github.com/aergoio/aergo@v1.3.1/libtool/src/gmp-6.1.2/tests/rand/stat.c (about) 1 /* stat.c -- statistical tests of random number sequences. */ 2 3 /* 4 Copyright 1999, 2000 Free Software Foundation, Inc. 5 6 This file is part of the GNU MP Library test suite. 7 8 The GNU MP Library test suite is free software; you can redistribute it 9 and/or modify it under the terms of the GNU General Public License as 10 published by the Free Software Foundation; either version 3 of the License, 11 or (at your option) any later version. 12 13 The GNU MP Library test suite is distributed in the hope that it will be 14 useful, but WITHOUT ANY WARRANTY; without even the implied warranty of 15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General 16 Public License for more details. 17 18 You should have received a copy of the GNU General Public License along with 19 the GNU MP Library test suite. If not, see https://www.gnu.org/licenses/. */ 20 21 /* Examples: 22 23 $ gen 1000 | stat 24 Test 1000 real numbers. 25 26 $ gen 30000 | stat -2 1000 27 Test 1000 real numbers 30 times and then test the 30 results in a 28 ``second level''. 29 30 $ gen -f mpz_urandomb 1000 | stat -i 0xffffffff 31 Test 1000 integers 0 <= X <= 2^32-1. 32 33 $ gen -f mpz_urandomb -z 34 1000 | stat -i 0x3ffffffff 34 Test 1000 integers 0 <= X <= 2^34-1. 35 36 */ 37 38 #include <stdio.h> 39 #include <stdlib.h> 40 #include <unistd.h> 41 #include <math.h> 42 #include "gmp.h" 43 #include "gmpstat.h" 44 45 #if !HAVE_DECL_OPTARG 46 extern char *optarg; 47 extern int optind, opterr; 48 #endif 49 50 #define FVECSIZ (100000L) 51 52 int g_debug = 0; 53 54 static void 55 print_ks_results (mpf_t f_p, mpf_t f_p_prob, 56 mpf_t f_m, mpf_t f_m_prob, 57 FILE *fp) 58 { 59 double p, pp, m, mp; 60 61 p = mpf_get_d (f_p); 62 m = mpf_get_d (f_m); 63 pp = mpf_get_d (f_p_prob); 64 mp = mpf_get_d (f_m_prob); 65 66 fprintf (fp, "%.4f (%.0f%%)\t", p, pp * 100.0); 67 fprintf (fp, "%.4f (%.0f%%)\n", m, mp * 100.0); 68 } 69 70 static void 71 print_x2_table (unsigned int v, FILE *fp) 72 { 73 double t[7]; 74 int f; 75 76 77 fprintf (fp, "Chi-square table for v=%u\n", v); 78 fprintf (fp, "1%%\t5%%\t25%%\t50%%\t75%%\t95%%\t99%%\n"); 79 x2_table (t, v); 80 for (f = 0; f < 7; f++) 81 fprintf (fp, "%.2f\t", t[f]); 82 fputs ("\n", fp); 83 } 84 85 86 87 /* Pks () -- Distribution function for KS results with a big n (like 1000 88 or so): F(x) = 1 - pow(e, -2*x^2) [Knuth, vol 2, p.51]. */ 89 /* gnuplot: plot [0:1] Pks(x), Pks(x) = 1-exp(-2*x**2) */ 90 91 static void 92 Pks (mpf_t p, mpf_t x) 93 { 94 double dt; /* temp double */ 95 96 mpf_set (p, x); 97 mpf_mul (p, p, p); /* p = x^2 */ 98 mpf_mul_ui (p, p, 2); /* p = 2*x^2 */ 99 mpf_neg (p, p); /* p = -2*x^2 */ 100 /* No pow() in gmp. Use doubles. */ 101 /* FIXME: Use exp()? */ 102 dt = pow (M_E, mpf_get_d (p)); 103 mpf_set_d (p, dt); 104 mpf_ui_sub (p, 1, p); 105 } 106 107 /* f_freq() -- frequency test on real numbers 0<=f<1*/ 108 static void 109 f_freq (const unsigned l1runs, const unsigned l2runs, 110 mpf_t fvec[], const unsigned long n) 111 { 112 unsigned f; 113 mpf_t f_p, f_p_prob; 114 mpf_t f_m, f_m_prob; 115 mpf_t *l1res; /* level 1 result array */ 116 117 mpf_init (f_p); mpf_init (f_m); 118 mpf_init (f_p_prob); mpf_init (f_m_prob); 119 120 121 /* Allocate space for 1st level results. */ 122 l1res = (mpf_t *) malloc (l2runs * 2 * sizeof (mpf_t)); 123 if (NULL == l1res) 124 { 125 fprintf (stderr, "stat: malloc failure\n"); 126 exit (1); 127 } 128 129 printf ("\nEquidistribution/Frequency test on real numbers (0<=X<1):\n"); 130 printf ("\tKp\t\tKm\n"); 131 132 for (f = 0; f < l2runs; f++) 133 { 134 /* f_printvec (fvec, n); */ 135 mpf_freqt (f_p, f_m, fvec + f * n, n); 136 137 /* what's the probability of getting these results? */ 138 ks_table (f_p_prob, f_p, n); 139 ks_table (f_m_prob, f_m, n); 140 141 if (l1runs == 0) 142 { 143 /*printf ("%u:\t", f + 1);*/ 144 print_ks_results (f_p, f_p_prob, f_m, f_m_prob, stdout); 145 } 146 else 147 { 148 /* save result */ 149 mpf_init_set (l1res[f], f_p); 150 mpf_init_set (l1res[f + l2runs], f_m); 151 } 152 } 153 154 /* Now, apply the KS test on the results from the 1st level rounds 155 with the distribution 156 F(x) = 1 - pow(e, -2*x^2) [Knuth, vol 2, p.51] */ 157 158 if (l1runs != 0) 159 { 160 /*printf ("-------------------------------------\n");*/ 161 162 /* The Kp's. */ 163 ks (f_p, f_m, l1res, Pks, l2runs); 164 ks_table (f_p_prob, f_p, l2runs); 165 ks_table (f_m_prob, f_m, l2runs); 166 printf ("Kp:\t"); 167 print_ks_results (f_p, f_p_prob, f_m, f_m_prob, stdout); 168 169 /* The Km's. */ 170 ks (f_p, f_m, l1res + l2runs, Pks, l2runs); 171 ks_table (f_p_prob, f_p, l2runs); 172 ks_table (f_m_prob, f_m, l2runs); 173 printf ("Km:\t"); 174 print_ks_results (f_p, f_p_prob, f_m, f_m_prob, stdout); 175 } 176 177 mpf_clear (f_p); mpf_clear (f_m); 178 mpf_clear (f_p_prob); mpf_clear (f_m_prob); 179 free (l1res); 180 } 181 182 /* z_freq(l1runs, l2runs, zvec, n, max) -- frequency test on integers 183 0<=z<=MAX */ 184 static void 185 z_freq (const unsigned l1runs, 186 const unsigned l2runs, 187 mpz_t zvec[], 188 const unsigned long n, 189 unsigned int max) 190 { 191 mpf_t V; /* result */ 192 double d_V; /* result as a double */ 193 194 mpf_init (V); 195 196 197 printf ("\nEquidistribution/Frequency test on integers (0<=X<=%u):\n", max); 198 print_x2_table (max, stdout); 199 200 mpz_freqt (V, zvec, max, n); 201 202 d_V = mpf_get_d (V); 203 printf ("V = %.2f (n = %lu)\n", d_V, n); 204 205 mpf_clear (V); 206 } 207 208 unsigned int stat_debug = 0; 209 210 int 211 main (argc, argv) 212 int argc; 213 char *argv[]; 214 { 215 const char usage[] = 216 "usage: stat [-d] [-2 runs] [-i max | -r max] [file]\n" \ 217 " file filename\n" \ 218 " -2 runs perform 2-level test with RUNS runs on 1st level\n" \ 219 " -d increase debugging level\n" \ 220 " -i max input is integers 0 <= Z <= MAX\n" \ 221 " -r max input is real numbers 0 <= R < 1 and use MAX as\n" \ 222 " maximum value when converting real numbers to integers\n" \ 223 ""; 224 225 mpf_t fvec[FVECSIZ]; 226 mpz_t zvec[FVECSIZ]; 227 unsigned long int f, n, vecentries; 228 char *filen; 229 FILE *fp; 230 int c; 231 int omitoutput = 0; 232 int realinput = -1; /* 1: input is real numbers 0<=R<1; 233 0: input is integers 0 <= Z <= MAX. */ 234 long l1runs = 0, /* 1st level runs */ 235 l2runs = 1; /* 2nd level runs */ 236 mpf_t f_temp; 237 mpz_t z_imax; /* max value when converting between 238 real number and integer. */ 239 mpf_t f_imax_plus1; /* f_imax + 1 stored in an mpf_t for 240 convenience */ 241 mpf_t f_imax_minus1; /* f_imax - 1 stored in an mpf_t for 242 convenience */ 243 244 245 mpf_init (f_temp); 246 mpz_init_set_ui (z_imax, 0x7fffffff); 247 mpf_init (f_imax_plus1); 248 mpf_init (f_imax_minus1); 249 250 while ((c = getopt (argc, argv, "d2:i:r:")) != -1) 251 switch (c) 252 { 253 case '2': 254 l1runs = atol (optarg); 255 l2runs = -1; /* set later on */ 256 break; 257 case 'd': /* increase debug level */ 258 stat_debug++; 259 break; 260 case 'i': 261 if (1 == realinput) 262 { 263 fputs ("stat: options -i and -r are mutually exclusive\n", stderr); 264 exit (1); 265 } 266 if (mpz_set_str (z_imax, optarg, 0)) 267 { 268 fprintf (stderr, "stat: bad max value %s\n", optarg); 269 exit (1); 270 } 271 realinput = 0; 272 break; 273 case 'r': 274 if (0 == realinput) 275 { 276 fputs ("stat: options -i and -r are mutually exclusive\n", stderr); 277 exit (1); 278 } 279 if (mpz_set_str (z_imax, optarg, 0)) 280 { 281 fprintf (stderr, "stat: bad max value %s\n", optarg); 282 exit (1); 283 } 284 realinput = 1; 285 break; 286 case 'o': 287 omitoutput = atoi (optarg); 288 break; 289 case '?': 290 default: 291 fputs (usage, stderr); 292 exit (1); 293 } 294 argc -= optind; 295 argv += optind; 296 297 if (argc < 1) 298 fp = stdin; 299 else 300 filen = argv[0]; 301 302 if (fp != stdin) 303 if (NULL == (fp = fopen (filen, "r"))) 304 { 305 perror (filen); 306 exit (1); 307 } 308 309 if (-1 == realinput) 310 realinput = 1; /* default is real numbers */ 311 312 /* read file and fill appropriate vec */ 313 if (1 == realinput) /* real input */ 314 { 315 for (f = 0; f < FVECSIZ ; f++) 316 { 317 mpf_init (fvec[f]); 318 if (!mpf_inp_str (fvec[f], fp, 10)) 319 break; 320 } 321 } 322 else /* integer input */ 323 { 324 for (f = 0; f < FVECSIZ ; f++) 325 { 326 mpz_init (zvec[f]); 327 if (!mpz_inp_str (zvec[f], fp, 10)) 328 break; 329 } 330 } 331 vecentries = n = f; /* number of entries read */ 332 fclose (fp); 333 334 if (FVECSIZ == f) 335 fprintf (stderr, "stat: warning: discarding input due to lazy allocation "\ 336 "of only %ld entries. sorry.\n", FVECSIZ); 337 338 printf ("Got %lu numbers.\n", n); 339 340 /* convert and fill the other vec */ 341 /* since fvec[] contains 0<=f<1 and we want ivec[] to contain 342 0<=z<=imax and we are truncating all fractions when 343 converting float to int, we have to add 1 to imax.*/ 344 mpf_set_z (f_imax_plus1, z_imax); 345 mpf_add_ui (f_imax_plus1, f_imax_plus1, 1); 346 if (1 == realinput) /* fill zvec[] */ 347 { 348 for (f = 0; f < n; f++) 349 { 350 mpf_mul (f_temp, fvec[f], f_imax_plus1); 351 mpz_init (zvec[f]); 352 mpz_set_f (zvec[f], f_temp); /* truncating fraction */ 353 if (stat_debug > 1) 354 { 355 mpz_out_str (stderr, 10, zvec[f]); 356 fputs ("\n", stderr); 357 } 358 } 359 } 360 else /* integer input; fill fvec[] */ 361 { 362 /* mpf_set_z (f_imax_minus1, z_imax); 363 mpf_sub_ui (f_imax_minus1, f_imax_minus1, 1);*/ 364 for (f = 0; f < n; f++) 365 { 366 mpf_init (fvec[f]); 367 mpf_set_z (fvec[f], zvec[f]); 368 mpf_div (fvec[f], fvec[f], f_imax_plus1); 369 if (stat_debug > 1) 370 { 371 mpf_out_str (stderr, 10, 0, fvec[f]); 372 fputs ("\n", stderr); 373 } 374 } 375 } 376 377 /* 2 levels? */ 378 if (1 != l2runs) 379 { 380 l2runs = n / l1runs; 381 printf ("Doing %ld second level rounds "\ 382 "with %ld entries in each round", l2runs, l1runs); 383 if (n % l1runs) 384 printf (" (discarding %ld entr%s)", n % l1runs, 385 n % l1runs == 1 ? "y" : "ies"); 386 puts ("."); 387 n = l1runs; 388 } 389 390 #ifndef DONT_FFREQ 391 f_freq (l1runs, l2runs, fvec, n); 392 #endif 393 #ifdef DO_ZFREQ 394 z_freq (l1runs, l2runs, zvec, n, mpz_get_ui (z_imax)); 395 #endif 396 397 mpf_clear (f_temp); mpz_clear (z_imax); 398 mpf_clear (f_imax_plus1); 399 mpf_clear (f_imax_minus1); 400 for (f = 0; f < vecentries; f++) 401 { 402 mpf_clear (fvec[f]); 403 mpz_clear (zvec[f]); 404 } 405 406 return 0; 407 }