github.com/afumu/libc@v0.0.6/musl/src/math/j1f.c (about)

     1  /* origin: FreeBSD /usr/src/lib/msun/src/e_j1f.c */
     2  /*
     3   * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
     4   */
     5  /*
     6   * ====================================================
     7   * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
     8   *
     9   * Developed at SunPro, a Sun Microsystems, Inc. business.
    10   * Permission to use, copy, modify, and distribute this
    11   * software is freely granted, provided that this notice
    12   * is preserved.
    13   * ====================================================
    14   */
    15  
    16  #define _GNU_SOURCE
    17  #include "libm.h"
    18  
    19  static float ponef(float), qonef(float);
    20  
    21  static const float
    22  invsqrtpi = 5.6418961287e-01, /* 0x3f106ebb */
    23  tpi       = 6.3661974669e-01; /* 0x3f22f983 */
    24  
    25  static float common(uint32_t ix, float x, int y1, int sign)
    26  {
    27  	double z,s,c,ss,cc;
    28  
    29  	s = sinf(x);
    30  	if (y1)
    31  		s = -s;
    32  	c = cosf(x);
    33  	cc = s-c;
    34  	if (ix < 0x7f000000) {
    35  		ss = -s-c;
    36  		z = cosf(2*x);
    37  		if (s*c > 0)
    38  			cc = z/ss;
    39  		else
    40  			ss = z/cc;
    41  		if (ix < 0x58800000) {
    42  			if (y1)
    43  				ss = -ss;
    44  			cc = ponef(x)*cc-qonef(x)*ss;
    45  		}
    46  	}
    47  	if (sign)
    48  		cc = -cc;
    49  	return invsqrtpi*cc/sqrtf(x);
    50  }
    51  
    52  /* R0/S0 on [0,2] */
    53  static const float
    54  r00 = -6.2500000000e-02, /* 0xbd800000 */
    55  r01 =  1.4070566976e-03, /* 0x3ab86cfd */
    56  r02 = -1.5995563444e-05, /* 0xb7862e36 */
    57  r03 =  4.9672799207e-08, /* 0x335557d2 */
    58  s01 =  1.9153760746e-02, /* 0x3c9ce859 */
    59  s02 =  1.8594678841e-04, /* 0x3942fab6 */
    60  s03 =  1.1771846857e-06, /* 0x359dffc2 */
    61  s04 =  5.0463624390e-09, /* 0x31ad6446 */
    62  s05 =  1.2354227016e-11; /* 0x2d59567e */
    63  
    64  float j1f(float x)
    65  {
    66  	float z,r,s;
    67  	uint32_t ix;
    68  	int sign;
    69  
    70  	GET_FLOAT_WORD(ix, x);
    71  	sign = ix>>31;
    72  	ix &= 0x7fffffff;
    73  	if (ix >= 0x7f800000)
    74  		return 1/(x*x);
    75  	if (ix >= 0x40000000)  /* |x| >= 2 */
    76  		return common(ix, fabsf(x), 0, sign);
    77  	if (ix >= 0x39000000) {  /* |x| >= 2**-13 */
    78  		z = x*x;
    79  		r = z*(r00+z*(r01+z*(r02+z*r03)));
    80  		s = 1+z*(s01+z*(s02+z*(s03+z*(s04+z*s05))));
    81  		z = 0.5f + r/s;
    82  	} else
    83  		z = 0.5f;
    84  	return z*x;
    85  }
    86  
    87  static const float U0[5] = {
    88   -1.9605709612e-01, /* 0xbe48c331 */
    89    5.0443872809e-02, /* 0x3d4e9e3c */
    90   -1.9125689287e-03, /* 0xbafaaf2a */
    91    2.3525259166e-05, /* 0x37c5581c */
    92   -9.1909917899e-08, /* 0xb3c56003 */
    93  };
    94  static const float V0[5] = {
    95    1.9916731864e-02, /* 0x3ca3286a */
    96    2.0255257550e-04, /* 0x3954644b */
    97    1.3560879779e-06, /* 0x35b602d4 */
    98    6.2274145840e-09, /* 0x31d5f8eb */
    99    1.6655924903e-11, /* 0x2d9281cf */
   100  };
   101  
   102  float y1f(float x)
   103  {
   104  	float z,u,v;
   105  	uint32_t ix;
   106  
   107  	GET_FLOAT_WORD(ix, x);
   108  	if ((ix & 0x7fffffff) == 0)
   109  		return -1/0.0f;
   110  	if (ix>>31)
   111  		return 0/0.0f;
   112  	if (ix >= 0x7f800000)
   113  		return 1/x;
   114  	if (ix >= 0x40000000)  /* |x| >= 2.0 */
   115  		return common(ix,x,1,0);
   116  	if (ix < 0x33000000)  /* x < 2**-25 */
   117  		return -tpi/x;
   118  	z = x*x;
   119  	u = U0[0]+z*(U0[1]+z*(U0[2]+z*(U0[3]+z*U0[4])));
   120  	v = 1.0f+z*(V0[0]+z*(V0[1]+z*(V0[2]+z*(V0[3]+z*V0[4]))));
   121  	return x*(u/v) + tpi*(j1f(x)*logf(x)-1.0f/x);
   122  }
   123  
   124  /* For x >= 8, the asymptotic expansions of pone is
   125   *      1 + 15/128 s^2 - 4725/2^15 s^4 - ...,   where s = 1/x.
   126   * We approximate pone by
   127   *      pone(x) = 1 + (R/S)
   128   * where  R = pr0 + pr1*s^2 + pr2*s^4 + ... + pr5*s^10
   129   *        S = 1 + ps0*s^2 + ... + ps4*s^10
   130   * and
   131   *      | pone(x)-1-R/S | <= 2  ** ( -60.06)
   132   */
   133  
   134  static const float pr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
   135    0.0000000000e+00, /* 0x00000000 */
   136    1.1718750000e-01, /* 0x3df00000 */
   137    1.3239480972e+01, /* 0x4153d4ea */
   138    4.1205184937e+02, /* 0x43ce06a3 */
   139    3.8747453613e+03, /* 0x45722bed */
   140    7.9144794922e+03, /* 0x45f753d6 */
   141  };
   142  static const float ps8[5] = {
   143    1.1420736694e+02, /* 0x42e46a2c */
   144    3.6509309082e+03, /* 0x45642ee5 */
   145    3.6956207031e+04, /* 0x47105c35 */
   146    9.7602796875e+04, /* 0x47bea166 */
   147    3.0804271484e+04, /* 0x46f0a88b */
   148  };
   149  
   150  static const float pr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
   151    1.3199052094e-11, /* 0x2d68333f */
   152    1.1718749255e-01, /* 0x3defffff */
   153    6.8027510643e+00, /* 0x40d9b023 */
   154    1.0830818176e+02, /* 0x42d89dca */
   155    5.1763616943e+02, /* 0x440168b7 */
   156    5.2871520996e+02, /* 0x44042dc6 */
   157  };
   158  static const float ps5[5] = {
   159    5.9280597687e+01, /* 0x426d1f55 */
   160    9.9140142822e+02, /* 0x4477d9b1 */
   161    5.3532670898e+03, /* 0x45a74a23 */
   162    7.8446904297e+03, /* 0x45f52586 */
   163    1.5040468750e+03, /* 0x44bc0180 */
   164  };
   165  
   166  static const float pr3[6] = {
   167    3.0250391081e-09, /* 0x314fe10d */
   168    1.1718686670e-01, /* 0x3defffab */
   169    3.9329774380e+00, /* 0x407bb5e7 */
   170    3.5119403839e+01, /* 0x420c7a45 */
   171    9.1055007935e+01, /* 0x42b61c2a */
   172    4.8559066772e+01, /* 0x42423c7c */
   173  };
   174  static const float ps3[5] = {
   175    3.4791309357e+01, /* 0x420b2a4d */
   176    3.3676245117e+02, /* 0x43a86198 */
   177    1.0468714600e+03, /* 0x4482dbe3 */
   178    8.9081134033e+02, /* 0x445eb3ed */
   179    1.0378793335e+02, /* 0x42cf936c */
   180  };
   181  
   182  static const float pr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
   183    1.0771083225e-07, /* 0x33e74ea8 */
   184    1.1717621982e-01, /* 0x3deffa16 */
   185    2.3685150146e+00, /* 0x401795c0 */
   186    1.2242610931e+01, /* 0x4143e1bc */
   187    1.7693971634e+01, /* 0x418d8d41 */
   188    5.0735230446e+00, /* 0x40a25a4d */
   189  };
   190  static const float ps2[5] = {
   191    2.1436485291e+01, /* 0x41ab7dec */
   192    1.2529022980e+02, /* 0x42fa9499 */
   193    2.3227647400e+02, /* 0x436846c7 */
   194    1.1767937469e+02, /* 0x42eb5bd7 */
   195    8.3646392822e+00, /* 0x4105d590 */
   196  };
   197  
   198  static float ponef(float x)
   199  {
   200  	const float *p,*q;
   201  	float_t z,r,s;
   202  	uint32_t ix;
   203  
   204  	GET_FLOAT_WORD(ix, x);
   205  	ix &= 0x7fffffff;
   206  	if      (ix >= 0x41000000){p = pr8; q = ps8;}
   207  	else if (ix >= 0x409173eb){p = pr5; q = ps5;}
   208  	else if (ix >= 0x4036d917){p = pr3; q = ps3;}
   209  	else /*ix >= 0x40000000*/ {p = pr2; q = ps2;}
   210  	z = 1.0f/(x*x);
   211  	r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
   212  	s = 1.0f+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4]))));
   213  	return 1.0f + r/s;
   214  }
   215  
   216  /* For x >= 8, the asymptotic expansions of qone is
   217   *      3/8 s - 105/1024 s^3 - ..., where s = 1/x.
   218   * We approximate pone by
   219   *      qone(x) = s*(0.375 + (R/S))
   220   * where  R = qr1*s^2 + qr2*s^4 + ... + qr5*s^10
   221   *        S = 1 + qs1*s^2 + ... + qs6*s^12
   222   * and
   223   *      | qone(x)/s -0.375-R/S | <= 2  ** ( -61.13)
   224   */
   225  
   226  static const float qr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
   227    0.0000000000e+00, /* 0x00000000 */
   228   -1.0253906250e-01, /* 0xbdd20000 */
   229   -1.6271753311e+01, /* 0xc1822c8d */
   230   -7.5960174561e+02, /* 0xc43de683 */
   231   -1.1849806641e+04, /* 0xc639273a */
   232   -4.8438511719e+04, /* 0xc73d3683 */
   233  };
   234  static const float qs8[6] = {
   235    1.6139537048e+02, /* 0x43216537 */
   236    7.8253862305e+03, /* 0x45f48b17 */
   237    1.3387534375e+05, /* 0x4802bcd6 */
   238    7.1965775000e+05, /* 0x492fb29c */
   239    6.6660125000e+05, /* 0x4922be94 */
   240   -2.9449025000e+05, /* 0xc88fcb48 */
   241  };
   242  
   243  static const float qr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
   244   -2.0897993405e-11, /* 0xadb7d219 */
   245   -1.0253904760e-01, /* 0xbdd1fffe */
   246   -8.0564479828e+00, /* 0xc100e736 */
   247   -1.8366960144e+02, /* 0xc337ab6b */
   248   -1.3731937256e+03, /* 0xc4aba633 */
   249   -2.6124443359e+03, /* 0xc523471c */
   250  };
   251  static const float qs5[6] = {
   252    8.1276550293e+01, /* 0x42a28d98 */
   253    1.9917987061e+03, /* 0x44f8f98f */
   254    1.7468484375e+04, /* 0x468878f8 */
   255    4.9851425781e+04, /* 0x4742bb6d */
   256    2.7948074219e+04, /* 0x46da5826 */
   257   -4.7191835938e+03, /* 0xc5937978 */
   258  };
   259  
   260  static const float qr3[6] = {
   261   -5.0783124372e-09, /* 0xb1ae7d4f */
   262   -1.0253783315e-01, /* 0xbdd1ff5b */
   263   -4.6101160049e+00, /* 0xc0938612 */
   264   -5.7847221375e+01, /* 0xc267638e */
   265   -2.2824453735e+02, /* 0xc3643e9a */
   266   -2.1921012878e+02, /* 0xc35b35cb */
   267  };
   268  static const float qs3[6] = {
   269    4.7665153503e+01, /* 0x423ea91e */
   270    6.7386511230e+02, /* 0x4428775e */
   271    3.3801528320e+03, /* 0x45534272 */
   272    5.5477290039e+03, /* 0x45ad5dd5 */
   273    1.9031191406e+03, /* 0x44ede3d0 */
   274   -1.3520118713e+02, /* 0xc3073381 */
   275  };
   276  
   277  static const float qr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
   278   -1.7838172539e-07, /* 0xb43f8932 */
   279   -1.0251704603e-01, /* 0xbdd1f475 */
   280   -2.7522056103e+00, /* 0xc0302423 */
   281   -1.9663616180e+01, /* 0xc19d4f16 */
   282   -4.2325313568e+01, /* 0xc2294d1f */
   283   -2.1371921539e+01, /* 0xc1aaf9b2 */
   284  };
   285  static const float qs2[6] = {
   286    2.9533363342e+01, /* 0x41ec4454 */
   287    2.5298155212e+02, /* 0x437cfb47 */
   288    7.5750280762e+02, /* 0x443d602e */
   289    7.3939318848e+02, /* 0x4438d92a */
   290    1.5594900513e+02, /* 0x431bf2f2 */
   291   -4.9594988823e+00, /* 0xc09eb437 */
   292  };
   293  
   294  static float qonef(float x)
   295  {
   296  	const float *p,*q;
   297  	float_t s,r,z;
   298  	uint32_t ix;
   299  
   300  	GET_FLOAT_WORD(ix, x);
   301  	ix &= 0x7fffffff;
   302  	if      (ix >= 0x41000000){p = qr8; q = qs8;}
   303  	else if (ix >= 0x409173eb){p = qr5; q = qs5;}
   304  	else if (ix >= 0x4036d917){p = qr3; q = qs3;}
   305  	else /*ix >= 0x40000000*/ {p = qr2; q = qs2;}
   306  	z = 1.0f/(x*x);
   307  	r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
   308  	s = 1.0f+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5])))));
   309  	return (.375f + r/s)/x;
   310  }