github.com/aergoio/aergo@v1.3.1/libtool/src/gmp-6.1.2/mpn/generic/sqrmod_bnm1.c (about) 1 /* sqrmod_bnm1.c -- squaring mod B^n-1. 2 3 Contributed to the GNU project by Niels Möller, Torbjorn Granlund and 4 Marco Bodrato. 5 6 THE FUNCTIONS IN THIS FILE ARE INTERNAL WITH MUTABLE INTERFACES. IT IS ONLY 7 SAFE TO REACH THEM THROUGH DOCUMENTED INTERFACES. IN FACT, IT IS ALMOST 8 GUARANTEED THAT THEY WILL CHANGE OR DISAPPEAR IN A FUTURE GNU MP RELEASE. 9 10 Copyright 2009, 2010, 2012 Free Software Foundation, Inc. 11 12 This file is part of the GNU MP Library. 13 14 The GNU MP Library is free software; you can redistribute it and/or modify 15 it under the terms of either: 16 17 * the GNU Lesser General Public License as published by the Free 18 Software Foundation; either version 3 of the License, or (at your 19 option) any later version. 20 21 or 22 23 * the GNU General Public License as published by the Free Software 24 Foundation; either version 2 of the License, or (at your option) any 25 later version. 26 27 or both in parallel, as here. 28 29 The GNU MP Library is distributed in the hope that it will be useful, but 30 WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 31 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 32 for more details. 33 34 You should have received copies of the GNU General Public License and the 35 GNU Lesser General Public License along with the GNU MP Library. If not, 36 see https://www.gnu.org/licenses/. */ 37 38 39 #include "gmp.h" 40 #include "gmp-impl.h" 41 #include "longlong.h" 42 43 /* Input is {ap,rn}; output is {rp,rn}, computation is 44 mod B^rn - 1, and values are semi-normalised; zero is represented 45 as either 0 or B^n - 1. Needs a scratch of 2rn limbs at tp. 46 tp==rp is allowed. */ 47 static void 48 mpn_bc_sqrmod_bnm1 (mp_ptr rp, mp_srcptr ap, mp_size_t rn, mp_ptr tp) 49 { 50 mp_limb_t cy; 51 52 ASSERT (0 < rn); 53 54 mpn_sqr (tp, ap, rn); 55 cy = mpn_add_n (rp, tp, tp + rn, rn); 56 /* If cy == 1, then the value of rp is at most B^rn - 2, so there can 57 * be no overflow when adding in the carry. */ 58 MPN_INCR_U (rp, rn, cy); 59 } 60 61 62 /* Input is {ap,rn+1}; output is {rp,rn+1}, in 63 semi-normalised representation, computation is mod B^rn + 1. Needs 64 a scratch area of 2rn + 2 limbs at tp; tp == rp is allowed. 65 Output is normalised. */ 66 static void 67 mpn_bc_sqrmod_bnp1 (mp_ptr rp, mp_srcptr ap, mp_size_t rn, mp_ptr tp) 68 { 69 mp_limb_t cy; 70 71 ASSERT (0 < rn); 72 73 mpn_sqr (tp, ap, rn + 1); 74 ASSERT (tp[2*rn+1] == 0); 75 ASSERT (tp[2*rn] < GMP_NUMB_MAX); 76 cy = tp[2*rn] + mpn_sub_n (rp, tp, tp+rn, rn); 77 rp[rn] = 0; 78 MPN_INCR_U (rp, rn+1, cy ); 79 } 80 81 82 /* Computes {rp,MIN(rn,2an)} <- {ap,an}^2 Mod(B^rn-1) 83 * 84 * The result is expected to be ZERO if and only if the operand 85 * already is. Otherwise the class [0] Mod(B^rn-1) is represented by 86 * B^rn-1. 87 * It should not be a problem if sqrmod_bnm1 is used to 88 * compute the full square with an <= 2*rn, because this condition 89 * implies (B^an-1)^2 < (B^rn-1) . 90 * 91 * Requires rn/4 < an <= rn 92 * Scratch need: rn/2 + (need for recursive call OR rn + 3). This gives 93 * 94 * S(n) <= rn/2 + MAX (rn + 4, S(n/2)) <= 3/2 rn + 4 95 */ 96 void 97 mpn_sqrmod_bnm1 (mp_ptr rp, mp_size_t rn, mp_srcptr ap, mp_size_t an, mp_ptr tp) 98 { 99 ASSERT (0 < an); 100 ASSERT (an <= rn); 101 102 if ((rn & 1) != 0 || BELOW_THRESHOLD (rn, SQRMOD_BNM1_THRESHOLD)) 103 { 104 if (UNLIKELY (an < rn)) 105 { 106 if (UNLIKELY (2*an <= rn)) 107 { 108 mpn_sqr (rp, ap, an); 109 } 110 else 111 { 112 mp_limb_t cy; 113 mpn_sqr (tp, ap, an); 114 cy = mpn_add (rp, tp, rn, tp + rn, 2*an - rn); 115 MPN_INCR_U (rp, rn, cy); 116 } 117 } 118 else 119 mpn_bc_sqrmod_bnm1 (rp, ap, rn, tp); 120 } 121 else 122 { 123 mp_size_t n; 124 mp_limb_t cy; 125 mp_limb_t hi; 126 127 n = rn >> 1; 128 129 ASSERT (2*an > n); 130 131 /* Compute xm = a^2 mod (B^n - 1), xp = a^2 mod (B^n + 1) 132 and crt together as 133 134 x = -xp * B^n + (B^n + 1) * [ (xp + xm)/2 mod (B^n-1)] 135 */ 136 137 #define a0 ap 138 #define a1 (ap + n) 139 140 #define xp tp /* 2n + 2 */ 141 /* am1 maybe in {xp, n} */ 142 #define sp1 (tp + 2*n + 2) 143 /* ap1 maybe in {sp1, n + 1} */ 144 145 { 146 mp_srcptr am1; 147 mp_size_t anm; 148 mp_ptr so; 149 150 if (LIKELY (an > n)) 151 { 152 so = xp + n; 153 am1 = xp; 154 cy = mpn_add (xp, a0, n, a1, an - n); 155 MPN_INCR_U (xp, n, cy); 156 anm = n; 157 } 158 else 159 { 160 so = xp; 161 am1 = a0; 162 anm = an; 163 } 164 165 mpn_sqrmod_bnm1 (rp, n, am1, anm, so); 166 } 167 168 { 169 int k; 170 mp_srcptr ap1; 171 mp_size_t anp; 172 173 if (LIKELY (an > n)) { 174 ap1 = sp1; 175 cy = mpn_sub (sp1, a0, n, a1, an - n); 176 sp1[n] = 0; 177 MPN_INCR_U (sp1, n + 1, cy); 178 anp = n + ap1[n]; 179 } else { 180 ap1 = a0; 181 anp = an; 182 } 183 184 if (BELOW_THRESHOLD (n, MUL_FFT_MODF_THRESHOLD)) 185 k=0; 186 else 187 { 188 int mask; 189 k = mpn_fft_best_k (n, 1); 190 mask = (1<<k) -1; 191 while (n & mask) {k--; mask >>=1;}; 192 } 193 if (k >= FFT_FIRST_K) 194 xp[n] = mpn_mul_fft (xp, n, ap1, anp, ap1, anp, k); 195 else if (UNLIKELY (ap1 == a0)) 196 { 197 ASSERT (anp <= n); 198 ASSERT (2*anp > n); 199 mpn_sqr (xp, a0, an); 200 anp = 2*an - n; 201 cy = mpn_sub (xp, xp, n, xp + n, anp); 202 xp[n] = 0; 203 MPN_INCR_U (xp, n+1, cy); 204 } 205 else 206 mpn_bc_sqrmod_bnp1 (xp, ap1, n, xp); 207 } 208 209 /* Here the CRT recomposition begins. 210 211 xm <- (xp + xm)/2 = (xp + xm)B^n/2 mod (B^n-1) 212 Division by 2 is a bitwise rotation. 213 214 Assumes xp normalised mod (B^n+1). 215 216 The residue class [0] is represented by [B^n-1]; except when 217 both input are ZERO. 218 */ 219 220 #if HAVE_NATIVE_mpn_rsh1add_n || HAVE_NATIVE_mpn_rsh1add_nc 221 #if HAVE_NATIVE_mpn_rsh1add_nc 222 cy = mpn_rsh1add_nc(rp, rp, xp, n, xp[n]); /* B^n = 1 */ 223 hi = cy << (GMP_NUMB_BITS - 1); 224 cy = 0; 225 /* next update of rp[n-1] will set cy = 1 only if rp[n-1]+=hi 226 overflows, i.e. a further increment will not overflow again. */ 227 #else /* ! _nc */ 228 cy = xp[n] + mpn_rsh1add_n(rp, rp, xp, n); /* B^n = 1 */ 229 hi = (cy<<(GMP_NUMB_BITS-1))&GMP_NUMB_MASK; /* (cy&1) << ... */ 230 cy >>= 1; 231 /* cy = 1 only if xp[n] = 1 i.e. {xp,n} = ZERO, this implies that 232 the rsh1add was a simple rshift: the top bit is 0. cy=1 => hi=0. */ 233 #endif 234 #if GMP_NAIL_BITS == 0 235 add_ssaaaa(cy, rp[n-1], cy, rp[n-1], CNST_LIMB(0), hi); 236 #else 237 cy += (hi & rp[n-1]) >> (GMP_NUMB_BITS-1); 238 rp[n-1] ^= hi; 239 #endif 240 #else /* ! HAVE_NATIVE_mpn_rsh1add_n */ 241 #if HAVE_NATIVE_mpn_add_nc 242 cy = mpn_add_nc(rp, rp, xp, n, xp[n]); 243 #else /* ! _nc */ 244 cy = xp[n] + mpn_add_n(rp, rp, xp, n); /* xp[n] == 1 implies {xp,n} == ZERO */ 245 #endif 246 cy += (rp[0]&1); 247 mpn_rshift(rp, rp, n, 1); 248 ASSERT (cy <= 2); 249 hi = (cy<<(GMP_NUMB_BITS-1))&GMP_NUMB_MASK; /* (cy&1) << ... */ 250 cy >>= 1; 251 /* We can have cy != 0 only if hi = 0... */ 252 ASSERT ((rp[n-1] & GMP_NUMB_HIGHBIT) == 0); 253 rp[n-1] |= hi; 254 /* ... rp[n-1] + cy can not overflow, the following INCR is correct. */ 255 #endif 256 ASSERT (cy <= 1); 257 /* Next increment can not overflow, read the previous comments about cy. */ 258 ASSERT ((cy == 0) || ((rp[n-1] & GMP_NUMB_HIGHBIT) == 0)); 259 MPN_INCR_U(rp, n, cy); 260 261 /* Compute the highest half: 262 ([(xp + xm)/2 mod (B^n-1)] - xp ) * B^n 263 */ 264 if (UNLIKELY (2*an < rn)) 265 { 266 /* Note that in this case, the only way the result can equal 267 zero mod B^{rn} - 1 is if the input is zero, and 268 then the output of both the recursive calls and this CRT 269 reconstruction is zero, not B^{rn} - 1. */ 270 cy = mpn_sub_n (rp + n, rp, xp, 2*an - n); 271 272 /* FIXME: This subtraction of the high parts is not really 273 necessary, we do it to get the carry out, and for sanity 274 checking. */ 275 cy = xp[n] + mpn_sub_nc (xp + 2*an - n, rp + 2*an - n, 276 xp + 2*an - n, rn - 2*an, cy); 277 ASSERT (mpn_zero_p (xp + 2*an - n+1, rn - 1 - 2*an)); 278 cy = mpn_sub_1 (rp, rp, 2*an, cy); 279 ASSERT (cy == (xp + 2*an - n)[0]); 280 } 281 else 282 { 283 cy = xp[n] + mpn_sub_n (rp + n, rp, xp, n); 284 /* cy = 1 only if {xp,n+1} is not ZERO, i.e. {rp,n} is not ZERO. 285 DECR will affect _at most_ the lowest n limbs. */ 286 MPN_DECR_U (rp, 2*n, cy); 287 } 288 #undef a0 289 #undef a1 290 #undef xp 291 #undef sp1 292 } 293 } 294 295 mp_size_t 296 mpn_sqrmod_bnm1_next_size (mp_size_t n) 297 { 298 mp_size_t nh; 299 300 if (BELOW_THRESHOLD (n, SQRMOD_BNM1_THRESHOLD)) 301 return n; 302 if (BELOW_THRESHOLD (n, 4 * (SQRMOD_BNM1_THRESHOLD - 1) + 1)) 303 return (n + (2-1)) & (-2); 304 if (BELOW_THRESHOLD (n, 8 * (SQRMOD_BNM1_THRESHOLD - 1) + 1)) 305 return (n + (4-1)) & (-4); 306 307 nh = (n + 1) >> 1; 308 309 if (BELOW_THRESHOLD (nh, SQR_FFT_MODF_THRESHOLD)) 310 return (n + (8-1)) & (-8); 311 312 return 2 * mpn_fft_next_size (nh, mpn_fft_best_k (nh, 1)); 313 }