github.com/aergoio/aergo@v1.3.1/libtool/src/gmp-6.1.2/mpn/generic/mu_divappr_q.c (about) 1 /* mpn_mu_divappr_q, mpn_preinv_mu_divappr_q. 2 3 Compute Q = floor(N / D) + e. N is nn limbs, D is dn limbs and must be 4 normalized, and Q must be nn-dn limbs, 0 <= e <= 4. The requirement that Q 5 is nn-dn limbs (and not nn-dn+1 limbs) was put in place in order to allow us 6 to let N be unmodified during the operation. 7 8 Contributed to the GNU project by Torbjorn Granlund. 9 10 THE FUNCTIONS IN THIS FILE ARE INTERNAL WITH MUTABLE INTERFACES. IT IS ONLY 11 SAFE TO REACH THEM THROUGH DOCUMENTED INTERFACES. IN FACT, IT IS ALMOST 12 GUARANTEED THAT THEY WILL CHANGE OR DISAPPEAR IN A FUTURE GMP RELEASE. 13 14 Copyright 2005-2007, 2009, 2010 Free Software Foundation, Inc. 15 16 This file is part of the GNU MP Library. 17 18 The GNU MP Library is free software; you can redistribute it and/or modify 19 it under the terms of either: 20 21 * the GNU Lesser General Public License as published by the Free 22 Software Foundation; either version 3 of the License, or (at your 23 option) any later version. 24 25 or 26 27 * the GNU General Public License as published by the Free Software 28 Foundation; either version 2 of the License, or (at your option) any 29 later version. 30 31 or both in parallel, as here. 32 33 The GNU MP Library is distributed in the hope that it will be useful, but 34 WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 35 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 36 for more details. 37 38 You should have received copies of the GNU General Public License and the 39 GNU Lesser General Public License along with the GNU MP Library. If not, 40 see https://www.gnu.org/licenses/. */ 41 42 43 /* 44 The idea of the algorithm used herein is to compute a smaller inverted value 45 than used in the standard Barrett algorithm, and thus save time in the 46 Newton iterations, and pay just a small price when using the inverted value 47 for developing quotient bits. This algorithm was presented at ICMS 2006. 48 */ 49 50 /* CAUTION: This code and the code in mu_div_qr.c should be edited in sync. 51 52 Things to work on: 53 54 * The itch/scratch scheme isn't perhaps such a good idea as it once seemed, 55 demonstrated by the fact that the mpn_invertappr function's scratch needs 56 mean that we need to keep a large allocation long after it is needed. 57 Things are worse as mpn_mul_fft does not accept any scratch parameter, 58 which means we'll have a large memory hole while in mpn_mul_fft. In 59 general, a peak scratch need in the beginning of a function isn't 60 well-handled by the itch/scratch scheme. 61 */ 62 63 #ifdef STAT 64 #undef STAT 65 #define STAT(x) x 66 #else 67 #define STAT(x) 68 #endif 69 70 #include <stdlib.h> /* for NULL */ 71 #include "gmp.h" 72 #include "gmp-impl.h" 73 74 75 mp_limb_t 76 mpn_mu_divappr_q (mp_ptr qp, 77 mp_srcptr np, 78 mp_size_t nn, 79 mp_srcptr dp, 80 mp_size_t dn, 81 mp_ptr scratch) 82 { 83 mp_size_t qn, in; 84 mp_limb_t cy, qh; 85 mp_ptr ip, tp; 86 87 ASSERT (dn > 1); 88 89 qn = nn - dn; 90 91 /* If Q is smaller than D, truncate operands. */ 92 if (qn + 1 < dn) 93 { 94 np += dn - (qn + 1); 95 nn -= dn - (qn + 1); 96 dp += dn - (qn + 1); 97 dn = qn + 1; 98 } 99 100 /* Compute the inverse size. */ 101 in = mpn_mu_divappr_q_choose_in (qn, dn, 0); 102 ASSERT (in <= dn); 103 104 #if 1 105 /* This alternative inverse computation method gets slightly more accurate 106 results. FIXMEs: (1) Temp allocation needs not analysed (2) itch function 107 not adapted (3) mpn_invertappr scratch needs not met. */ 108 ip = scratch; 109 tp = scratch + in + 1; 110 111 /* compute an approximate inverse on (in+1) limbs */ 112 if (dn == in) 113 { 114 MPN_COPY (tp + 1, dp, in); 115 tp[0] = 1; 116 mpn_invertappr (ip, tp, in + 1, tp + in + 1); 117 MPN_COPY_INCR (ip, ip + 1, in); 118 } 119 else 120 { 121 cy = mpn_add_1 (tp, dp + dn - (in + 1), in + 1, 1); 122 if (UNLIKELY (cy != 0)) 123 MPN_ZERO (ip, in); 124 else 125 { 126 mpn_invertappr (ip, tp, in + 1, tp + in + 1); 127 MPN_COPY_INCR (ip, ip + 1, in); 128 } 129 } 130 #else 131 /* This older inverse computation method gets slightly worse results than the 132 one above. */ 133 ip = scratch; 134 tp = scratch + in; 135 136 /* Compute inverse of D to in+1 limbs, then round to 'in' limbs. Ideally the 137 inversion function should do this automatically. */ 138 if (dn == in) 139 { 140 tp[in + 1] = 0; 141 MPN_COPY (tp + in + 2, dp, in); 142 mpn_invertappr (tp, tp + in + 1, in + 1, NULL); 143 } 144 else 145 { 146 mpn_invertappr (tp, dp + dn - (in + 1), in + 1, NULL); 147 } 148 cy = mpn_sub_1 (tp, tp, in + 1, GMP_NUMB_HIGHBIT); 149 if (UNLIKELY (cy != 0)) 150 MPN_ZERO (tp + 1, in); 151 MPN_COPY (ip, tp + 1, in); 152 #endif 153 154 qh = mpn_preinv_mu_divappr_q (qp, np, nn, dp, dn, ip, in, scratch + in); 155 156 return qh; 157 } 158 159 mp_limb_t 160 mpn_preinv_mu_divappr_q (mp_ptr qp, 161 mp_srcptr np, 162 mp_size_t nn, 163 mp_srcptr dp, 164 mp_size_t dn, 165 mp_srcptr ip, 166 mp_size_t in, 167 mp_ptr scratch) 168 { 169 mp_size_t qn; 170 mp_limb_t cy, cx, qh; 171 mp_limb_t r; 172 mp_size_t tn, wn; 173 174 #define rp scratch 175 #define tp (scratch + dn) 176 #define scratch_out (scratch + dn + tn) 177 178 qn = nn - dn; 179 180 np += qn; 181 qp += qn; 182 183 qh = mpn_cmp (np, dp, dn) >= 0; 184 if (qh != 0) 185 mpn_sub_n (rp, np, dp, dn); 186 else 187 MPN_COPY (rp, np, dn); 188 189 if (qn == 0) 190 return qh; /* Degenerate use. Should we allow this? */ 191 192 while (qn > 0) 193 { 194 if (qn < in) 195 { 196 ip += in - qn; 197 in = qn; 198 } 199 np -= in; 200 qp -= in; 201 202 /* Compute the next block of quotient limbs by multiplying the inverse I 203 by the upper part of the partial remainder R. */ 204 mpn_mul_n (tp, rp + dn - in, ip, in); /* mulhi */ 205 cy = mpn_add_n (qp, tp + in, rp + dn - in, in); /* I's msb implicit */ 206 ASSERT_ALWAYS (cy == 0); 207 208 qn -= in; 209 if (qn == 0) 210 break; 211 212 /* Compute the product of the quotient block and the divisor D, to be 213 subtracted from the partial remainder combined with new limbs from the 214 dividend N. We only really need the low dn limbs. */ 215 216 if (BELOW_THRESHOLD (in, MUL_TO_MULMOD_BNM1_FOR_2NXN_THRESHOLD)) 217 mpn_mul (tp, dp, dn, qp, in); /* dn+in limbs, high 'in' cancels */ 218 else 219 { 220 tn = mpn_mulmod_bnm1_next_size (dn + 1); 221 mpn_mulmod_bnm1 (tp, tn, dp, dn, qp, in, scratch_out); 222 wn = dn + in - tn; /* number of wrapped limbs */ 223 if (wn > 0) 224 { 225 cy = mpn_sub_n (tp, tp, rp + dn - wn, wn); 226 cy = mpn_sub_1 (tp + wn, tp + wn, tn - wn, cy); 227 cx = mpn_cmp (rp + dn - in, tp + dn, tn - dn) < 0; 228 ASSERT_ALWAYS (cx >= cy); 229 mpn_incr_u (tp, cx - cy); 230 } 231 } 232 233 r = rp[dn - in] - tp[dn]; 234 235 /* Subtract the product from the partial remainder combined with new 236 limbs from the dividend N, generating a new partial remainder R. */ 237 if (dn != in) 238 { 239 cy = mpn_sub_n (tp, np, tp, in); /* get next 'in' limbs from N */ 240 cy = mpn_sub_nc (tp + in, rp, tp + in, dn - in, cy); 241 MPN_COPY (rp, tp, dn); /* FIXME: try to avoid this */ 242 } 243 else 244 { 245 cy = mpn_sub_n (rp, np, tp, in); /* get next 'in' limbs from N */ 246 } 247 248 STAT (int i; int err = 0; 249 static int errarr[5]; static int err_rec; static int tot); 250 251 /* Check the remainder R and adjust the quotient as needed. */ 252 r -= cy; 253 while (r != 0) 254 { 255 /* We loop 0 times with about 69% probability, 1 time with about 31% 256 probability, 2 times with about 0.6% probability, if inverse is 257 computed as recommended. */ 258 mpn_incr_u (qp, 1); 259 cy = mpn_sub_n (rp, rp, dp, dn); 260 r -= cy; 261 STAT (err++); 262 } 263 if (mpn_cmp (rp, dp, dn) >= 0) 264 { 265 /* This is executed with about 76% probability. */ 266 mpn_incr_u (qp, 1); 267 cy = mpn_sub_n (rp, rp, dp, dn); 268 STAT (err++); 269 } 270 271 STAT ( 272 tot++; 273 errarr[err]++; 274 if (err > err_rec) 275 err_rec = err; 276 if (tot % 0x10000 == 0) 277 { 278 for (i = 0; i <= err_rec; i++) 279 printf (" %d(%.1f%%)", errarr[i], 100.0*errarr[i]/tot); 280 printf ("\n"); 281 } 282 ); 283 } 284 285 /* FIXME: We should perhaps be somewhat more elegant in our rounding of the 286 quotient. For now, just make sure the returned quotient is >= the real 287 quotient; add 3 with saturating arithmetic. */ 288 qn = nn - dn; 289 cy += mpn_add_1 (qp, qp, qn, 3); 290 if (cy != 0) 291 { 292 if (qh != 0) 293 { 294 /* Return a quotient of just 1-bits, with qh set. */ 295 mp_size_t i; 296 for (i = 0; i < qn; i++) 297 qp[i] = GMP_NUMB_MAX; 298 } 299 else 300 { 301 /* Propagate carry into qh. */ 302 qh = 1; 303 } 304 } 305 306 return qh; 307 } 308 309 /* In case k=0 (automatic choice), we distinguish 3 cases: 310 (a) dn < qn: in = ceil(qn / ceil(qn/dn)) 311 (b) dn/3 < qn <= dn: in = ceil(qn / 2) 312 (c) qn < dn/3: in = qn 313 In all cases we have in <= dn. 314 */ 315 mp_size_t 316 mpn_mu_divappr_q_choose_in (mp_size_t qn, mp_size_t dn, int k) 317 { 318 mp_size_t in; 319 320 if (k == 0) 321 { 322 mp_size_t b; 323 if (qn > dn) 324 { 325 /* Compute an inverse size that is a nice partition of the quotient. */ 326 b = (qn - 1) / dn + 1; /* ceil(qn/dn), number of blocks */ 327 in = (qn - 1) / b + 1; /* ceil(qn/b) = ceil(qn / ceil(qn/dn)) */ 328 } 329 else if (3 * qn > dn) 330 { 331 in = (qn - 1) / 2 + 1; /* b = 2 */ 332 } 333 else 334 { 335 in = (qn - 1) / 1 + 1; /* b = 1 */ 336 } 337 } 338 else 339 { 340 mp_size_t xn; 341 xn = MIN (dn, qn); 342 in = (xn - 1) / k + 1; 343 } 344 345 return in; 346 } 347 348 mp_size_t 349 mpn_mu_divappr_q_itch (mp_size_t nn, mp_size_t dn, int mua_k) 350 { 351 mp_size_t qn, in, itch_local, itch_out, itch_invapp; 352 353 qn = nn - dn; 354 if (qn + 1 < dn) 355 { 356 dn = qn + 1; 357 } 358 in = mpn_mu_divappr_q_choose_in (qn, dn, mua_k); 359 360 itch_local = mpn_mulmod_bnm1_next_size (dn + 1); 361 itch_out = mpn_mulmod_bnm1_itch (itch_local, dn, in); 362 itch_invapp = mpn_invertappr_itch (in + 1) + in + 2; /* 3in + 4 */ 363 364 ASSERT (dn + itch_local + itch_out >= itch_invapp); 365 return in + MAX (dn + itch_local + itch_out, itch_invapp); 366 }