github.com/aergoio/aergo@v1.3.1/libtool/src/gmp-6.1.2/mpz/jacobi.c (about)

     1  /* mpz_jacobi, mpz_legendre, mpz_kronecker -- mpz/mpz Jacobi symbols.
     2  
     3  Copyright 2000-2002, 2005, 2010-2012 Free Software Foundation, Inc.
     4  
     5  This file is part of the GNU MP Library.
     6  
     7  The GNU MP Library is free software; you can redistribute it and/or modify
     8  it under the terms of either:
     9  
    10    * the GNU Lesser General Public License as published by the Free
    11      Software Foundation; either version 3 of the License, or (at your
    12      option) any later version.
    13  
    14  or
    15  
    16    * the GNU General Public License as published by the Free Software
    17      Foundation; either version 2 of the License, or (at your option) any
    18      later version.
    19  
    20  or both in parallel, as here.
    21  
    22  The GNU MP Library is distributed in the hope that it will be useful, but
    23  WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
    24  or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    25  for more details.
    26  
    27  You should have received copies of the GNU General Public License and the
    28  GNU Lesser General Public License along with the GNU MP Library.  If not,
    29  see https://www.gnu.org/licenses/.  */
    30  
    31  #include <stdio.h>
    32  #include "gmp.h"
    33  #include "gmp-impl.h"
    34  #include "longlong.h"
    35  
    36  
    37  /* This code does triple duty as mpz_jacobi, mpz_legendre and
    38     mpz_kronecker. For ABI compatibility, the link symbol is
    39     __gmpz_jacobi, not __gmpz_kronecker, even though the latter would
    40     be more logical.
    41  
    42     mpz_jacobi could assume b is odd, but the improvements from that seem
    43     small compared to other operations, and anything significant should be
    44     checked at run-time since we'd like odd b to go fast in mpz_kronecker
    45     too.
    46  
    47     mpz_legendre could assume b is an odd prime, but knowing this doesn't
    48     present any obvious benefits.  Result 0 wouldn't arise (unless "a" is a
    49     multiple of b), but the checking for that takes little time compared to
    50     other operations.
    51  
    52     Enhancements:
    53  
    54     mpn_bdiv_qr should be used instead of mpn_tdiv_qr.
    55  
    56  */
    57  
    58  int
    59  mpz_jacobi (mpz_srcptr a, mpz_srcptr b)
    60  {
    61    mp_srcptr  asrcp, bsrcp;
    62    mp_size_t  asize, bsize;
    63    mp_limb_t  alow, blow;
    64    mp_ptr     ap, bp;
    65    unsigned   btwos;
    66    int        result_bit1;
    67    int        res;
    68    TMP_DECL;
    69  
    70    asize = SIZ(a);
    71    asrcp = PTR(a);
    72    alow = asrcp[0];
    73  
    74    bsize = SIZ(b);
    75    bsrcp = PTR(b);
    76    blow = bsrcp[0];
    77  
    78    /* The MPN jacobi functions require positive a and b, and b odd. So
    79       we must to handle the cases of a or b zero, then signs, and then
    80       the case of even b.
    81    */
    82  
    83    if (bsize == 0)
    84      /* (a/0) = [ a = 1 or a = -1 ] */
    85      return JACOBI_LS0 (alow, asize);
    86  
    87    if (asize == 0)
    88      /* (0/b) = [ b = 1 or b = - 1 ] */
    89      return JACOBI_0LS (blow, bsize);
    90  
    91    if ( (((alow | blow) & 1) == 0))
    92      /* Common factor of 2 ==> (a/b) = 0 */
    93      return 0;
    94  
    95    if (bsize < 0)
    96      {
    97        /* (a/-1) = -1 if a < 0, +1 if a >= 0 */
    98        result_bit1 = (asize < 0) << 1;
    99        bsize = -bsize;
   100      }
   101    else
   102      result_bit1 = 0;
   103  
   104    JACOBI_STRIP_LOW_ZEROS (result_bit1, alow, bsrcp, bsize, blow);
   105  
   106    count_trailing_zeros (btwos, blow);
   107    blow >>= btwos;
   108  
   109    if (bsize > 1 && btwos > 0)
   110      {
   111        mp_limb_t b1 = bsrcp[1];
   112        blow |= b1 << (GMP_NUMB_BITS - btwos);
   113        if (bsize == 2 && (b1 >> btwos) == 0)
   114  	bsize = 1;
   115      }
   116  
   117    if (asize < 0)
   118      {
   119        /* (-1/b) = -1 iff b = 3 (mod 4) */
   120        result_bit1 ^= JACOBI_N1B_BIT1(blow);
   121        asize = -asize;
   122      }
   123  
   124    JACOBI_STRIP_LOW_ZEROS (result_bit1, blow, asrcp, asize, alow);
   125  
   126    /* Ensure asize >= bsize. Take advantage of the generalized
   127       reciprocity law (a/b*2^n) = (b*2^n / a) * RECIP(a,b) */
   128  
   129    if (asize < bsize)
   130      {
   131        MPN_SRCPTR_SWAP (asrcp, asize, bsrcp, bsize);
   132        MP_LIMB_T_SWAP (alow, blow);
   133  
   134        /* NOTE: The value of alow (old blow) is a bit subtle. For this code
   135  	 path, we get alow as the low, always odd, limb of shifted A. Which is
   136  	 what we need for the reciprocity update below.
   137  
   138  	 However, all other uses of alow assumes that it is *not*
   139  	 shifted. Luckily, alow matters only when either
   140  
   141  	 + btwos > 0, in which case A is always odd
   142  
   143  	 + asize == bsize == 1, in which case this code path is never
   144  	   taken. */
   145  
   146        count_trailing_zeros (btwos, blow);
   147        blow >>= btwos;
   148  
   149        if (bsize > 1 && btwos > 0)
   150  	{
   151  	  mp_limb_t b1 = bsrcp[1];
   152  	  blow |= b1 << (GMP_NUMB_BITS - btwos);
   153  	  if (bsize == 2 && (b1 >> btwos) == 0)
   154  	    bsize = 1;
   155  	}
   156  
   157        result_bit1 ^= JACOBI_RECIP_UU_BIT1 (alow, blow);
   158      }
   159  
   160    if (bsize == 1)
   161      {
   162        result_bit1 ^= JACOBI_TWOS_U_BIT1(btwos, alow);
   163  
   164        if (blow == 1)
   165  	return JACOBI_BIT1_TO_PN (result_bit1);
   166  
   167        if (asize > 1)
   168  	JACOBI_MOD_OR_MODEXACT_1_ODD (result_bit1, alow, asrcp, asize, blow);
   169  
   170        return mpn_jacobi_base (alow, blow, result_bit1);
   171      }
   172  
   173    /* Allocation strategy: For A, we allocate a working copy only for A % B, but
   174       when A is much larger than B, we have to allocate space for the large
   175       quotient. We use the same area, pointed to by bp, for both the quotient
   176       A/B and the working copy of B. */
   177  
   178    TMP_MARK;
   179  
   180    if (asize >= 2*bsize)
   181      TMP_ALLOC_LIMBS_2 (ap, bsize, bp, asize - bsize + 1);
   182    else
   183      TMP_ALLOC_LIMBS_2 (ap, bsize, bp, bsize);
   184  
   185    /* In the case of even B, we conceptually shift out the powers of two first,
   186       and then divide A mod B. Hence, when taking those powers of two into
   187       account, we must use alow *before* the division. Doing the actual division
   188       first is ok, because the point is to remove multiples of B from A, and
   189       multiples of 2^k B are good enough. */
   190    if (asize > bsize)
   191      mpn_tdiv_qr (bp, ap, 0, asrcp, asize, bsrcp, bsize);
   192    else
   193      MPN_COPY (ap, asrcp, bsize);
   194  
   195    if (btwos > 0)
   196      {
   197        result_bit1 ^= JACOBI_TWOS_U_BIT1(btwos, alow);
   198  
   199        ASSERT_NOCARRY (mpn_rshift (bp, bsrcp, bsize, btwos));
   200        bsize -= (ap[bsize-1] | bp[bsize-1]) == 0;
   201      }
   202    else
   203      MPN_COPY (bp, bsrcp, bsize);
   204  
   205    ASSERT (blow == bp[0]);
   206    res = mpn_jacobi_n (ap, bp, bsize,
   207  		      mpn_jacobi_init (ap[0], blow, (result_bit1>>1) & 1));
   208  
   209    TMP_FREE;
   210    return res;
   211  }