github.com/afumu/libc@v0.0.6/musl/src/math/lgammal.c (about)

     1  /* origin: OpenBSD /usr/src/lib/libm/src/ld80/e_lgammal.c */
     2  /*
     3   * ====================================================
     4   * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
     5   *
     6   * Developed at SunPro, a Sun Microsystems, Inc. business.
     7   * Permission to use, copy, modify, and distribute this
     8   * software is freely granted, provided that this notice
     9   * is preserved.
    10   * ====================================================
    11   */
    12  /*
    13   * Copyright (c) 2008 Stephen L. Moshier <steve@moshier.net>
    14   *
    15   * Permission to use, copy, modify, and distribute this software for any
    16   * purpose with or without fee is hereby granted, provided that the above
    17   * copyright notice and this permission notice appear in all copies.
    18   *
    19   * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
    20   * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
    21   * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
    22   * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
    23   * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
    24   * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
    25   * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
    26   */
    27  /* lgammal(x)
    28   * Reentrant version of the logarithm of the Gamma function
    29   * with user provide pointer for the sign of Gamma(x).
    30   *
    31   * Method:
    32   *   1. Argument Reduction for 0 < x <= 8
    33   *      Since gamma(1+s)=s*gamma(s), for x in [0,8], we may
    34   *      reduce x to a number in [1.5,2.5] by
    35   *              lgamma(1+s) = log(s) + lgamma(s)
    36   *      for example,
    37   *              lgamma(7.3) = log(6.3) + lgamma(6.3)
    38   *                          = log(6.3*5.3) + lgamma(5.3)
    39   *                          = log(6.3*5.3*4.3*3.3*2.3) + lgamma(2.3)
    40   *   2. Polynomial approximation of lgamma around its
    41   *      minimun ymin=1.461632144968362245 to maintain monotonicity.
    42   *      On [ymin-0.23, ymin+0.27] (i.e., [1.23164,1.73163]), use
    43   *              Let z = x-ymin;
    44   *              lgamma(x) = -1.214862905358496078218 + z^2*poly(z)
    45   *   2. Rational approximation in the primary interval [2,3]
    46   *      We use the following approximation:
    47   *              s = x-2.0;
    48   *              lgamma(x) = 0.5*s + s*P(s)/Q(s)
    49   *      Our algorithms are based on the following observation
    50   *
    51   *                             zeta(2)-1    2    zeta(3)-1    3
    52   * lgamma(2+s) = s*(1-Euler) + --------- * s  -  --------- * s  + ...
    53   *                                 2                 3
    54   *
    55   *      where Euler = 0.5771... is the Euler constant, which is very
    56   *      close to 0.5.
    57   *
    58   *   3. For x>=8, we have
    59   *      lgamma(x)~(x-0.5)log(x)-x+0.5*log(2pi)+1/(12x)-1/(360x**3)+....
    60   *      (better formula:
    61   *         lgamma(x)~(x-0.5)*(log(x)-1)-.5*(log(2pi)-1) + ...)
    62   *      Let z = 1/x, then we approximation
    63   *              f(z) = lgamma(x) - (x-0.5)(log(x)-1)
    64   *      by
    65   *                                  3       5             11
    66   *              w = w0 + w1*z + w2*z  + w3*z  + ... + w6*z
    67   *
    68   *   4. For negative x, since (G is gamma function)
    69   *              -x*G(-x)*G(x) = pi/sin(pi*x),
    70   *      we have
    71   *              G(x) = pi/(sin(pi*x)*(-x)*G(-x))
    72   *      since G(-x) is positive, sign(G(x)) = sign(sin(pi*x)) for x<0
    73   *      Hence, for x<0, signgam = sign(sin(pi*x)) and
    74   *              lgamma(x) = log(|Gamma(x)|)
    75   *                        = log(pi/(|x*sin(pi*x)|)) - lgamma(-x);
    76   *      Note: one should avoid compute pi*(-x) directly in the
    77   *            computation of sin(pi*(-x)).
    78   *
    79   *   5. Special Cases
    80   *              lgamma(2+s) ~ s*(1-Euler) for tiny s
    81   *              lgamma(1)=lgamma(2)=0
    82   *              lgamma(x) ~ -log(x) for tiny x
    83   *              lgamma(0) = lgamma(inf) = inf
    84   *              lgamma(-integer) = +-inf
    85   *
    86   */
    87  
    88  #define _GNU_SOURCE
    89  #include "libm.h"
    90  
    91  #if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
    92  long double __lgammal_r(long double x, int *sg)
    93  {
    94  	return __lgamma_r(x, sg);
    95  }
    96  #elif LDBL_MANT_DIG == 64 && LDBL_MAX_EXP == 16384
    97  static const long double
    98  pi = 3.14159265358979323846264L,
    99  
   100  /* lgam(1+x) = 0.5 x + x a(x)/b(x)
   101      -0.268402099609375 <= x <= 0
   102      peak relative error 6.6e-22 */
   103  a0 = -6.343246574721079391729402781192128239938E2L,
   104  a1 =  1.856560238672465796768677717168371401378E3L,
   105  a2 =  2.404733102163746263689288466865843408429E3L,
   106  a3 =  8.804188795790383497379532868917517596322E2L,
   107  a4 =  1.135361354097447729740103745999661157426E2L,
   108  a5 =  3.766956539107615557608581581190400021285E0L,
   109  
   110  b0 =  8.214973713960928795704317259806842490498E3L,
   111  b1 =  1.026343508841367384879065363925870888012E4L,
   112  b2 =  4.553337477045763320522762343132210919277E3L,
   113  b3 =  8.506975785032585797446253359230031874803E2L,
   114  b4 =  6.042447899703295436820744186992189445813E1L,
   115  /* b5 =  1.000000000000000000000000000000000000000E0 */
   116  
   117  
   118  tc =  1.4616321449683623412626595423257213284682E0L,
   119  tf = -1.2148629053584961146050602565082954242826E-1, /* double precision */
   120  /* tt = (tail of tf), i.e. tf + tt has extended precision. */
   121  tt = 3.3649914684731379602768989080467587736363E-18L,
   122  /* lgam ( 1.4616321449683623412626595423257213284682E0 ) =
   123  -1.2148629053584960809551455717769158215135617312999903886372437313313530E-1 */
   124  
   125  /* lgam (x + tc) = tf + tt + x g(x)/h(x)
   126      -0.230003726999612341262659542325721328468 <= x
   127         <= 0.2699962730003876587373404576742786715318
   128       peak relative error 2.1e-21 */
   129  g0 = 3.645529916721223331888305293534095553827E-18L,
   130  g1 = 5.126654642791082497002594216163574795690E3L,
   131  g2 = 8.828603575854624811911631336122070070327E3L,
   132  g3 = 5.464186426932117031234820886525701595203E3L,
   133  g4 = 1.455427403530884193180776558102868592293E3L,
   134  g5 = 1.541735456969245924860307497029155838446E2L,
   135  g6 = 4.335498275274822298341872707453445815118E0L,
   136  
   137  h0 = 1.059584930106085509696730443974495979641E4L,
   138  h1 = 2.147921653490043010629481226937850618860E4L,
   139  h2 = 1.643014770044524804175197151958100656728E4L,
   140  h3 = 5.869021995186925517228323497501767586078E3L,
   141  h4 = 9.764244777714344488787381271643502742293E2L,
   142  h5 = 6.442485441570592541741092969581997002349E1L,
   143  /* h6 = 1.000000000000000000000000000000000000000E0 */
   144  
   145  
   146  /* lgam (x+1) = -0.5 x + x u(x)/v(x)
   147      -0.100006103515625 <= x <= 0.231639862060546875
   148      peak relative error 1.3e-21 */
   149  u0 = -8.886217500092090678492242071879342025627E1L,
   150  u1 =  6.840109978129177639438792958320783599310E2L,
   151  u2 =  2.042626104514127267855588786511809932433E3L,
   152  u3 =  1.911723903442667422201651063009856064275E3L,
   153  u4 =  7.447065275665887457628865263491667767695E2L,
   154  u5 =  1.132256494121790736268471016493103952637E2L,
   155  u6 =  4.484398885516614191003094714505960972894E0L,
   156  
   157  v0 =  1.150830924194461522996462401210374632929E3L,
   158  v1 =  3.399692260848747447377972081399737098610E3L,
   159  v2 =  3.786631705644460255229513563657226008015E3L,
   160  v3 =  1.966450123004478374557778781564114347876E3L,
   161  v4 =  4.741359068914069299837355438370682773122E2L,
   162  v5 =  4.508989649747184050907206782117647852364E1L,
   163  /* v6 =  1.000000000000000000000000000000000000000E0 */
   164  
   165  
   166  /* lgam (x+2) = .5 x + x s(x)/r(x)
   167       0 <= x <= 1
   168       peak relative error 7.2e-22 */
   169  s0 =  1.454726263410661942989109455292824853344E6L,
   170  s1 = -3.901428390086348447890408306153378922752E6L,
   171  s2 = -6.573568698209374121847873064292963089438E6L,
   172  s3 = -3.319055881485044417245964508099095984643E6L,
   173  s4 = -7.094891568758439227560184618114707107977E5L,
   174  s5 = -6.263426646464505837422314539808112478303E4L,
   175  s6 = -1.684926520999477529949915657519454051529E3L,
   176  
   177  r0 = -1.883978160734303518163008696712983134698E7L,
   178  r1 = -2.815206082812062064902202753264922306830E7L,
   179  r2 = -1.600245495251915899081846093343626358398E7L,
   180  r3 = -4.310526301881305003489257052083370058799E6L,
   181  r4 = -5.563807682263923279438235987186184968542E5L,
   182  r5 = -3.027734654434169996032905158145259713083E4L,
   183  r6 = -4.501995652861105629217250715790764371267E2L,
   184  /* r6 =  1.000000000000000000000000000000000000000E0 */
   185  
   186  
   187  /* lgam(x) = ( x - 0.5 ) * log(x) - x + LS2PI + 1/x w(1/x^2)
   188      x >= 8
   189      Peak relative error 1.51e-21
   190  w0 = LS2PI - 0.5 */
   191  w0 =  4.189385332046727417803e-1L,
   192  w1 =  8.333333333333331447505E-2L,
   193  w2 = -2.777777777750349603440E-3L,
   194  w3 =  7.936507795855070755671E-4L,
   195  w4 = -5.952345851765688514613E-4L,
   196  w5 =  8.412723297322498080632E-4L,
   197  w6 = -1.880801938119376907179E-3L,
   198  w7 =  4.885026142432270781165E-3L;
   199  
   200  /* sin(pi*x) assuming x > 2^-1000, if sin(pi*x)==0 the sign is arbitrary */
   201  static long double sin_pi(long double x)
   202  {
   203  	int n;
   204  
   205  	/* spurious inexact if odd int */
   206  	x *= 0.5;
   207  	x = 2.0*(x - floorl(x));  /* x mod 2.0 */
   208  
   209  	n = (int)(x*4.0);
   210  	n = (n+1)/2;
   211  	x -= n*0.5f;
   212  	x *= pi;
   213  
   214  	switch (n) {
   215  	default: /* case 4: */
   216  	case 0: return __sinl(x, 0.0, 0);
   217  	case 1: return __cosl(x, 0.0);
   218  	case 2: return __sinl(-x, 0.0, 0);
   219  	case 3: return -__cosl(x, 0.0);
   220  	}
   221  }
   222  
   223  long double __lgammal_r(long double x, int *sg) {
   224  	long double t, y, z, nadj, p, p1, p2, q, r, w;
   225  	union ldshape u = {x};
   226  	uint32_t ix = (u.i.se & 0x7fffU)<<16 | u.i.m>>48;
   227  	int sign = u.i.se >> 15;
   228  	int i;
   229  
   230  	*sg = 1;
   231  
   232  	/* purge off +-inf, NaN, +-0, tiny and negative arguments */
   233  	if (ix >= 0x7fff0000)
   234  		return x * x;
   235  	if (ix < 0x3fc08000) {  /* |x|<2**-63, return -log(|x|) */
   236  		if (sign) {
   237  			*sg = -1;
   238  			x = -x;
   239  		}
   240  		return -logl(x);
   241  	}
   242  	if (sign) {
   243  		x = -x;
   244  		t = sin_pi(x);
   245  		if (t == 0.0)
   246  			return 1.0 / (x-x); /* -integer */
   247  		if (t > 0.0)
   248  			*sg = -1;
   249  		else
   250  			t = -t;
   251  		nadj = logl(pi / (t * x));
   252  	}
   253  
   254  	/* purge off 1 and 2 (so the sign is ok with downward rounding) */
   255  	if ((ix == 0x3fff8000 || ix == 0x40008000) && u.i.m == 0) {
   256  		r = 0;
   257  	} else if (ix < 0x40008000) {  /* x < 2.0 */
   258  		if (ix <= 0x3ffee666) {  /* 8.99993896484375e-1 */
   259  			/* lgamma(x) = lgamma(x+1) - log(x) */
   260  			r = -logl(x);
   261  			if (ix >= 0x3ffebb4a) {  /* 7.31597900390625e-1 */
   262  				y = x - 1.0;
   263  				i = 0;
   264  			} else if (ix >= 0x3ffced33) {  /* 2.31639862060546875e-1 */
   265  				y = x - (tc - 1.0);
   266  				i = 1;
   267  			} else { /* x < 0.23 */
   268  				y = x;
   269  				i = 2;
   270  			}
   271  		} else {
   272  			r = 0.0;
   273  			if (ix >= 0x3fffdda6) {  /* 1.73162841796875 */
   274  				/* [1.7316,2] */
   275  				y = x - 2.0;
   276  				i = 0;
   277  			} else if (ix >= 0x3fff9da6) {  /* 1.23162841796875 */
   278  				/* [1.23,1.73] */
   279  				y = x - tc;
   280  				i = 1;
   281  			} else {
   282  				/* [0.9, 1.23] */
   283  				y = x - 1.0;
   284  				i = 2;
   285  			}
   286  		}
   287  		switch (i) {
   288  		case 0:
   289  			p1 = a0 + y * (a1 + y * (a2 + y * (a3 + y * (a4 + y * a5))));
   290  			p2 = b0 + y * (b1 + y * (b2 + y * (b3 + y * (b4 + y))));
   291  			r += 0.5 * y + y * p1/p2;
   292  			break;
   293  		case 1:
   294  			p1 = g0 + y * (g1 + y * (g2 + y * (g3 + y * (g4 + y * (g5 + y * g6)))));
   295  			p2 = h0 + y * (h1 + y * (h2 + y * (h3 + y * (h4 + y * (h5 + y)))));
   296  			p = tt + y * p1/p2;
   297  			r += (tf + p);
   298  			break;
   299  		case 2:
   300  			p1 = y * (u0 + y * (u1 + y * (u2 + y * (u3 + y * (u4 + y * (u5 + y * u6))))));
   301  			p2 = v0 + y * (v1 + y * (v2 + y * (v3 + y * (v4 + y * (v5 + y)))));
   302  			r += (-0.5 * y + p1 / p2);
   303  		}
   304  	} else if (ix < 0x40028000) {  /* 8.0 */
   305  		/* x < 8.0 */
   306  		i = (int)x;
   307  		y = x - (double)i;
   308  		p = y * (s0 + y * (s1 + y * (s2 + y * (s3 + y * (s4 + y * (s5 + y * s6))))));
   309  		q = r0 + y * (r1 + y * (r2 + y * (r3 + y * (r4 + y * (r5 + y * (r6 + y))))));
   310  		r = 0.5 * y + p / q;
   311  		z = 1.0;
   312  		/* lgamma(1+s) = log(s) + lgamma(s) */
   313  		switch (i) {
   314  		case 7:
   315  			z *= (y + 6.0); /* FALLTHRU */
   316  		case 6:
   317  			z *= (y + 5.0); /* FALLTHRU */
   318  		case 5:
   319  			z *= (y + 4.0); /* FALLTHRU */
   320  		case 4:
   321  			z *= (y + 3.0); /* FALLTHRU */
   322  		case 3:
   323  			z *= (y + 2.0); /* FALLTHRU */
   324  			r += logl(z);
   325  			break;
   326  		}
   327  	} else if (ix < 0x40418000) {  /* 2^66 */
   328  		/* 8.0 <= x < 2**66 */
   329  		t = logl(x);
   330  		z = 1.0 / x;
   331  		y = z * z;
   332  		w = w0 + z * (w1 + y * (w2 + y * (w3 + y * (w4 + y * (w5 + y * (w6 + y * w7))))));
   333  		r = (x - 0.5) * (t - 1.0) + w;
   334  	} else /* 2**66 <= x <= inf */
   335  		r = x * (logl(x) - 1.0);
   336  	if (sign)
   337  		r = nadj - r;
   338  	return r;
   339  }
   340  #elif LDBL_MANT_DIG == 113 && LDBL_MAX_EXP == 16384
   341  // TODO: broken implementation to make things compile
   342  long double __lgammal_r(long double x, int *sg)
   343  {
   344  	return __lgamma_r(x, sg);
   345  }
   346  #endif
   347  
   348  long double lgammal(long double x)
   349  {
   350  	return __lgammal_r(x, &__signgam);
   351  }
   352  
   353  weak_alias(__lgammal_r, lgammal_r);