github.com/afumu/libc@v0.0.6/musl/src/math/jn.c (about)

     1  /* origin: FreeBSD /usr/src/lib/msun/src/e_jn.c */
     2  /*
     3   * ====================================================
     4   * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
     5   *
     6   * Developed at SunSoft, a Sun Microsystems, Inc. business.
     7   * Permission to use, copy, modify, and distribute this
     8   * software is freely granted, provided that this notice
     9   * is preserved.
    10   * ====================================================
    11   */
    12  /*
    13   * jn(n, x), yn(n, x)
    14   * floating point Bessel's function of the 1st and 2nd kind
    15   * of order n
    16   *
    17   * Special cases:
    18   *      y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal;
    19   *      y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal.
    20   * Note 2. About jn(n,x), yn(n,x)
    21   *      For n=0, j0(x) is called,
    22   *      for n=1, j1(x) is called,
    23   *      for n<=x, forward recursion is used starting
    24   *      from values of j0(x) and j1(x).
    25   *      for n>x, a continued fraction approximation to
    26   *      j(n,x)/j(n-1,x) is evaluated and then backward
    27   *      recursion is used starting from a supposed value
    28   *      for j(n,x). The resulting value of j(0,x) is
    29   *      compared with the actual value to correct the
    30   *      supposed value of j(n,x).
    31   *
    32   *      yn(n,x) is similar in all respects, except
    33   *      that forward recursion is used for all
    34   *      values of n>1.
    35   */
    36  
    37  #include "libm.h"
    38  
    39  static const double invsqrtpi = 5.64189583547756279280e-01; /* 0x3FE20DD7, 0x50429B6D */
    40  
    41  double jn(int n, double x)
    42  {
    43  	uint32_t ix, lx;
    44  	int nm1, i, sign;
    45  	double a, b, temp;
    46  
    47  	EXTRACT_WORDS(ix, lx, x);
    48  	sign = ix>>31;
    49  	ix &= 0x7fffffff;
    50  
    51  	if ((ix | (lx|-lx)>>31) > 0x7ff00000) /* nan */
    52  		return x;
    53  
    54  	/* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)
    55  	 * Thus, J(-n,x) = J(n,-x)
    56  	 */
    57  	/* nm1 = |n|-1 is used instead of |n| to handle n==INT_MIN */
    58  	if (n == 0)
    59  		return j0(x);
    60  	if (n < 0) {
    61  		nm1 = -(n+1);
    62  		x = -x;
    63  		sign ^= 1;
    64  	} else
    65  		nm1 = n-1;
    66  	if (nm1 == 0)
    67  		return j1(x);
    68  
    69  	sign &= n;  /* even n: 0, odd n: signbit(x) */
    70  	x = fabs(x);
    71  	if ((ix|lx) == 0 || ix == 0x7ff00000)  /* if x is 0 or inf */
    72  		b = 0.0;
    73  	else if (nm1 < x) {
    74  		/* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
    75  		if (ix >= 0x52d00000) { /* x > 2**302 */
    76  			/* (x >> n**2)
    77  			 *      Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
    78  			 *      Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
    79  			 *      Let s=sin(x), c=cos(x),
    80  			 *          xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
    81  			 *
    82  			 *             n    sin(xn)*sqt2    cos(xn)*sqt2
    83  			 *          ----------------------------------
    84  			 *             0     s-c             c+s
    85  			 *             1    -s-c            -c+s
    86  			 *             2    -s+c            -c-s
    87  			 *             3     s+c             c-s
    88  			 */
    89  			switch(nm1&3) {
    90  			case 0: temp = -cos(x)+sin(x); break;
    91  			case 1: temp = -cos(x)-sin(x); break;
    92  			case 2: temp =  cos(x)-sin(x); break;
    93  			default:
    94  			case 3: temp =  cos(x)+sin(x); break;
    95  			}
    96  			b = invsqrtpi*temp/sqrt(x);
    97  		} else {
    98  			a = j0(x);
    99  			b = j1(x);
   100  			for (i=0; i<nm1; ) {
   101  				i++;
   102  				temp = b;
   103  				b = b*(2.0*i/x) - a; /* avoid underflow */
   104  				a = temp;
   105  			}
   106  		}
   107  	} else {
   108  		if (ix < 0x3e100000) { /* x < 2**-29 */
   109  			/* x is tiny, return the first Taylor expansion of J(n,x)
   110  			 * J(n,x) = 1/n!*(x/2)^n  - ...
   111  			 */
   112  			if (nm1 > 32)  /* underflow */
   113  				b = 0.0;
   114  			else {
   115  				temp = x*0.5;
   116  				b = temp;
   117  				a = 1.0;
   118  				for (i=2; i<=nm1+1; i++) {
   119  					a *= (double)i; /* a = n! */
   120  					b *= temp;      /* b = (x/2)^n */
   121  				}
   122  				b = b/a;
   123  			}
   124  		} else {
   125  			/* use backward recurrence */
   126  			/*                      x      x^2      x^2
   127  			 *  J(n,x)/J(n-1,x) =  ----   ------   ------   .....
   128  			 *                      2n  - 2(n+1) - 2(n+2)
   129  			 *
   130  			 *                      1      1        1
   131  			 *  (for large x)   =  ----  ------   ------   .....
   132  			 *                      2n   2(n+1)   2(n+2)
   133  			 *                      -- - ------ - ------ -
   134  			 *                       x     x         x
   135  			 *
   136  			 * Let w = 2n/x and h=2/x, then the above quotient
   137  			 * is equal to the continued fraction:
   138  			 *                  1
   139  			 *      = -----------------------
   140  			 *                     1
   141  			 *         w - -----------------
   142  			 *                        1
   143  			 *              w+h - ---------
   144  			 *                     w+2h - ...
   145  			 *
   146  			 * To determine how many terms needed, let
   147  			 * Q(0) = w, Q(1) = w(w+h) - 1,
   148  			 * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
   149  			 * When Q(k) > 1e4      good for single
   150  			 * When Q(k) > 1e9      good for double
   151  			 * When Q(k) > 1e17     good for quadruple
   152  			 */
   153  			/* determine k */
   154  			double t,q0,q1,w,h,z,tmp,nf;
   155  			int k;
   156  
   157  			nf = nm1 + 1.0;
   158  			w = 2*nf/x;
   159  			h = 2/x;
   160  			z = w+h;
   161  			q0 = w;
   162  			q1 = w*z - 1.0;
   163  			k = 1;
   164  			while (q1 < 1.0e9) {
   165  				k += 1;
   166  				z += h;
   167  				tmp = z*q1 - q0;
   168  				q0 = q1;
   169  				q1 = tmp;
   170  			}
   171  			for (t=0.0, i=k; i>=0; i--)
   172  				t = 1/(2*(i+nf)/x - t);
   173  			a = t;
   174  			b = 1.0;
   175  			/*  estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
   176  			 *  Hence, if n*(log(2n/x)) > ...
   177  			 *  single 8.8722839355e+01
   178  			 *  double 7.09782712893383973096e+02
   179  			 *  long double 1.1356523406294143949491931077970765006170e+04
   180  			 *  then recurrent value may overflow and the result is
   181  			 *  likely underflow to zero
   182  			 */
   183  			tmp = nf*log(fabs(w));
   184  			if (tmp < 7.09782712893383973096e+02) {
   185  				for (i=nm1; i>0; i--) {
   186  					temp = b;
   187  					b = b*(2.0*i)/x - a;
   188  					a = temp;
   189  				}
   190  			} else {
   191  				for (i=nm1; i>0; i--) {
   192  					temp = b;
   193  					b = b*(2.0*i)/x - a;
   194  					a = temp;
   195  					/* scale b to avoid spurious overflow */
   196  					if (b > 0x1p500) {
   197  						a /= b;
   198  						t /= b;
   199  						b  = 1.0;
   200  					}
   201  				}
   202  			}
   203  			z = j0(x);
   204  			w = j1(x);
   205  			if (fabs(z) >= fabs(w))
   206  				b = t*z/b;
   207  			else
   208  				b = t*w/a;
   209  		}
   210  	}
   211  	return sign ? -b : b;
   212  }
   213  
   214  
   215  double yn(int n, double x)
   216  {
   217  	uint32_t ix, lx, ib;
   218  	int nm1, sign, i;
   219  	double a, b, temp;
   220  
   221  	EXTRACT_WORDS(ix, lx, x);
   222  	sign = ix>>31;
   223  	ix &= 0x7fffffff;
   224  
   225  	if ((ix | (lx|-lx)>>31) > 0x7ff00000) /* nan */
   226  		return x;
   227  	if (sign && (ix|lx)!=0) /* x < 0 */
   228  		return 0/0.0;
   229  	if (ix == 0x7ff00000)
   230  		return 0.0;
   231  
   232  	if (n == 0)
   233  		return y0(x);
   234  	if (n < 0) {
   235  		nm1 = -(n+1);
   236  		sign = n&1;
   237  	} else {
   238  		nm1 = n-1;
   239  		sign = 0;
   240  	}
   241  	if (nm1 == 0)
   242  		return sign ? -y1(x) : y1(x);
   243  
   244  	if (ix >= 0x52d00000) { /* x > 2**302 */
   245  		/* (x >> n**2)
   246  		 *      Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
   247  		 *      Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
   248  		 *      Let s=sin(x), c=cos(x),
   249  		 *          xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
   250  		 *
   251  		 *             n    sin(xn)*sqt2    cos(xn)*sqt2
   252  		 *          ----------------------------------
   253  		 *             0     s-c             c+s
   254  		 *             1    -s-c            -c+s
   255  		 *             2    -s+c            -c-s
   256  		 *             3     s+c             c-s
   257  		 */
   258  		switch(nm1&3) {
   259  		case 0: temp = -sin(x)-cos(x); break;
   260  		case 1: temp = -sin(x)+cos(x); break;
   261  		case 2: temp =  sin(x)+cos(x); break;
   262  		default:
   263  		case 3: temp =  sin(x)-cos(x); break;
   264  		}
   265  		b = invsqrtpi*temp/sqrt(x);
   266  	} else {
   267  		a = y0(x);
   268  		b = y1(x);
   269  		/* quit if b is -inf */
   270  		GET_HIGH_WORD(ib, b);
   271  		for (i=0; i<nm1 && ib!=0xfff00000; ){
   272  			i++;
   273  			temp = b;
   274  			b = (2.0*i/x)*b - a;
   275  			GET_HIGH_WORD(ib, b);
   276  			a = temp;
   277  		}
   278  	}
   279  	return sign ? -b : b;
   280  }