github.com/afumu/libc@v0.0.6/musl/src/math/log10l.c (about)

     1  /* origin: OpenBSD /usr/src/lib/libm/src/ld80/e_log10l.c */
     2  /*
     3   * Copyright (c) 2008 Stephen L. Moshier <steve@moshier.net>
     4   *
     5   * Permission to use, copy, modify, and distribute this software for any
     6   * purpose with or without fee is hereby granted, provided that the above
     7   * copyright notice and this permission notice appear in all copies.
     8   *
     9   * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
    10   * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
    11   * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
    12   * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
    13   * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
    14   * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
    15   * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
    16   */
    17  /*
    18   *      Common logarithm, long double precision
    19   *
    20   *
    21   * SYNOPSIS:
    22   *
    23   * long double x, y, log10l();
    24   *
    25   * y = log10l( x );
    26   *
    27   *
    28   * DESCRIPTION:
    29   *
    30   * Returns the base 10 logarithm of x.
    31   *
    32   * The argument is separated into its exponent and fractional
    33   * parts.  If the exponent is between -1 and +1, the logarithm
    34   * of the fraction is approximated by
    35   *
    36   *     log(1+x) = x - 0.5 x**2 + x**3 P(x)/Q(x).
    37   *
    38   * Otherwise, setting  z = 2(x-1)/x+1),
    39   *
    40   *     log(x) = z + z**3 P(z)/Q(z).
    41   *
    42   *
    43   * ACCURACY:
    44   *
    45   *                      Relative error:
    46   * arithmetic   domain     # trials      peak         rms
    47   *    IEEE      0.5, 2.0     30000      9.0e-20     2.6e-20
    48   *    IEEE     exp(+-10000)  30000      6.0e-20     2.3e-20
    49   *
    50   * In the tests over the interval exp(+-10000), the logarithms
    51   * of the random arguments were uniformly distributed over
    52   * [-10000, +10000].
    53   *
    54   * ERROR MESSAGES:
    55   *
    56   * log singularity:  x = 0; returns MINLOG
    57   * log domain:       x < 0; returns MINLOG
    58   */
    59  
    60  #include "libm.h"
    61  
    62  #if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
    63  long double log10l(long double x)
    64  {
    65  	return log10(x);
    66  }
    67  #elif LDBL_MANT_DIG == 64 && LDBL_MAX_EXP == 16384
    68  /* Coefficients for log(1+x) = x - x**2/2 + x**3 P(x)/Q(x)
    69   * 1/sqrt(2) <= x < sqrt(2)
    70   * Theoretical peak relative error = 6.2e-22
    71   */
    72  static const long double P[] = {
    73   4.9962495940332550844739E-1L,
    74   1.0767376367209449010438E1L,
    75   7.7671073698359539859595E1L,
    76   2.5620629828144409632571E2L,
    77   4.2401812743503691187826E2L,
    78   3.4258224542413922935104E2L,
    79   1.0747524399916215149070E2L,
    80  };
    81  static const long double Q[] = {
    82  /* 1.0000000000000000000000E0,*/
    83   2.3479774160285863271658E1L,
    84   1.9444210022760132894510E2L,
    85   7.7952888181207260646090E2L,
    86   1.6911722418503949084863E3L,
    87   2.0307734695595183428202E3L,
    88   1.2695660352705325274404E3L,
    89   3.2242573199748645407652E2L,
    90  };
    91  
    92  /* Coefficients for log(x) = z + z^3 P(z^2)/Q(z^2),
    93   * where z = 2(x-1)/(x+1)
    94   * 1/sqrt(2) <= x < sqrt(2)
    95   * Theoretical peak relative error = 6.16e-22
    96   */
    97  static const long double R[4] = {
    98   1.9757429581415468984296E-3L,
    99  -7.1990767473014147232598E-1L,
   100   1.0777257190312272158094E1L,
   101  -3.5717684488096787370998E1L,
   102  };
   103  static const long double S[4] = {
   104  /* 1.00000000000000000000E0L,*/
   105  -2.6201045551331104417768E1L,
   106   1.9361891836232102174846E2L,
   107  -4.2861221385716144629696E2L,
   108  };
   109  /* log10(2) */
   110  #define L102A 0.3125L
   111  #define L102B -1.1470004336018804786261e-2L
   112  /* log10(e) */
   113  #define L10EA 0.5L
   114  #define L10EB -6.5705518096748172348871e-2L
   115  
   116  #define SQRTH 0.70710678118654752440L
   117  
   118  long double log10l(long double x)
   119  {
   120  	long double y, z;
   121  	int e;
   122  
   123  	if (isnan(x))
   124  		return x;
   125  	if(x <= 0.0) {
   126  		if(x == 0.0)
   127  			return -1.0 / (x*x);
   128  		return (x - x) / 0.0;
   129  	}
   130  	if (x == INFINITY)
   131  		return INFINITY;
   132  	/* separate mantissa from exponent */
   133  	/* Note, frexp is used so that denormal numbers
   134  	 * will be handled properly.
   135  	 */
   136  	x = frexpl(x, &e);
   137  
   138  	/* logarithm using log(x) = z + z**3 P(z)/Q(z),
   139  	 * where z = 2(x-1)/x+1)
   140  	 */
   141  	if (e > 2 || e < -2) {
   142  		if (x < SQRTH) {  /* 2(2x-1)/(2x+1) */
   143  			e -= 1;
   144  			z = x - 0.5;
   145  			y = 0.5 * z + 0.5;
   146  		} else {  /*  2 (x-1)/(x+1)   */
   147  			z = x - 0.5;
   148  			z -= 0.5;
   149  			y = 0.5 * x  + 0.5;
   150  		}
   151  		x = z / y;
   152  		z = x*x;
   153  		y = x * (z * __polevll(z, R, 3) / __p1evll(z, S, 3));
   154  		goto done;
   155  	}
   156  
   157  	/* logarithm using log(1+x) = x - .5x**2 + x**3 P(x)/Q(x) */
   158  	if (x < SQRTH) {
   159  		e -= 1;
   160  		x = 2.0*x - 1.0;
   161  	} else {
   162  		x = x - 1.0;
   163  	}
   164  	z = x*x;
   165  	y = x * (z * __polevll(x, P, 6) / __p1evll(x, Q, 7));
   166  	y = y - 0.5*z;
   167  
   168  done:
   169  	/* Multiply log of fraction by log10(e)
   170  	 * and base 2 exponent by log10(2).
   171  	 *
   172  	 * ***CAUTION***
   173  	 *
   174  	 * This sequence of operations is critical and it may
   175  	 * be horribly defeated by some compiler optimizers.
   176  	 */
   177  	z = y * (L10EB);
   178  	z += x * (L10EB);
   179  	z += e * (L102B);
   180  	z += y * (L10EA);
   181  	z += x * (L10EA);
   182  	z += e * (L102A);
   183  	return z;
   184  }
   185  #elif LDBL_MANT_DIG == 113 && LDBL_MAX_EXP == 16384
   186  // TODO: broken implementation to make things compile
   187  long double log10l(long double x)
   188  {
   189  	return log10(x);
   190  }
   191  #endif