github.com/aergoio/aergo@v1.3.1/libtool/src/gmp-6.1.2/mpz/fdiv_qr_ui.c (about) 1 /* mpz_fdiv_qr_ui -- Division rounding the quotient towards -infinity. 2 The remainder gets the same sign as the denominator. 3 4 Copyright 1994-1996, 1999, 2001, 2002, 2004, 2012 Free Software Foundation, 5 Inc. 6 7 This file is part of the GNU MP Library. 8 9 The GNU MP Library is free software; you can redistribute it and/or modify 10 it under the terms of either: 11 12 * the GNU Lesser General Public License as published by the Free 13 Software Foundation; either version 3 of the License, or (at your 14 option) any later version. 15 16 or 17 18 * the GNU General Public License as published by the Free Software 19 Foundation; either version 2 of the License, or (at your option) any 20 later version. 21 22 or both in parallel, as here. 23 24 The GNU MP Library is distributed in the hope that it will be useful, but 25 WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 26 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 27 for more details. 28 29 You should have received copies of the GNU General Public License and the 30 GNU Lesser General Public License along with the GNU MP Library. If not, 31 see https://www.gnu.org/licenses/. */ 32 33 #include "gmp.h" 34 #include "gmp-impl.h" 35 36 unsigned long int 37 mpz_fdiv_qr_ui (mpz_ptr quot, mpz_ptr rem, mpz_srcptr dividend, unsigned long int divisor) 38 { 39 mp_size_t ns, nn, qn; 40 mp_ptr np, qp; 41 mp_limb_t rl; 42 43 if (UNLIKELY (divisor == 0)) 44 DIVIDE_BY_ZERO; 45 46 ns = SIZ(dividend); 47 if (ns == 0) 48 { 49 SIZ(quot) = 0; 50 SIZ(rem) = 0; 51 return 0; 52 } 53 54 nn = ABS(ns); 55 qp = MPZ_REALLOC (quot, nn); 56 np = PTR(dividend); 57 58 #if BITS_PER_ULONG > GMP_NUMB_BITS /* avoid warnings about shift amount */ 59 if (divisor > GMP_NUMB_MAX) 60 { 61 mp_limb_t dp[2]; 62 mp_ptr rp; 63 mp_size_t rn; 64 65 MPZ_REALLOC (rem, 2); 66 rp = PTR(rem); 67 68 if (nn == 1) /* tdiv_qr requirements; tested above for 0 */ 69 { 70 qp[0] = 0; 71 qn = 1; /* a white lie, fixed below */ 72 rl = np[0]; 73 rp[0] = rl; 74 } 75 else 76 { 77 dp[0] = divisor & GMP_NUMB_MASK; 78 dp[1] = divisor >> GMP_NUMB_BITS; 79 mpn_tdiv_qr (qp, rp, (mp_size_t) 0, np, nn, dp, (mp_size_t) 2); 80 rl = rp[0] + (rp[1] << GMP_NUMB_BITS); 81 qn = nn - 2 + 1; 82 } 83 84 if (rl != 0 && ns < 0) 85 { 86 mpn_incr_u (qp, (mp_limb_t) 1); 87 rl = divisor - rl; 88 rp[0] = rl & GMP_NUMB_MASK; 89 rp[1] = rl >> GMP_NUMB_BITS; 90 } 91 92 qn -= qp[qn - 1] == 0; qn -= qn != 0 && qp[qn - 1] == 0; 93 rn = 1 + (rl > GMP_NUMB_MAX); rn -= (rp[rn - 1] == 0); 94 SIZ(rem) = rn; 95 } 96 else 97 #endif 98 { 99 rl = mpn_divrem_1 (qp, (mp_size_t) 0, np, nn, (mp_limb_t) divisor); 100 if (rl == 0) 101 SIZ(rem) = 0; 102 else 103 { 104 if (ns < 0) 105 { 106 mpn_incr_u (qp, (mp_limb_t) 1); 107 rl = divisor - rl; 108 } 109 110 PTR(rem)[0] = rl; 111 SIZ(rem) = rl != 0; 112 } 113 qn = nn - (qp[nn - 1] == 0); 114 } 115 116 SIZ(quot) = ns >= 0 ? qn : -qn; 117 return rl; 118 }