github.com/afumu/libc@v0.0.6/musl/src/math/erf.c (about)

     1  /* origin: FreeBSD /usr/src/lib/msun/src/s_erf.c */
     2  /*
     3   * ====================================================
     4   * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
     5   *
     6   * Developed at SunPro, a Sun Microsystems, Inc. business.
     7   * Permission to use, copy, modify, and distribute this
     8   * software is freely granted, provided that this notice
     9   * is preserved.
    10   * ====================================================
    11   */
    12  /* double erf(double x)
    13   * double erfc(double x)
    14   *                           x
    15   *                    2      |\
    16   *     erf(x)  =  ---------  | exp(-t*t)dt
    17   *                 sqrt(pi) \|
    18   *                           0
    19   *
    20   *     erfc(x) =  1-erf(x)
    21   *  Note that
    22   *              erf(-x) = -erf(x)
    23   *              erfc(-x) = 2 - erfc(x)
    24   *
    25   * Method:
    26   *      1. For |x| in [0, 0.84375]
    27   *          erf(x)  = x + x*R(x^2)
    28   *          erfc(x) = 1 - erf(x)           if x in [-.84375,0.25]
    29   *                  = 0.5 + ((0.5-x)-x*R)  if x in [0.25,0.84375]
    30   *         where R = P/Q where P is an odd poly of degree 8 and
    31   *         Q is an odd poly of degree 10.
    32   *                                               -57.90
    33   *                      | R - (erf(x)-x)/x | <= 2
    34   *
    35   *
    36   *         Remark. The formula is derived by noting
    37   *          erf(x) = (2/sqrt(pi))*(x - x^3/3 + x^5/10 - x^7/42 + ....)
    38   *         and that
    39   *          2/sqrt(pi) = 1.128379167095512573896158903121545171688
    40   *         is close to one. The interval is chosen because the fix
    41   *         point of erf(x) is near 0.6174 (i.e., erf(x)=x when x is
    42   *         near 0.6174), and by some experiment, 0.84375 is chosen to
    43   *         guarantee the error is less than one ulp for erf.
    44   *
    45   *      2. For |x| in [0.84375,1.25], let s = |x| - 1, and
    46   *         c = 0.84506291151 rounded to single (24 bits)
    47   *              erf(x)  = sign(x) * (c  + P1(s)/Q1(s))
    48   *              erfc(x) = (1-c)  - P1(s)/Q1(s) if x > 0
    49   *                        1+(c+P1(s)/Q1(s))    if x < 0
    50   *              |P1/Q1 - (erf(|x|)-c)| <= 2**-59.06
    51   *         Remark: here we use the taylor series expansion at x=1.
    52   *              erf(1+s) = erf(1) + s*Poly(s)
    53   *                       = 0.845.. + P1(s)/Q1(s)
    54   *         That is, we use rational approximation to approximate
    55   *                      erf(1+s) - (c = (single)0.84506291151)
    56   *         Note that |P1/Q1|< 0.078 for x in [0.84375,1.25]
    57   *         where
    58   *              P1(s) = degree 6 poly in s
    59   *              Q1(s) = degree 6 poly in s
    60   *
    61   *      3. For x in [1.25,1/0.35(~2.857143)],
    62   *              erfc(x) = (1/x)*exp(-x*x-0.5625+R1/S1)
    63   *              erf(x)  = 1 - erfc(x)
    64   *         where
    65   *              R1(z) = degree 7 poly in z, (z=1/x^2)
    66   *              S1(z) = degree 8 poly in z
    67   *
    68   *      4. For x in [1/0.35,28]
    69   *              erfc(x) = (1/x)*exp(-x*x-0.5625+R2/S2) if x > 0
    70   *                      = 2.0 - (1/x)*exp(-x*x-0.5625+R2/S2) if -6<x<0
    71   *                      = 2.0 - tiny            (if x <= -6)
    72   *              erf(x)  = sign(x)*(1.0 - erfc(x)) if x < 6, else
    73   *              erf(x)  = sign(x)*(1.0 - tiny)
    74   *         where
    75   *              R2(z) = degree 6 poly in z, (z=1/x^2)
    76   *              S2(z) = degree 7 poly in z
    77   *
    78   *      Note1:
    79   *         To compute exp(-x*x-0.5625+R/S), let s be a single
    80   *         precision number and s := x; then
    81   *              -x*x = -s*s + (s-x)*(s+x)
    82   *              exp(-x*x-0.5626+R/S) =
    83   *                      exp(-s*s-0.5625)*exp((s-x)*(s+x)+R/S);
    84   *      Note2:
    85   *         Here 4 and 5 make use of the asymptotic series
    86   *                        exp(-x*x)
    87   *              erfc(x) ~ ---------- * ( 1 + Poly(1/x^2) )
    88   *                        x*sqrt(pi)
    89   *         We use rational approximation to approximate
    90   *              g(s)=f(1/x^2) = log(erfc(x)*x) - x*x + 0.5625
    91   *         Here is the error bound for R1/S1 and R2/S2
    92   *              |R1/S1 - f(x)|  < 2**(-62.57)
    93   *              |R2/S2 - f(x)|  < 2**(-61.52)
    94   *
    95   *      5. For inf > x >= 28
    96   *              erf(x)  = sign(x) *(1 - tiny)  (raise inexact)
    97   *              erfc(x) = tiny*tiny (raise underflow) if x > 0
    98   *                      = 2 - tiny if x<0
    99   *
   100   *      7. Special case:
   101   *              erf(0)  = 0, erf(inf)  = 1, erf(-inf) = -1,
   102   *              erfc(0) = 1, erfc(inf) = 0, erfc(-inf) = 2,
   103   *              erfc/erf(NaN) is NaN
   104   */
   105  
   106  #include "libm.h"
   107  
   108  static const double
   109  erx  = 8.45062911510467529297e-01, /* 0x3FEB0AC1, 0x60000000 */
   110  /*
   111   * Coefficients for approximation to  erf on [0,0.84375]
   112   */
   113  efx8 =  1.02703333676410069053e+00, /* 0x3FF06EBA, 0x8214DB69 */
   114  pp0  =  1.28379167095512558561e-01, /* 0x3FC06EBA, 0x8214DB68 */
   115  pp1  = -3.25042107247001499370e-01, /* 0xBFD4CD7D, 0x691CB913 */
   116  pp2  = -2.84817495755985104766e-02, /* 0xBF9D2A51, 0xDBD7194F */
   117  pp3  = -5.77027029648944159157e-03, /* 0xBF77A291, 0x236668E4 */
   118  pp4  = -2.37630166566501626084e-05, /* 0xBEF8EAD6, 0x120016AC */
   119  qq1  =  3.97917223959155352819e-01, /* 0x3FD97779, 0xCDDADC09 */
   120  qq2  =  6.50222499887672944485e-02, /* 0x3FB0A54C, 0x5536CEBA */
   121  qq3  =  5.08130628187576562776e-03, /* 0x3F74D022, 0xC4D36B0F */
   122  qq4  =  1.32494738004321644526e-04, /* 0x3F215DC9, 0x221C1A10 */
   123  qq5  = -3.96022827877536812320e-06, /* 0xBED09C43, 0x42A26120 */
   124  /*
   125   * Coefficients for approximation to  erf  in [0.84375,1.25]
   126   */
   127  pa0  = -2.36211856075265944077e-03, /* 0xBF6359B8, 0xBEF77538 */
   128  pa1  =  4.14856118683748331666e-01, /* 0x3FDA8D00, 0xAD92B34D */
   129  pa2  = -3.72207876035701323847e-01, /* 0xBFD7D240, 0xFBB8C3F1 */
   130  pa3  =  3.18346619901161753674e-01, /* 0x3FD45FCA, 0x805120E4 */
   131  pa4  = -1.10894694282396677476e-01, /* 0xBFBC6398, 0x3D3E28EC */
   132  pa5  =  3.54783043256182359371e-02, /* 0x3FA22A36, 0x599795EB */
   133  pa6  = -2.16637559486879084300e-03, /* 0xBF61BF38, 0x0A96073F */
   134  qa1  =  1.06420880400844228286e-01, /* 0x3FBB3E66, 0x18EEE323 */
   135  qa2  =  5.40397917702171048937e-01, /* 0x3FE14AF0, 0x92EB6F33 */
   136  qa3  =  7.18286544141962662868e-02, /* 0x3FB2635C, 0xD99FE9A7 */
   137  qa4  =  1.26171219808761642112e-01, /* 0x3FC02660, 0xE763351F */
   138  qa5  =  1.36370839120290507362e-02, /* 0x3F8BEDC2, 0x6B51DD1C */
   139  qa6  =  1.19844998467991074170e-02, /* 0x3F888B54, 0x5735151D */
   140  /*
   141   * Coefficients for approximation to  erfc in [1.25,1/0.35]
   142   */
   143  ra0  = -9.86494403484714822705e-03, /* 0xBF843412, 0x600D6435 */
   144  ra1  = -6.93858572707181764372e-01, /* 0xBFE63416, 0xE4BA7360 */
   145  ra2  = -1.05586262253232909814e+01, /* 0xC0251E04, 0x41B0E726 */
   146  ra3  = -6.23753324503260060396e+01, /* 0xC04F300A, 0xE4CBA38D */
   147  ra4  = -1.62396669462573470355e+02, /* 0xC0644CB1, 0x84282266 */
   148  ra5  = -1.84605092906711035994e+02, /* 0xC067135C, 0xEBCCABB2 */
   149  ra6  = -8.12874355063065934246e+01, /* 0xC0545265, 0x57E4D2F2 */
   150  ra7  = -9.81432934416914548592e+00, /* 0xC023A0EF, 0xC69AC25C */
   151  sa1  =  1.96512716674392571292e+01, /* 0x4033A6B9, 0xBD707687 */
   152  sa2  =  1.37657754143519042600e+02, /* 0x4061350C, 0x526AE721 */
   153  sa3  =  4.34565877475229228821e+02, /* 0x407B290D, 0xD58A1A71 */
   154  sa4  =  6.45387271733267880336e+02, /* 0x40842B19, 0x21EC2868 */
   155  sa5  =  4.29008140027567833386e+02, /* 0x407AD021, 0x57700314 */
   156  sa6  =  1.08635005541779435134e+02, /* 0x405B28A3, 0xEE48AE2C */
   157  sa7  =  6.57024977031928170135e+00, /* 0x401A47EF, 0x8E484A93 */
   158  sa8  = -6.04244152148580987438e-02, /* 0xBFAEEFF2, 0xEE749A62 */
   159  /*
   160   * Coefficients for approximation to  erfc in [1/.35,28]
   161   */
   162  rb0  = -9.86494292470009928597e-03, /* 0xBF843412, 0x39E86F4A */
   163  rb1  = -7.99283237680523006574e-01, /* 0xBFE993BA, 0x70C285DE */
   164  rb2  = -1.77579549177547519889e+01, /* 0xC031C209, 0x555F995A */
   165  rb3  = -1.60636384855821916062e+02, /* 0xC064145D, 0x43C5ED98 */
   166  rb4  = -6.37566443368389627722e+02, /* 0xC083EC88, 0x1375F228 */
   167  rb5  = -1.02509513161107724954e+03, /* 0xC0900461, 0x6A2E5992 */
   168  rb6  = -4.83519191608651397019e+02, /* 0xC07E384E, 0x9BDC383F */
   169  sb1  =  3.03380607434824582924e+01, /* 0x403E568B, 0x261D5190 */
   170  sb2  =  3.25792512996573918826e+02, /* 0x40745CAE, 0x221B9F0A */
   171  sb3  =  1.53672958608443695994e+03, /* 0x409802EB, 0x189D5118 */
   172  sb4  =  3.19985821950859553908e+03, /* 0x40A8FFB7, 0x688C246A */
   173  sb5  =  2.55305040643316442583e+03, /* 0x40A3F219, 0xCEDF3BE6 */
   174  sb6  =  4.74528541206955367215e+02, /* 0x407DA874, 0xE79FE763 */
   175  sb7  = -2.24409524465858183362e+01; /* 0xC03670E2, 0x42712D62 */
   176  
   177  static double erfc1(double x)
   178  {
   179  	double_t s,P,Q;
   180  
   181  	s = fabs(x) - 1;
   182  	P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6)))));
   183  	Q = 1+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6)))));
   184  	return 1 - erx - P/Q;
   185  }
   186  
   187  static double erfc2(uint32_t ix, double x)
   188  {
   189  	double_t s,R,S;
   190  	double z;
   191  
   192  	if (ix < 0x3ff40000)  /* |x| < 1.25 */
   193  		return erfc1(x);
   194  
   195  	x = fabs(x);
   196  	s = 1/(x*x);
   197  	if (ix < 0x4006db6d) {  /* |x| < 1/.35 ~ 2.85714 */
   198  		R = ra0+s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*(
   199  		     ra5+s*(ra6+s*ra7))))));
   200  		S = 1.0+s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*(
   201  		     sa5+s*(sa6+s*(sa7+s*sa8)))))));
   202  	} else {                /* |x| > 1/.35 */
   203  		R = rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(
   204  		     rb5+s*rb6)))));
   205  		S = 1.0+s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*(
   206  		     sb5+s*(sb6+s*sb7))))));
   207  	}
   208  	z = x;
   209  	SET_LOW_WORD(z,0);
   210  	return exp(-z*z-0.5625)*exp((z-x)*(z+x)+R/S)/x;
   211  }
   212  
   213  double erf(double x)
   214  {
   215  	double r,s,z,y;
   216  	uint32_t ix;
   217  	int sign;
   218  
   219  	GET_HIGH_WORD(ix, x);
   220  	sign = ix>>31;
   221  	ix &= 0x7fffffff;
   222  	if (ix >= 0x7ff00000) {
   223  		/* erf(nan)=nan, erf(+-inf)=+-1 */
   224  		return 1-2*sign + 1/x;
   225  	}
   226  	if (ix < 0x3feb0000) {  /* |x| < 0.84375 */
   227  		if (ix < 0x3e300000) {  /* |x| < 2**-28 */
   228  			/* avoid underflow */
   229  			return 0.125*(8*x + efx8*x);
   230  		}
   231  		z = x*x;
   232  		r = pp0+z*(pp1+z*(pp2+z*(pp3+z*pp4)));
   233  		s = 1.0+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5))));
   234  		y = r/s;
   235  		return x + x*y;
   236  	}
   237  	if (ix < 0x40180000)  /* 0.84375 <= |x| < 6 */
   238  		y = 1 - erfc2(ix,x);
   239  	else
   240  		y = 1 - 0x1p-1022;
   241  	return sign ? -y : y;
   242  }
   243  
   244  double erfc(double x)
   245  {
   246  	double r,s,z,y;
   247  	uint32_t ix;
   248  	int sign;
   249  
   250  	GET_HIGH_WORD(ix, x);
   251  	sign = ix>>31;
   252  	ix &= 0x7fffffff;
   253  	if (ix >= 0x7ff00000) {
   254  		/* erfc(nan)=nan, erfc(+-inf)=0,2 */
   255  		return 2*sign + 1/x;
   256  	}
   257  	if (ix < 0x3feb0000) {  /* |x| < 0.84375 */
   258  		if (ix < 0x3c700000)  /* |x| < 2**-56 */
   259  			return 1.0 - x;
   260  		z = x*x;
   261  		r = pp0+z*(pp1+z*(pp2+z*(pp3+z*pp4)));
   262  		s = 1.0+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5))));
   263  		y = r/s;
   264  		if (sign || ix < 0x3fd00000) {  /* x < 1/4 */
   265  			return 1.0 - (x+x*y);
   266  		}
   267  		return 0.5 - (x - 0.5 + x*y);
   268  	}
   269  	if (ix < 0x403c0000) {  /* 0.84375 <= |x| < 28 */
   270  		return sign ? 2 - erfc2(ix,x) : erfc2(ix,x);
   271  	}
   272  	return sign ? 2 - 0x1p-1022 : 0x1p-1022*0x1p-1022;
   273  }