github.com/afumu/libc@v0.0.6/musl/src/math/atanl.c (about)

     1  /* origin: FreeBSD /usr/src/lib/msun/src/s_atanl.c */
     2  /*
     3   * ====================================================
     4   * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
     5   *
     6   * Developed at SunPro, a Sun Microsystems, Inc. business.
     7   * Permission to use, copy, modify, and distribute this
     8   * software is freely granted, provided that this notice
     9   * is preserved.
    10   * ====================================================
    11   */
    12  /*
    13   * See comments in atan.c.
    14   * Converted to long double by David Schultz <das@FreeBSD.ORG>.
    15   */
    16  
    17  #include "libm.h"
    18  
    19  #if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
    20  long double atanl(long double x)
    21  {
    22  	return atan(x);
    23  }
    24  #elif (LDBL_MANT_DIG == 64 || LDBL_MANT_DIG == 113) && LDBL_MAX_EXP == 16384
    25  
    26  #if LDBL_MANT_DIG == 64
    27  #define EXPMAN(u) ((u.i.se & 0x7fff)<<8 | (u.i.m>>55 & 0xff))
    28  
    29  static const long double atanhi[] = {
    30  	 4.63647609000806116202e-01L,
    31  	 7.85398163397448309628e-01L,
    32  	 9.82793723247329067960e-01L,
    33  	 1.57079632679489661926e+00L,
    34  };
    35  
    36  static const long double atanlo[] = {
    37  	 1.18469937025062860669e-20L,
    38  	-1.25413940316708300586e-20L,
    39  	 2.55232234165405176172e-20L,
    40  	-2.50827880633416601173e-20L,
    41  };
    42  
    43  static const long double aT[] = {
    44  	 3.33333333333333333017e-01L,
    45  	-1.99999999999999632011e-01L,
    46  	 1.42857142857046531280e-01L,
    47  	-1.11111111100562372733e-01L,
    48  	 9.09090902935647302252e-02L,
    49  	-7.69230552476207730353e-02L,
    50  	 6.66661718042406260546e-02L,
    51  	-5.88158892835030888692e-02L,
    52  	 5.25499891539726639379e-02L,
    53  	-4.70119845393155721494e-02L,
    54  	 4.03539201366454414072e-02L,
    55  	-2.91303858419364158725e-02L,
    56  	 1.24822046299269234080e-02L,
    57  };
    58  
    59  static long double T_even(long double x)
    60  {
    61  	return aT[0] + x * (aT[2] + x * (aT[4] + x * (aT[6] +
    62  		x * (aT[8] + x * (aT[10] + x * aT[12])))));
    63  }
    64  
    65  static long double T_odd(long double x)
    66  {
    67  	return aT[1] + x * (aT[3] + x * (aT[5] + x * (aT[7] +
    68  		x * (aT[9] + x * aT[11]))));
    69  }
    70  #elif LDBL_MANT_DIG == 113
    71  #define EXPMAN(u) ((u.i.se & 0x7fff)<<8 | u.i.top>>8)
    72  
    73  static const long double atanhi[] = {
    74  	 4.63647609000806116214256231461214397e-01L,
    75  	 7.85398163397448309615660845819875699e-01L,
    76  	 9.82793723247329067985710611014666038e-01L,
    77  	 1.57079632679489661923132169163975140e+00L,
    78  };
    79  
    80  static const long double atanlo[] = {
    81  	 4.89509642257333492668618435220297706e-36L,
    82  	 2.16795253253094525619926100651083806e-35L,
    83  	-2.31288434538183565909319952098066272e-35L,
    84  	 4.33590506506189051239852201302167613e-35L,
    85  };
    86  
    87  static const long double aT[] = {
    88  	 3.33333333333333333333333333333333125e-01L,
    89  	-1.99999999999999999999999999999180430e-01L,
    90  	 1.42857142857142857142857142125269827e-01L,
    91  	-1.11111111111111111111110834490810169e-01L,
    92  	 9.09090909090909090908522355708623681e-02L,
    93  	-7.69230769230769230696553844935357021e-02L,
    94  	 6.66666666666666660390096773046256096e-02L,
    95  	-5.88235294117646671706582985209643694e-02L,
    96  	 5.26315789473666478515847092020327506e-02L,
    97  	-4.76190476189855517021024424991436144e-02L,
    98  	 4.34782608678695085948531993458097026e-02L,
    99  	-3.99999999632663469330634215991142368e-02L,
   100  	 3.70370363987423702891250829918659723e-02L,
   101  	-3.44827496515048090726669907612335954e-02L,
   102  	 3.22579620681420149871973710852268528e-02L,
   103  	-3.03020767654269261041647570626778067e-02L,
   104  	 2.85641979882534783223403715930946138e-02L,
   105  	-2.69824879726738568189929461383741323e-02L,
   106  	 2.54194698498808542954187110873675769e-02L,
   107  	-2.35083879708189059926183138130183215e-02L,
   108  	 2.04832358998165364349957325067131428e-02L,
   109  	-1.54489555488544397858507248612362957e-02L,
   110  	 8.64492360989278761493037861575248038e-03L,
   111  	-2.58521121597609872727919154569765469e-03L,
   112  };
   113  
   114  static long double T_even(long double x)
   115  {
   116  	return (aT[0] + x * (aT[2] + x * (aT[4] + x * (aT[6] + x * (aT[8] +
   117  		x * (aT[10] + x * (aT[12] + x * (aT[14] + x * (aT[16] +
   118  		x * (aT[18] + x * (aT[20] + x * aT[22])))))))))));
   119  }
   120  
   121  static long double T_odd(long double x)
   122  {
   123  	return (aT[1] + x * (aT[3] + x * (aT[5] + x * (aT[7] + x * (aT[9] +
   124  		x * (aT[11] + x * (aT[13] + x * (aT[15] + x * (aT[17] +
   125  		x * (aT[19] + x * (aT[21] + x * aT[23])))))))))));
   126  }
   127  #endif
   128  
   129  long double atanl(long double x)
   130  {
   131  	union ldshape u = {x};
   132  	long double w, s1, s2, z;
   133  	int id;
   134  	unsigned e = u.i.se & 0x7fff;
   135  	unsigned sign = u.i.se >> 15;
   136  	unsigned expman;
   137  
   138  	if (e >= 0x3fff + LDBL_MANT_DIG + 1) { /* if |x| is large, atan(x)~=pi/2 */
   139  		if (isnan(x))
   140  			return x;
   141  		return sign ? -atanhi[3] : atanhi[3];
   142  	}
   143  	/* Extract the exponent and the first few bits of the mantissa. */
   144  	expman = EXPMAN(u);
   145  	if (expman < ((0x3fff - 2) << 8) + 0xc0) {  /* |x| < 0.4375 */
   146  		if (e < 0x3fff - (LDBL_MANT_DIG+1)/2) {   /* if |x| is small, atanl(x)~=x */
   147  			/* raise underflow if subnormal */
   148  			if (e == 0)
   149  				FORCE_EVAL((float)x);
   150  			return x;
   151  		}
   152  		id = -1;
   153  	} else {
   154  		x = fabsl(x);
   155  		if (expman < (0x3fff << 8) + 0x30) {  /* |x| < 1.1875 */
   156  			if (expman < ((0x3fff - 1) << 8) + 0x60) { /*  7/16 <= |x| < 11/16 */
   157  				id = 0;
   158  				x = (2.0*x-1.0)/(2.0+x);
   159  			} else {                                 /* 11/16 <= |x| < 19/16 */
   160  				id = 1;
   161  				x = (x-1.0)/(x+1.0);
   162  			}
   163  		} else {
   164  			if (expman < ((0x3fff + 1) << 8) + 0x38) { /* |x| < 2.4375 */
   165  				id = 2;
   166  				x = (x-1.5)/(1.0+1.5*x);
   167  			} else {                                 /* 2.4375 <= |x| */
   168  				id = 3;
   169  				x = -1.0/x;
   170  			}
   171  		}
   172  	}
   173  	/* end of argument reduction */
   174  	z = x*x;
   175  	w = z*z;
   176  	/* break sum aT[i]z**(i+1) into odd and even poly */
   177  	s1 = z*T_even(w);
   178  	s2 = w*T_odd(w);
   179  	if (id < 0)
   180  		return x - x*(s1+s2);
   181  	z = atanhi[id] - ((x*(s1+s2) - atanlo[id]) - x);
   182  	return sign ? -z : z;
   183  }
   184  #endif