github.com/afumu/libc@v0.0.6/musl/src/math/fmal.c (about)

     1  /* origin: FreeBSD /usr/src/lib/msun/src/s_fmal.c */
     2  /*-
     3   * Copyright (c) 2005-2011 David Schultz <das@FreeBSD.ORG>
     4   * All rights reserved.
     5   *
     6   * Redistribution and use in source and binary forms, with or without
     7   * modification, are permitted provided that the following conditions
     8   * are met:
     9   * 1. Redistributions of source code must retain the above copyright
    10   *    notice, this list of conditions and the following disclaimer.
    11   * 2. Redistributions in binary form must reproduce the above copyright
    12   *    notice, this list of conditions and the following disclaimer in the
    13   *    documentation and/or other materials provided with the distribution.
    14   *
    15   * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
    16   * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
    17   * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
    18   * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
    19   * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
    20   * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
    21   * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
    22   * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
    23   * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
    24   * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
    25   * SUCH DAMAGE.
    26   */
    27  
    28  
    29  #include "libm.h"
    30  #if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
    31  long double fmal(long double x, long double y, long double z)
    32  {
    33  	return fma(x, y, z);
    34  }
    35  #elif (LDBL_MANT_DIG == 64 || LDBL_MANT_DIG == 113) && LDBL_MAX_EXP == 16384
    36  #include <fenv.h>
    37  #if LDBL_MANT_DIG == 64
    38  #define LASTBIT(u) (u.i.m & 1)
    39  #define SPLIT (0x1p32L + 1)
    40  #elif LDBL_MANT_DIG == 113
    41  #define LASTBIT(u) (u.i.lo & 1)
    42  #define SPLIT (0x1p57L + 1)
    43  #endif
    44  
    45  /*
    46   * A struct dd represents a floating-point number with twice the precision
    47   * of a long double.  We maintain the invariant that "hi" stores the high-order
    48   * bits of the result.
    49   */
    50  struct dd {
    51  	long double hi;
    52  	long double lo;
    53  };
    54  
    55  /*
    56   * Compute a+b exactly, returning the exact result in a struct dd.  We assume
    57   * that both a and b are finite, but make no assumptions about their relative
    58   * magnitudes.
    59   */
    60  static inline struct dd dd_add(long double a, long double b)
    61  {
    62  	struct dd ret;
    63  	long double s;
    64  
    65  	ret.hi = a + b;
    66  	s = ret.hi - a;
    67  	ret.lo = (a - (ret.hi - s)) + (b - s);
    68  	return (ret);
    69  }
    70  
    71  /*
    72   * Compute a+b, with a small tweak:  The least significant bit of the
    73   * result is adjusted into a sticky bit summarizing all the bits that
    74   * were lost to rounding.  This adjustment negates the effects of double
    75   * rounding when the result is added to another number with a higher
    76   * exponent.  For an explanation of round and sticky bits, see any reference
    77   * on FPU design, e.g.,
    78   *
    79   *     J. Coonen.  An Implementation Guide to a Proposed Standard for
    80   *     Floating-Point Arithmetic.  Computer, vol. 13, no. 1, Jan 1980.
    81   */
    82  static inline long double add_adjusted(long double a, long double b)
    83  {
    84  	struct dd sum;
    85  	union ldshape u;
    86  
    87  	sum = dd_add(a, b);
    88  	if (sum.lo != 0) {
    89  		u.f = sum.hi;
    90  		if (!LASTBIT(u))
    91  			sum.hi = nextafterl(sum.hi, INFINITY * sum.lo);
    92  	}
    93  	return (sum.hi);
    94  }
    95  
    96  /*
    97   * Compute ldexp(a+b, scale) with a single rounding error. It is assumed
    98   * that the result will be subnormal, and care is taken to ensure that
    99   * double rounding does not occur.
   100   */
   101  static inline long double add_and_denormalize(long double a, long double b, int scale)
   102  {
   103  	struct dd sum;
   104  	int bits_lost;
   105  	union ldshape u;
   106  
   107  	sum = dd_add(a, b);
   108  
   109  	/*
   110  	 * If we are losing at least two bits of accuracy to denormalization,
   111  	 * then the first lost bit becomes a round bit, and we adjust the
   112  	 * lowest bit of sum.hi to make it a sticky bit summarizing all the
   113  	 * bits in sum.lo. With the sticky bit adjusted, the hardware will
   114  	 * break any ties in the correct direction.
   115  	 *
   116  	 * If we are losing only one bit to denormalization, however, we must
   117  	 * break the ties manually.
   118  	 */
   119  	if (sum.lo != 0) {
   120  		u.f = sum.hi;
   121  		bits_lost = -u.i.se - scale + 1;
   122  		if ((bits_lost != 1) ^ LASTBIT(u))
   123  			sum.hi = nextafterl(sum.hi, INFINITY * sum.lo);
   124  	}
   125  	return scalbnl(sum.hi, scale);
   126  }
   127  
   128  /*
   129   * Compute a*b exactly, returning the exact result in a struct dd.  We assume
   130   * that both a and b are normalized, so no underflow or overflow will occur.
   131   * The current rounding mode must be round-to-nearest.
   132   */
   133  static inline struct dd dd_mul(long double a, long double b)
   134  {
   135  	struct dd ret;
   136  	long double ha, hb, la, lb, p, q;
   137  
   138  	p = a * SPLIT;
   139  	ha = a - p;
   140  	ha += p;
   141  	la = a - ha;
   142  
   143  	p = b * SPLIT;
   144  	hb = b - p;
   145  	hb += p;
   146  	lb = b - hb;
   147  
   148  	p = ha * hb;
   149  	q = ha * lb + la * hb;
   150  
   151  	ret.hi = p + q;
   152  	ret.lo = p - ret.hi + q + la * lb;
   153  	return (ret);
   154  }
   155  
   156  /*
   157   * Fused multiply-add: Compute x * y + z with a single rounding error.
   158   *
   159   * We use scaling to avoid overflow/underflow, along with the
   160   * canonical precision-doubling technique adapted from:
   161   *
   162   *      Dekker, T.  A Floating-Point Technique for Extending the
   163   *      Available Precision.  Numer. Math. 18, 224-242 (1971).
   164   */
   165  long double fmal(long double x, long double y, long double z)
   166  {
   167  	#pragma STDC FENV_ACCESS ON
   168  	long double xs, ys, zs, adj;
   169  	struct dd xy, r;
   170  	int oround;
   171  	int ex, ey, ez;
   172  	int spread;
   173  
   174  	/*
   175  	 * Handle special cases. The order of operations and the particular
   176  	 * return values here are crucial in handling special cases involving
   177  	 * infinities, NaNs, overflows, and signed zeroes correctly.
   178  	 */
   179  	if (!isfinite(x) || !isfinite(y))
   180  		return (x * y + z);
   181  	if (!isfinite(z))
   182  		return (z);
   183  	if (x == 0.0 || y == 0.0)
   184  		return (x * y + z);
   185  	if (z == 0.0)
   186  		return (x * y);
   187  
   188  	xs = frexpl(x, &ex);
   189  	ys = frexpl(y, &ey);
   190  	zs = frexpl(z, &ez);
   191  	oround = fegetround();
   192  	spread = ex + ey - ez;
   193  
   194  	/*
   195  	 * If x * y and z are many orders of magnitude apart, the scaling
   196  	 * will overflow, so we handle these cases specially.  Rounding
   197  	 * modes other than FE_TONEAREST are painful.
   198  	 */
   199  	if (spread < -LDBL_MANT_DIG) {
   200  #ifdef FE_INEXACT
   201  		feraiseexcept(FE_INEXACT);
   202  #endif
   203  #ifdef FE_UNDERFLOW
   204  		if (!isnormal(z))
   205  			feraiseexcept(FE_UNDERFLOW);
   206  #endif
   207  		switch (oround) {
   208  		default: /* FE_TONEAREST */
   209  			return (z);
   210  #ifdef FE_TOWARDZERO
   211  		case FE_TOWARDZERO:
   212  			if (x > 0.0 ^ y < 0.0 ^ z < 0.0)
   213  				return (z);
   214  			else
   215  				return (nextafterl(z, 0));
   216  #endif
   217  #ifdef FE_DOWNWARD
   218  		case FE_DOWNWARD:
   219  			if (x > 0.0 ^ y < 0.0)
   220  				return (z);
   221  			else
   222  				return (nextafterl(z, -INFINITY));
   223  #endif
   224  #ifdef FE_UPWARD
   225  		case FE_UPWARD:
   226  			if (x > 0.0 ^ y < 0.0)
   227  				return (nextafterl(z, INFINITY));
   228  			else
   229  				return (z);
   230  #endif
   231  		}
   232  	}
   233  	if (spread <= LDBL_MANT_DIG * 2)
   234  		zs = scalbnl(zs, -spread);
   235  	else
   236  		zs = copysignl(LDBL_MIN, zs);
   237  
   238  	fesetround(FE_TONEAREST);
   239  
   240  	/*
   241  	 * Basic approach for round-to-nearest:
   242  	 *
   243  	 *     (xy.hi, xy.lo) = x * y           (exact)
   244  	 *     (r.hi, r.lo)   = xy.hi + z       (exact)
   245  	 *     adj = xy.lo + r.lo               (inexact; low bit is sticky)
   246  	 *     result = r.hi + adj              (correctly rounded)
   247  	 */
   248  	xy = dd_mul(xs, ys);
   249  	r = dd_add(xy.hi, zs);
   250  
   251  	spread = ex + ey;
   252  
   253  	if (r.hi == 0.0) {
   254  		/*
   255  		 * When the addends cancel to 0, ensure that the result has
   256  		 * the correct sign.
   257  		 */
   258  		fesetround(oround);
   259  		volatile long double vzs = zs; /* XXX gcc CSE bug workaround */
   260  		return xy.hi + vzs + scalbnl(xy.lo, spread);
   261  	}
   262  
   263  	if (oround != FE_TONEAREST) {
   264  		/*
   265  		 * There is no need to worry about double rounding in directed
   266  		 * rounding modes.
   267  		 * But underflow may not be raised correctly, example in downward rounding:
   268  		 * fmal(0x1.0000000001p-16000L, 0x1.0000000001p-400L, -0x1p-16440L)
   269  		 */
   270  		long double ret;
   271  #if defined(FE_INEXACT) && defined(FE_UNDERFLOW)
   272  		int e = fetestexcept(FE_INEXACT);
   273  		feclearexcept(FE_INEXACT);
   274  #endif
   275  		fesetround(oround);
   276  		adj = r.lo + xy.lo;
   277  		ret = scalbnl(r.hi + adj, spread);
   278  #if defined(FE_INEXACT) && defined(FE_UNDERFLOW)
   279  		if (ilogbl(ret) < -16382 && fetestexcept(FE_INEXACT))
   280  			feraiseexcept(FE_UNDERFLOW);
   281  		else if (e)
   282  			feraiseexcept(FE_INEXACT);
   283  #endif
   284  		return ret;
   285  	}
   286  
   287  	adj = add_adjusted(r.lo, xy.lo);
   288  	if (spread + ilogbl(r.hi) > -16383)
   289  		return scalbnl(r.hi + adj, spread);
   290  	else
   291  		return add_and_denormalize(r.hi, adj, spread);
   292  }
   293  #endif