, itch_preinv);
   408  }
   409  
   410  mp_size_t
   411  mpn_preinv_mu_div_qr_itch (mp_size_t nn, mp_size_t dn, mp_size_t in)
   412  {
   413    mp_size_t itch_local = mpn_mulmod_bnm1_next_size (dn + 1);
   414    mp_size_t itch_out = mpn_mulmod_bnm1_itch (itch_local, dn, in);
   415  
   416    return itch_local + itch_out;
   417  }