github.com/afumu/libc@v0.0.6/musl/src/math/j0.c (about)

     1  /* origin: FreeBSD /usr/src/lib/msun/src/e_j0.c */
     2  /*
     3   * ====================================================
     4   * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
     5   *
     6   * Developed at SunSoft, a Sun Microsystems, Inc. business.
     7   * Permission to use, copy, modify, and distribute this
     8   * software is freely granted, provided that this notice
     9   * is preserved.
    10   * ====================================================
    11   */
    12  /* j0(x), y0(x)
    13   * Bessel function of the first and second kinds of order zero.
    14   * Method -- j0(x):
    15   *      1. For tiny x, we use j0(x) = 1 - x^2/4 + x^4/64 - ...
    16   *      2. Reduce x to |x| since j0(x)=j0(-x),  and
    17   *         for x in (0,2)
    18   *              j0(x) = 1-z/4+ z^2*R0/S0,  where z = x*x;
    19   *         (precision:  |j0-1+z/4-z^2R0/S0 |<2**-63.67 )
    20   *         for x in (2,inf)
    21   *              j0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x0)-q0(x)*sin(x0))
    22   *         where x0 = x-pi/4. It is better to compute sin(x0),cos(x0)
    23   *         as follow:
    24   *              cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4)
    25   *                      = 1/sqrt(2) * (cos(x) + sin(x))
    26   *              sin(x0) = sin(x)cos(pi/4)-cos(x)sin(pi/4)
    27   *                      = 1/sqrt(2) * (sin(x) - cos(x))
    28   *         (To avoid cancellation, use
    29   *              sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
    30   *          to compute the worse one.)
    31   *
    32   *      3 Special cases
    33   *              j0(nan)= nan
    34   *              j0(0) = 1
    35   *              j0(inf) = 0
    36   *
    37   * Method -- y0(x):
    38   *      1. For x<2.
    39   *         Since
    40   *              y0(x) = 2/pi*(j0(x)*(ln(x/2)+Euler) + x^2/4 - ...)
    41   *         therefore y0(x)-2/pi*j0(x)*ln(x) is an even function.
    42   *         We use the following function to approximate y0,
    43   *              y0(x) = U(z)/V(z) + (2/pi)*(j0(x)*ln(x)), z= x^2
    44   *         where
    45   *              U(z) = u00 + u01*z + ... + u06*z^6
    46   *              V(z) = 1  + v01*z + ... + v04*z^4
    47   *         with absolute approximation error bounded by 2**-72.
    48   *         Note: For tiny x, U/V = u0 and j0(x)~1, hence
    49   *              y0(tiny) = u0 + (2/pi)*ln(tiny), (choose tiny<2**-27)
    50   *      2. For x>=2.
    51   *              y0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x0)+q0(x)*sin(x0))
    52   *         where x0 = x-pi/4. It is better to compute sin(x0),cos(x0)
    53   *         by the method mentioned above.
    54   *      3. Special cases: y0(0)=-inf, y0(x<0)=NaN, y0(inf)=0.
    55   */
    56  
    57  #include "libm.h"
    58  
    59  static double pzero(double), qzero(double);
    60  
    61  static const double
    62  invsqrtpi = 5.64189583547756279280e-01, /* 0x3FE20DD7, 0x50429B6D */
    63  tpi       = 6.36619772367581382433e-01; /* 0x3FE45F30, 0x6DC9C883 */
    64  
    65  /* common method when |x|>=2 */
    66  static double common(uint32_t ix, double x, int y0)
    67  {
    68  	double s,c,ss,cc,z;
    69  
    70  	/*
    71  	 * j0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x-pi/4)-q0(x)*sin(x-pi/4))
    72  	 * y0(x) = sqrt(2/(pi*x))*(p0(x)*sin(x-pi/4)+q0(x)*cos(x-pi/4))
    73  	 *
    74  	 * sin(x-pi/4) = (sin(x) - cos(x))/sqrt(2)
    75  	 * cos(x-pi/4) = (sin(x) + cos(x))/sqrt(2)
    76  	 * sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
    77  	 */
    78  	s = sin(x);
    79  	c = cos(x);
    80  	if (y0)
    81  		c = -c;
    82  	cc = s+c;
    83  	/* avoid overflow in 2*x, big ulp error when x>=0x1p1023 */
    84  	if (ix < 0x7fe00000) {
    85  		ss = s-c;
    86  		z = -cos(2*x);
    87  		if (s*c < 0)
    88  			cc = z/ss;
    89  		else
    90  			ss = z/cc;
    91  		if (ix < 0x48000000) {
    92  			if (y0)
    93  				ss = -ss;
    94  			cc = pzero(x)*cc-qzero(x)*ss;
    95  		}
    96  	}
    97  	return invsqrtpi*cc/sqrt(x);
    98  }
    99  
   100  /* R0/S0 on [0, 2.00] */
   101  static const double
   102  R02 =  1.56249999999999947958e-02, /* 0x3F8FFFFF, 0xFFFFFFFD */
   103  R03 = -1.89979294238854721751e-04, /* 0xBF28E6A5, 0xB61AC6E9 */
   104  R04 =  1.82954049532700665670e-06, /* 0x3EBEB1D1, 0x0C503919 */
   105  R05 = -4.61832688532103189199e-09, /* 0xBE33D5E7, 0x73D63FCE */
   106  S01 =  1.56191029464890010492e-02, /* 0x3F8FFCE8, 0x82C8C2A4 */
   107  S02 =  1.16926784663337450260e-04, /* 0x3F1EA6D2, 0xDD57DBF4 */
   108  S03 =  5.13546550207318111446e-07, /* 0x3EA13B54, 0xCE84D5A9 */
   109  S04 =  1.16614003333790000205e-09; /* 0x3E1408BC, 0xF4745D8F */
   110  
   111  double j0(double x)
   112  {
   113  	double z,r,s;
   114  	uint32_t ix;
   115  
   116  	GET_HIGH_WORD(ix, x);
   117  	ix &= 0x7fffffff;
   118  
   119  	/* j0(+-inf)=0, j0(nan)=nan */
   120  	if (ix >= 0x7ff00000)
   121  		return 1/(x*x);
   122  	x = fabs(x);
   123  
   124  	if (ix >= 0x40000000) {  /* |x| >= 2 */
   125  		/* large ulp error near zeros: 2.4, 5.52, 8.6537,.. */
   126  		return common(ix,x,0);
   127  	}
   128  
   129  	/* 1 - x*x/4 + x*x*R(x^2)/S(x^2) */
   130  	if (ix >= 0x3f200000) {  /* |x| >= 2**-13 */
   131  		/* up to 4ulp error close to 2 */
   132  		z = x*x;
   133  		r = z*(R02+z*(R03+z*(R04+z*R05)));
   134  		s = 1+z*(S01+z*(S02+z*(S03+z*S04)));
   135  		return (1+x/2)*(1-x/2) + z*(r/s);
   136  	}
   137  
   138  	/* 1 - x*x/4 */
   139  	/* prevent underflow */
   140  	/* inexact should be raised when x!=0, this is not done correctly */
   141  	if (ix >= 0x38000000)  /* |x| >= 2**-127 */
   142  		x = 0.25*x*x;
   143  	return 1 - x;
   144  }
   145  
   146  static const double
   147  u00  = -7.38042951086872317523e-02, /* 0xBFB2E4D6, 0x99CBD01F */
   148  u01  =  1.76666452509181115538e-01, /* 0x3FC69D01, 0x9DE9E3FC */
   149  u02  = -1.38185671945596898896e-02, /* 0xBF8C4CE8, 0xB16CFA97 */
   150  u03  =  3.47453432093683650238e-04, /* 0x3F36C54D, 0x20B29B6B */
   151  u04  = -3.81407053724364161125e-06, /* 0xBECFFEA7, 0x73D25CAD */
   152  u05  =  1.95590137035022920206e-08, /* 0x3E550057, 0x3B4EABD4 */
   153  u06  = -3.98205194132103398453e-11, /* 0xBDC5E43D, 0x693FB3C8 */
   154  v01  =  1.27304834834123699328e-02, /* 0x3F8A1270, 0x91C9C71A */
   155  v02  =  7.60068627350353253702e-05, /* 0x3F13ECBB, 0xF578C6C1 */
   156  v03  =  2.59150851840457805467e-07, /* 0x3E91642D, 0x7FF202FD */
   157  v04  =  4.41110311332675467403e-10; /* 0x3DFE5018, 0x3BD6D9EF */
   158  
   159  double y0(double x)
   160  {
   161  	double z,u,v;
   162  	uint32_t ix,lx;
   163  
   164  	EXTRACT_WORDS(ix, lx, x);
   165  
   166  	/* y0(nan)=nan, y0(<0)=nan, y0(0)=-inf, y0(inf)=0 */
   167  	if ((ix<<1 | lx) == 0)
   168  		return -1/0.0;
   169  	if (ix>>31)
   170  		return 0/0.0;
   171  	if (ix >= 0x7ff00000)
   172  		return 1/x;
   173  
   174  	if (ix >= 0x40000000) {  /* x >= 2 */
   175  		/* large ulp errors near zeros: 3.958, 7.086,.. */
   176  		return common(ix,x,1);
   177  	}
   178  
   179  	/* U(x^2)/V(x^2) + (2/pi)*j0(x)*log(x) */
   180  	if (ix >= 0x3e400000) {  /* x >= 2**-27 */
   181  		/* large ulp error near the first zero, x ~= 0.89 */
   182  		z = x*x;
   183  		u = u00+z*(u01+z*(u02+z*(u03+z*(u04+z*(u05+z*u06)))));
   184  		v = 1.0+z*(v01+z*(v02+z*(v03+z*v04)));
   185  		return u/v + tpi*(j0(x)*log(x));
   186  	}
   187  	return u00 + tpi*log(x);
   188  }
   189  
   190  /* The asymptotic expansions of pzero is
   191   *      1 - 9/128 s^2 + 11025/98304 s^4 - ...,  where s = 1/x.
   192   * For x >= 2, We approximate pzero by
   193   *      pzero(x) = 1 + (R/S)
   194   * where  R = pR0 + pR1*s^2 + pR2*s^4 + ... + pR5*s^10
   195   *        S = 1 + pS0*s^2 + ... + pS4*s^10
   196   * and
   197   *      | pzero(x)-1-R/S | <= 2  ** ( -60.26)
   198   */
   199  static const double pR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
   200    0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */
   201   -7.03124999999900357484e-02, /* 0xBFB1FFFF, 0xFFFFFD32 */
   202   -8.08167041275349795626e+00, /* 0xC02029D0, 0xB44FA779 */
   203   -2.57063105679704847262e+02, /* 0xC0701102, 0x7B19E863 */
   204   -2.48521641009428822144e+03, /* 0xC0A36A6E, 0xCD4DCAFC */
   205   -5.25304380490729545272e+03, /* 0xC0B4850B, 0x36CC643D */
   206  };
   207  static const double pS8[5] = {
   208    1.16534364619668181717e+02, /* 0x405D2233, 0x07A96751 */
   209    3.83374475364121826715e+03, /* 0x40ADF37D, 0x50596938 */
   210    4.05978572648472545552e+04, /* 0x40E3D2BB, 0x6EB6B05F */
   211    1.16752972564375915681e+05, /* 0x40FC810F, 0x8F9FA9BD */
   212    4.76277284146730962675e+04, /* 0x40E74177, 0x4F2C49DC */
   213  };
   214  
   215  static const double pR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
   216   -1.14125464691894502584e-11, /* 0xBDA918B1, 0x47E495CC */
   217   -7.03124940873599280078e-02, /* 0xBFB1FFFF, 0xE69AFBC6 */
   218   -4.15961064470587782438e+00, /* 0xC010A370, 0xF90C6BBF */
   219   -6.76747652265167261021e+01, /* 0xC050EB2F, 0x5A7D1783 */
   220   -3.31231299649172967747e+02, /* 0xC074B3B3, 0x6742CC63 */
   221   -3.46433388365604912451e+02, /* 0xC075A6EF, 0x28A38BD7 */
   222  };
   223  static const double pS5[5] = {
   224    6.07539382692300335975e+01, /* 0x404E6081, 0x0C98C5DE */
   225    1.05125230595704579173e+03, /* 0x40906D02, 0x5C7E2864 */
   226    5.97897094333855784498e+03, /* 0x40B75AF8, 0x8FBE1D60 */
   227    9.62544514357774460223e+03, /* 0x40C2CCB8, 0xFA76FA38 */
   228    2.40605815922939109441e+03, /* 0x40A2CC1D, 0xC70BE864 */
   229  };
   230  
   231  static const double pR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
   232   -2.54704601771951915620e-09, /* 0xBE25E103, 0x6FE1AA86 */
   233   -7.03119616381481654654e-02, /* 0xBFB1FFF6, 0xF7C0E24B */
   234   -2.40903221549529611423e+00, /* 0xC00345B2, 0xAEA48074 */
   235   -2.19659774734883086467e+01, /* 0xC035F74A, 0x4CB94E14 */
   236   -5.80791704701737572236e+01, /* 0xC04D0A22, 0x420A1A45 */
   237   -3.14479470594888503854e+01, /* 0xC03F72AC, 0xA892D80F */
   238  };
   239  static const double pS3[5] = {
   240    3.58560338055209726349e+01, /* 0x4041ED92, 0x84077DD3 */
   241    3.61513983050303863820e+02, /* 0x40769839, 0x464A7C0E */
   242    1.19360783792111533330e+03, /* 0x4092A66E, 0x6D1061D6 */
   243    1.12799679856907414432e+03, /* 0x40919FFC, 0xB8C39B7E */
   244    1.73580930813335754692e+02, /* 0x4065B296, 0xFC379081 */
   245  };
   246  
   247  static const double pR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
   248   -8.87534333032526411254e-08, /* 0xBE77D316, 0xE927026D */
   249   -7.03030995483624743247e-02, /* 0xBFB1FF62, 0x495E1E42 */
   250   -1.45073846780952986357e+00, /* 0xBFF73639, 0x8A24A843 */
   251   -7.63569613823527770791e+00, /* 0xC01E8AF3, 0xEDAFA7F3 */
   252   -1.11931668860356747786e+01, /* 0xC02662E6, 0xC5246303 */
   253   -3.23364579351335335033e+00, /* 0xC009DE81, 0xAF8FE70F */
   254  };
   255  static const double pS2[5] = {
   256    2.22202997532088808441e+01, /* 0x40363865, 0x908B5959 */
   257    1.36206794218215208048e+02, /* 0x4061069E, 0x0EE8878F */
   258    2.70470278658083486789e+02, /* 0x4070E786, 0x42EA079B */
   259    1.53875394208320329881e+02, /* 0x40633C03, 0x3AB6FAFF */
   260    1.46576176948256193810e+01, /* 0x402D50B3, 0x44391809 */
   261  };
   262  
   263  static double pzero(double x)
   264  {
   265  	const double *p,*q;
   266  	double_t z,r,s;
   267  	uint32_t ix;
   268  
   269  	GET_HIGH_WORD(ix, x);
   270  	ix &= 0x7fffffff;
   271  	if      (ix >= 0x40200000){p = pR8; q = pS8;}
   272  	else if (ix >= 0x40122E8B){p = pR5; q = pS5;}
   273  	else if (ix >= 0x4006DB6D){p = pR3; q = pS3;}
   274  	else /*ix >= 0x40000000*/ {p = pR2; q = pS2;}
   275  	z = 1.0/(x*x);
   276  	r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
   277  	s = 1.0+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4]))));
   278  	return 1.0 + r/s;
   279  }
   280  
   281  
   282  /* For x >= 8, the asymptotic expansions of qzero is
   283   *      -1/8 s + 75/1024 s^3 - ..., where s = 1/x.
   284   * We approximate pzero by
   285   *      qzero(x) = s*(-1.25 + (R/S))
   286   * where  R = qR0 + qR1*s^2 + qR2*s^4 + ... + qR5*s^10
   287   *        S = 1 + qS0*s^2 + ... + qS5*s^12
   288   * and
   289   *      | qzero(x)/s +1.25-R/S | <= 2  ** ( -61.22)
   290   */
   291  static const double qR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
   292    0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */
   293    7.32421874999935051953e-02, /* 0x3FB2BFFF, 0xFFFFFE2C */
   294    1.17682064682252693899e+01, /* 0x40278952, 0x5BB334D6 */
   295    5.57673380256401856059e+02, /* 0x40816D63, 0x15301825 */
   296    8.85919720756468632317e+03, /* 0x40C14D99, 0x3E18F46D */
   297    3.70146267776887834771e+04, /* 0x40E212D4, 0x0E901566 */
   298  };
   299  static const double qS8[6] = {
   300    1.63776026895689824414e+02, /* 0x406478D5, 0x365B39BC */
   301    8.09834494656449805916e+03, /* 0x40BFA258, 0x4E6B0563 */
   302    1.42538291419120476348e+05, /* 0x41016652, 0x54D38C3F */
   303    8.03309257119514397345e+05, /* 0x412883DA, 0x83A52B43 */
   304    8.40501579819060512818e+05, /* 0x4129A66B, 0x28DE0B3D */
   305   -3.43899293537866615225e+05, /* 0xC114FD6D, 0x2C9530C5 */
   306  };
   307  
   308  static const double qR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
   309    1.84085963594515531381e-11, /* 0x3DB43D8F, 0x29CC8CD9 */
   310    7.32421766612684765896e-02, /* 0x3FB2BFFF, 0xD172B04C */
   311    5.83563508962056953777e+00, /* 0x401757B0, 0xB9953DD3 */
   312    1.35111577286449829671e+02, /* 0x4060E392, 0x0A8788E9 */
   313    1.02724376596164097464e+03, /* 0x40900CF9, 0x9DC8C481 */
   314    1.98997785864605384631e+03, /* 0x409F17E9, 0x53C6E3A6 */
   315  };
   316  static const double qS5[6] = {
   317    8.27766102236537761883e+01, /* 0x4054B1B3, 0xFB5E1543 */
   318    2.07781416421392987104e+03, /* 0x40A03BA0, 0xDA21C0CE */
   319    1.88472887785718085070e+04, /* 0x40D267D2, 0x7B591E6D */
   320    5.67511122894947329769e+04, /* 0x40EBB5E3, 0x97E02372 */
   321    3.59767538425114471465e+04, /* 0x40E19118, 0x1F7A54A0 */
   322   -5.35434275601944773371e+03, /* 0xC0B4EA57, 0xBEDBC609 */
   323  };
   324  
   325  static const double qR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
   326    4.37741014089738620906e-09, /* 0x3E32CD03, 0x6ADECB82 */
   327    7.32411180042911447163e-02, /* 0x3FB2BFEE, 0x0E8D0842 */
   328    3.34423137516170720929e+00, /* 0x400AC0FC, 0x61149CF5 */
   329    4.26218440745412650017e+01, /* 0x40454F98, 0x962DAEDD */
   330    1.70808091340565596283e+02, /* 0x406559DB, 0xE25EFD1F */
   331    1.66733948696651168575e+02, /* 0x4064D77C, 0x81FA21E0 */
   332  };
   333  static const double qS3[6] = {
   334    4.87588729724587182091e+01, /* 0x40486122, 0xBFE343A6 */
   335    7.09689221056606015736e+02, /* 0x40862D83, 0x86544EB3 */
   336    3.70414822620111362994e+03, /* 0x40ACF04B, 0xE44DFC63 */
   337    6.46042516752568917582e+03, /* 0x40B93C6C, 0xD7C76A28 */
   338    2.51633368920368957333e+03, /* 0x40A3A8AA, 0xD94FB1C0 */
   339   -1.49247451836156386662e+02, /* 0xC062A7EB, 0x201CF40F */
   340  };
   341  
   342  static const double qR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
   343    1.50444444886983272379e-07, /* 0x3E84313B, 0x54F76BDB */
   344    7.32234265963079278272e-02, /* 0x3FB2BEC5, 0x3E883E34 */
   345    1.99819174093815998816e+00, /* 0x3FFFF897, 0xE727779C */
   346    1.44956029347885735348e+01, /* 0x402CFDBF, 0xAAF96FE5 */
   347    3.16662317504781540833e+01, /* 0x403FAA8E, 0x29FBDC4A */
   348    1.62527075710929267416e+01, /* 0x403040B1, 0x71814BB4 */
   349  };
   350  static const double qS2[6] = {
   351    3.03655848355219184498e+01, /* 0x403E5D96, 0xF7C07AED */
   352    2.69348118608049844624e+02, /* 0x4070D591, 0xE4D14B40 */
   353    8.44783757595320139444e+02, /* 0x408A6645, 0x22B3BF22 */
   354    8.82935845112488550512e+02, /* 0x408B977C, 0x9C5CC214 */
   355    2.12666388511798828631e+02, /* 0x406A9553, 0x0E001365 */
   356   -5.31095493882666946917e+00, /* 0xC0153E6A, 0xF8B32931 */
   357  };
   358  
   359  static double qzero(double x)
   360  {
   361  	const double *p,*q;
   362  	double_t s,r,z;
   363  	uint32_t ix;
   364  
   365  	GET_HIGH_WORD(ix, x);
   366  	ix &= 0x7fffffff;
   367  	if      (ix >= 0x40200000){p = qR8; q = qS8;}
   368  	else if (ix >= 0x40122E8B){p = qR5; q = qS5;}
   369  	else if (ix >= 0x4006DB6D){p = qR3; q = qS3;}
   370  	else /*ix >= 0x40000000*/ {p = qR2; q = qS2;}
   371  	z = 1.0/(x*x);
   372  	r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
   373  	s = 1.0+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5])))));
   374  	return (-.125 + r/s)/x;
   375  }