github.com/afumu/libc@v0.0.6/musl/src/math/expm1.c (about)

     1  /* origin: FreeBSD /usr/src/lib/msun/src/s_expm1.c */
     2  /*
     3   * ====================================================
     4   * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
     5   *
     6   * Developed at SunPro, a Sun Microsystems, Inc. business.
     7   * Permission to use, copy, modify, and distribute this
     8   * software is freely granted, provided that this notice
     9   * is preserved.
    10   * ====================================================
    11   */
    12  /* expm1(x)
    13   * Returns exp(x)-1, the exponential of x minus 1.
    14   *
    15   * Method
    16   *   1. Argument reduction:
    17   *      Given x, find r and integer k such that
    18   *
    19   *               x = k*ln2 + r,  |r| <= 0.5*ln2 ~ 0.34658
    20   *
    21   *      Here a correction term c will be computed to compensate
    22   *      the error in r when rounded to a floating-point number.
    23   *
    24   *   2. Approximating expm1(r) by a special rational function on
    25   *      the interval [0,0.34658]:
    26   *      Since
    27   *          r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 - r^4/360 + ...
    28   *      we define R1(r*r) by
    29   *          r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 * R1(r*r)
    30   *      That is,
    31   *          R1(r**2) = 6/r *((exp(r)+1)/(exp(r)-1) - 2/r)
    32   *                   = 6/r * ( 1 + 2.0*(1/(exp(r)-1) - 1/r))
    33   *                   = 1 - r^2/60 + r^4/2520 - r^6/100800 + ...
    34   *      We use a special Remez algorithm on [0,0.347] to generate
    35   *      a polynomial of degree 5 in r*r to approximate R1. The
    36   *      maximum error of this polynomial approximation is bounded
    37   *      by 2**-61. In other words,
    38   *          R1(z) ~ 1.0 + Q1*z + Q2*z**2 + Q3*z**3 + Q4*z**4 + Q5*z**5
    39   *      where   Q1  =  -1.6666666666666567384E-2,
    40   *              Q2  =   3.9682539681370365873E-4,
    41   *              Q3  =  -9.9206344733435987357E-6,
    42   *              Q4  =   2.5051361420808517002E-7,
    43   *              Q5  =  -6.2843505682382617102E-9;
    44   *              z   =  r*r,
    45   *      with error bounded by
    46   *          |                  5           |     -61
    47   *          | 1.0+Q1*z+...+Q5*z   -  R1(z) | <= 2
    48   *          |                              |
    49   *
    50   *      expm1(r) = exp(r)-1 is then computed by the following
    51   *      specific way which minimize the accumulation rounding error:
    52   *                             2     3
    53   *                            r     r    [ 3 - (R1 + R1*r/2)  ]
    54   *            expm1(r) = r + --- + --- * [--------------------]
    55   *                            2     2    [ 6 - r*(3 - R1*r/2) ]
    56   *
    57   *      To compensate the error in the argument reduction, we use
    58   *              expm1(r+c) = expm1(r) + c + expm1(r)*c
    59   *                         ~ expm1(r) + c + r*c
    60   *      Thus c+r*c will be added in as the correction terms for
    61   *      expm1(r+c). Now rearrange the term to avoid optimization
    62   *      screw up:
    63   *                      (      2                                    2 )
    64   *                      ({  ( r    [ R1 -  (3 - R1*r/2) ]  )  }    r  )
    65   *       expm1(r+c)~r - ({r*(--- * [--------------------]-c)-c} - --- )
    66   *                      ({  ( 2    [ 6 - r*(3 - R1*r/2) ]  )  }    2  )
    67   *                      (                                             )
    68   *
    69   *                 = r - E
    70   *   3. Scale back to obtain expm1(x):
    71   *      From step 1, we have
    72   *         expm1(x) = either 2^k*[expm1(r)+1] - 1
    73   *                  = or     2^k*[expm1(r) + (1-2^-k)]
    74   *   4. Implementation notes:
    75   *      (A). To save one multiplication, we scale the coefficient Qi
    76   *           to Qi*2^i, and replace z by (x^2)/2.
    77   *      (B). To achieve maximum accuracy, we compute expm1(x) by
    78   *        (i)   if x < -56*ln2, return -1.0, (raise inexact if x!=inf)
    79   *        (ii)  if k=0, return r-E
    80   *        (iii) if k=-1, return 0.5*(r-E)-0.5
    81   *        (iv)  if k=1 if r < -0.25, return 2*((r+0.5)- E)
    82   *                     else          return  1.0+2.0*(r-E);
    83   *        (v)   if (k<-2||k>56) return 2^k(1-(E-r)) - 1 (or exp(x)-1)
    84   *        (vi)  if k <= 20, return 2^k((1-2^-k)-(E-r)), else
    85   *        (vii) return 2^k(1-((E+2^-k)-r))
    86   *
    87   * Special cases:
    88   *      expm1(INF) is INF, expm1(NaN) is NaN;
    89   *      expm1(-INF) is -1, and
    90   *      for finite argument, only expm1(0)=0 is exact.
    91   *
    92   * Accuracy:
    93   *      according to an error analysis, the error is always less than
    94   *      1 ulp (unit in the last place).
    95   *
    96   * Misc. info.
    97   *      For IEEE double
    98   *          if x >  7.09782712893383973096e+02 then expm1(x) overflow
    99   *
   100   * Constants:
   101   * The hexadecimal values are the intended ones for the following
   102   * constants. The decimal values may be used, provided that the
   103   * compiler will convert from decimal to binary accurately enough
   104   * to produce the hexadecimal values shown.
   105   */
   106  
   107  #include "libm.h"
   108  
   109  static const double
   110  o_threshold = 7.09782712893383973096e+02, /* 0x40862E42, 0xFEFA39EF */
   111  ln2_hi      = 6.93147180369123816490e-01, /* 0x3fe62e42, 0xfee00000 */
   112  ln2_lo      = 1.90821492927058770002e-10, /* 0x3dea39ef, 0x35793c76 */
   113  invln2      = 1.44269504088896338700e+00, /* 0x3ff71547, 0x652b82fe */
   114  /* Scaled Q's: Qn_here = 2**n * Qn_above, for R(2*z) where z = hxs = x*x/2: */
   115  Q1 = -3.33333333333331316428e-02, /* BFA11111 111110F4 */
   116  Q2 =  1.58730158725481460165e-03, /* 3F5A01A0 19FE5585 */
   117  Q3 = -7.93650757867487942473e-05, /* BF14CE19 9EAADBB7 */
   118  Q4 =  4.00821782732936239552e-06, /* 3ED0CFCA 86E65239 */
   119  Q5 = -2.01099218183624371326e-07; /* BE8AFDB7 6E09C32D */
   120  
   121  double expm1(double x)
   122  {
   123  	double_t y,hi,lo,c,t,e,hxs,hfx,r1,twopk;
   124  	union {double f; uint64_t i;} u = {x};
   125  	uint32_t hx = u.i>>32 & 0x7fffffff;
   126  	int k, sign = u.i>>63;
   127  
   128  	/* filter out huge and non-finite argument */
   129  	if (hx >= 0x4043687A) {  /* if |x|>=56*ln2 */
   130  		if (isnan(x))
   131  			return x;
   132  		if (sign)
   133  			return -1;
   134  		if (x > o_threshold) {
   135  			x *= 0x1p1023;
   136  			return x;
   137  		}
   138  	}
   139  
   140  	/* argument reduction */
   141  	if (hx > 0x3fd62e42) {  /* if  |x| > 0.5 ln2 */
   142  		if (hx < 0x3FF0A2B2) {  /* and |x| < 1.5 ln2 */
   143  			if (!sign) {
   144  				hi = x - ln2_hi;
   145  				lo = ln2_lo;
   146  				k =  1;
   147  			} else {
   148  				hi = x + ln2_hi;
   149  				lo = -ln2_lo;
   150  				k = -1;
   151  			}
   152  		} else {
   153  			k  = invln2*x + (sign ? -0.5 : 0.5);
   154  			t  = k;
   155  			hi = x - t*ln2_hi;  /* t*ln2_hi is exact here */
   156  			lo = t*ln2_lo;
   157  		}
   158  		x = hi-lo;
   159  		c = (hi-x)-lo;
   160  	} else if (hx < 0x3c900000) {  /* |x| < 2**-54, return x */
   161  		if (hx < 0x00100000)
   162  			FORCE_EVAL((float)x);
   163  		return x;
   164  	} else
   165  		k = 0;
   166  
   167  	/* x is now in primary range */
   168  	hfx = 0.5*x;
   169  	hxs = x*hfx;
   170  	r1 = 1.0+hxs*(Q1+hxs*(Q2+hxs*(Q3+hxs*(Q4+hxs*Q5))));
   171  	t  = 3.0-r1*hfx;
   172  	e  = hxs*((r1-t)/(6.0 - x*t));
   173  	if (k == 0)   /* c is 0 */
   174  		return x - (x*e-hxs);
   175  	e  = x*(e-c) - c;
   176  	e -= hxs;
   177  	/* exp(x) ~ 2^k (x_reduced - e + 1) */
   178  	if (k == -1)
   179  		return 0.5*(x-e) - 0.5;
   180  	if (k == 1) {
   181  		if (x < -0.25)
   182  			return -2.0*(e-(x+0.5));
   183  		return 1.0+2.0*(x-e);
   184  	}
   185  	u.i = (uint64_t)(0x3ff + k)<<52;  /* 2^k */
   186  	twopk = u.f;
   187  	if (k < 0 || k > 56) {  /* suffice to return exp(x)-1 */
   188  		y = x - e + 1.0;
   189  		if (k == 1024)
   190  			y = y*2.0*0x1p1023;
   191  		else
   192  			y = y*twopk;
   193  		return y - 1.0;
   194  	}
   195  	u.i = (uint64_t)(0x3ff - k)<<52;  /* 2^-k */
   196  	if (k < 20)
   197  		y = (x-e+(1-u.f))*twopk;
   198  	else
   199  		y = (x-(e+u.f)+1)*twopk;
   200  	return y;
   201  }