github.com/aergoio/aergo@v1.3.1/libtool/src/gmp-6.1.2/mpz/nextprime.c (about) 1 /* mpz_nextprime(p,t) - compute the next prime > t and store that in p. 2 3 Copyright 1999-2001, 2008, 2009, 2012 Free Software Foundation, Inc. 4 5 Contributed to the GNU project by Niels Möller and Torbjorn Granlund. 6 7 This file is part of the GNU MP Library. 8 9 The GNU MP Library is free software; you can redistribute it and/or modify 10 it under the terms of either: 11 12 * the GNU Lesser General Public License as published by the Free 13 Software Foundation; either version 3 of the License, or (at your 14 option) any later version. 15 16 or 17 18 * the GNU General Public License as published by the Free Software 19 Foundation; either version 2 of the License, or (at your option) any 20 later version. 21 22 or both in parallel, as here. 23 24 The GNU MP Library is distributed in the hope that it will be useful, but 25 WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 26 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 27 for more details. 28 29 You should have received copies of the GNU General Public License and the 30 GNU Lesser General Public License along with the GNU MP Library. If not, 31 see https://www.gnu.org/licenses/. */ 32 33 #include "gmp.h" 34 #include "gmp-impl.h" 35 #include "longlong.h" 36 37 static const unsigned char primegap[] = 38 { 39 2,2,4,2,4,2,4,6,2,6,4,2,4,6,6,2,6,4,2,6,4,6,8,4,2,4,2,4,14,4,6, 40 2,10,2,6,6,4,6,6,2,10,2,4,2,12,12,4,2,4,6,2,10,6,6,6,2,6,4,2,10,14,4,2, 41 4,14,6,10,2,4,6,8,6,6,4,6,8,4,8,10,2,10,2,6,4,6,8,4,2,4,12,8,4,8,4,6, 42 12,2,18,6,10,6,6,2,6,10,6,6,2,6,6,4,2,12,10,2,4,6,6,2,12,4,6,8,10,8,10,8, 43 6,6,4,8,6,4,8,4,14,10,12,2,10,2,4,2,10,14,4,2,4,14,4,2,4,20,4,8,10,8,4,6, 44 6,14,4,6,6,8,6,12 45 }; 46 47 #define NUMBER_OF_PRIMES 167 48 49 void 50 mpz_nextprime (mpz_ptr p, mpz_srcptr n) 51 { 52 unsigned short *moduli; 53 unsigned long difference; 54 int i; 55 unsigned prime_limit; 56 unsigned long prime; 57 mp_size_t pn; 58 mp_bitcnt_t nbits; 59 unsigned incr; 60 TMP_SDECL; 61 62 /* First handle tiny numbers */ 63 if (mpz_cmp_ui (n, 2) < 0) 64 { 65 mpz_set_ui (p, 2); 66 return; 67 } 68 mpz_add_ui (p, n, 1); 69 mpz_setbit (p, 0); 70 71 if (mpz_cmp_ui (p, 7) <= 0) 72 return; 73 74 pn = SIZ(p); 75 MPN_SIZEINBASE_2EXP(nbits, PTR(p), pn, 1); 76 if (nbits / 2 >= NUMBER_OF_PRIMES) 77 prime_limit = NUMBER_OF_PRIMES - 1; 78 else 79 prime_limit = nbits / 2; 80 81 TMP_SMARK; 82 83 /* Compute residues modulo small odd primes */ 84 moduli = TMP_SALLOC_TYPE (prime_limit * sizeof moduli[0], unsigned short); 85 86 for (;;) 87 { 88 /* FIXME: Compute lazily? */ 89 prime = 3; 90 for (i = 0; i < prime_limit; i++) 91 { 92 moduli[i] = mpz_fdiv_ui (p, prime); 93 prime += primegap[i]; 94 } 95 96 #define INCR_LIMIT 0x10000 /* deep science */ 97 98 for (difference = incr = 0; incr < INCR_LIMIT; difference += 2) 99 { 100 /* First check residues */ 101 prime = 3; 102 for (i = 0; i < prime_limit; i++) 103 { 104 unsigned r; 105 /* FIXME: Reduce moduli + incr and store back, to allow for 106 division-free reductions. Alternatively, table primes[]'s 107 inverses (mod 2^16). */ 108 r = (moduli[i] + incr) % prime; 109 prime += primegap[i]; 110 111 if (r == 0) 112 goto next; 113 } 114 115 mpz_add_ui (p, p, difference); 116 difference = 0; 117 118 /* Miller-Rabin test */ 119 if (mpz_millerrabin (p, 25)) 120 goto done; 121 next:; 122 incr += 2; 123 } 124 mpz_add_ui (p, p, difference); 125 difference = 0; 126 } 127 done: 128 TMP_SFREE; 129 }