github.com/aergoio/aergo@v1.3.1/libtool/src/gmp-6.1.2/mpz/cdiv_qr_ui.c (about) 1 /* mpz_cdiv_qr_ui -- Division rounding the quotient towards +infinity. The 2 remainder gets the opposite sign as the denominator. In order to make it 3 always fit into the return type, the negative of the true remainder is 4 returned. 5 6 Copyright 1994-1996, 1999, 2001, 2002, 2004, 2012 Free Software Foundation, 7 Inc. 8 9 This file is part of the GNU MP Library. 10 11 The GNU MP Library is free software; you can redistribute it and/or modify 12 it under the terms of either: 13 14 * the GNU Lesser General Public License as published by the Free 15 Software Foundation; either version 3 of the License, or (at your 16 option) any later version. 17 18 or 19 20 * the GNU General Public License as published by the Free Software 21 Foundation; either version 2 of the License, or (at your option) any 22 later version. 23 24 or both in parallel, as here. 25 26 The GNU MP Library is distributed in the hope that it will be useful, but 27 WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 28 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 29 for more details. 30 31 You should have received copies of the GNU General Public License and the 32 GNU Lesser General Public License along with the GNU MP Library. If not, 33 see https://www.gnu.org/licenses/. */ 34 35 #include "gmp.h" 36 #include "gmp-impl.h" 37 38 unsigned long int 39 mpz_cdiv_qr_ui (mpz_ptr quot, mpz_ptr rem, mpz_srcptr dividend, unsigned long int divisor) 40 { 41 mp_size_t ns, nn, qn; 42 mp_ptr np, qp; 43 mp_limb_t rl; 44 45 if (UNLIKELY (divisor == 0)) 46 DIVIDE_BY_ZERO; 47 48 ns = SIZ(dividend); 49 if (ns == 0) 50 { 51 SIZ(quot) = 0; 52 SIZ(rem) = 0; 53 return 0; 54 } 55 56 nn = ABS(ns); 57 qp = MPZ_REALLOC (quot, nn); 58 np = PTR(dividend); 59 60 #if BITS_PER_ULONG > GMP_NUMB_BITS /* avoid warnings about shift amount */ 61 if (divisor > GMP_NUMB_MAX) 62 { 63 mp_limb_t dp[2]; 64 mp_ptr rp; 65 mp_size_t rn; 66 67 rp = MPZ_REALLOC (rem, 2); 68 69 if (nn == 1) /* tdiv_qr requirements; tested above for 0 */ 70 { 71 qp[0] = 0; 72 qn = 1; /* a white lie, fixed below */ 73 rl = np[0]; 74 rp[0] = rl; 75 } 76 else 77 { 78 dp[0] = divisor & GMP_NUMB_MASK; 79 dp[1] = divisor >> GMP_NUMB_BITS; 80 mpn_tdiv_qr (qp, rp, (mp_size_t) 0, np, nn, dp, (mp_size_t) 2); 81 rl = rp[0] + (rp[1] << GMP_NUMB_BITS); 82 qn = nn - 2 + 1; 83 } 84 85 if (rl != 0 && ns >= 0) 86 { 87 mpn_incr_u (qp, (mp_limb_t) 1); 88 rl = divisor - rl; 89 rp[0] = rl & GMP_NUMB_MASK; 90 rp[1] = rl >> GMP_NUMB_BITS; 91 } 92 93 qn -= qp[qn - 1] == 0; qn -= qn != 0 && qp[qn - 1] == 0; 94 rn = 1 + (rl > GMP_NUMB_MAX); rn -= (rp[rn - 1] == 0); 95 SIZ(rem) = -rn; 96 } 97 else 98 #endif 99 { 100 rl = mpn_divrem_1 (qp, (mp_size_t) 0, np, nn, (mp_limb_t) divisor); 101 if (rl == 0) 102 SIZ(rem) = 0; 103 else 104 { 105 if (ns >= 0) 106 { 107 mpn_incr_u (qp, (mp_limb_t) 1); 108 rl = divisor - rl; 109 } 110 111 PTR(rem)[0] = rl; 112 SIZ(rem) = -(rl != 0); 113 } 114 qn = nn - (qp[nn - 1] == 0); 115 } 116 117 SIZ(quot) = ns >= 0 ? qn : -qn; 118 return rl; 119 }