github.com/afumu/libc@v0.0.6/musl/src/math/pow.c (about)

     1  /*
     2   * Double-precision x^y function.
     3   *
     4   * Copyright (c) 2018, Arm Limited.
     5   * SPDX-License-Identifier: MIT
     6   */
     7  
     8  #include <math.h>
     9  #include <stdint.h>
    10  #include "libm.h"
    11  #include "exp_data.h"
    12  #include "pow_data.h"
    13  
    14  /*
    15  Worst-case error: 0.54 ULP (~= ulperr_exp + 1024*Ln2*relerr_log*2^53)
    16  relerr_log: 1.3 * 2^-68 (Relative error of log, 1.5 * 2^-68 without fma)
    17  ulperr_exp: 0.509 ULP (ULP error of exp, 0.511 ULP without fma)
    18  */
    19  
    20  #define T __pow_log_data.tab
    21  #define A __pow_log_data.poly
    22  #define Ln2hi __pow_log_data.ln2hi
    23  #define Ln2lo __pow_log_data.ln2lo
    24  #define N (1 << POW_LOG_TABLE_BITS)
    25  #define OFF 0x3fe6955500000000
    26  
    27  /* Top 12 bits of a double (sign and exponent bits).  */
    28  static inline uint32_t top12(double x)
    29  {
    30  	return asuint64(x) >> 52;
    31  }
    32  
    33  /* Compute y+TAIL = log(x) where the rounded result is y and TAIL has about
    34     additional 15 bits precision.  IX is the bit representation of x, but
    35     normalized in the subnormal range using the sign bit for the exponent.  */
    36  static inline double_t log_inline(uint64_t ix, double_t *tail)
    37  {
    38  	/* double_t for better performance on targets with FLT_EVAL_METHOD==2.  */
    39  	double_t z, r, y, invc, logc, logctail, kd, hi, t1, t2, lo, lo1, lo2, p;
    40  	uint64_t iz, tmp;
    41  	int k, i;
    42  
    43  	/* x = 2^k z; where z is in range [OFF,2*OFF) and exact.
    44  	   The range is split into N subintervals.
    45  	   The ith subinterval contains z and c is near its center.  */
    46  	tmp = ix - OFF;
    47  	i = (tmp >> (52 - POW_LOG_TABLE_BITS)) % N;
    48  	k = (int64_t)tmp >> 52; /* arithmetic shift */
    49  	iz = ix - (tmp & 0xfffULL << 52);
    50  	z = asdouble(iz);
    51  	kd = (double_t)k;
    52  
    53  	/* log(x) = k*Ln2 + log(c) + log1p(z/c-1).  */
    54  	invc = T[i].invc;
    55  	logc = T[i].logc;
    56  	logctail = T[i].logctail;
    57  
    58  	/* Note: 1/c is j/N or j/N/2 where j is an integer in [N,2N) and
    59       |z/c - 1| < 1/N, so r = z/c - 1 is exactly representible.  */
    60  #if __FP_FAST_FMA
    61  	r = __builtin_fma(z, invc, -1.0);
    62  #else
    63  	/* Split z such that rhi, rlo and rhi*rhi are exact and |rlo| <= |r|.  */
    64  	double_t zhi = asdouble((iz + (1ULL << 31)) & (-1ULL << 32));
    65  	double_t zlo = z - zhi;
    66  	double_t rhi = zhi * invc - 1.0;
    67  	double_t rlo = zlo * invc;
    68  	r = rhi + rlo;
    69  #endif
    70  
    71  	/* k*Ln2 + log(c) + r.  */
    72  	t1 = kd * Ln2hi + logc;
    73  	t2 = t1 + r;
    74  	lo1 = kd * Ln2lo + logctail;
    75  	lo2 = t1 - t2 + r;
    76  
    77  	/* Evaluation is optimized assuming superscalar pipelined execution.  */
    78  	double_t ar, ar2, ar3, lo3, lo4;
    79  	ar = A[0] * r; /* A[0] = -0.5.  */
    80  	ar2 = r * ar;
    81  	ar3 = r * ar2;
    82  	/* k*Ln2 + log(c) + r + A[0]*r*r.  */
    83  #if __FP_FAST_FMA
    84  	hi = t2 + ar2;
    85  	lo3 = __builtin_fma(ar, r, -ar2);
    86  	lo4 = t2 - hi + ar2;
    87  #else
    88  	double_t arhi = A[0] * rhi;
    89  	double_t arhi2 = rhi * arhi;
    90  	hi = t2 + arhi2;
    91  	lo3 = rlo * (ar + arhi);
    92  	lo4 = t2 - hi + arhi2;
    93  #endif
    94  	/* p = log1p(r) - r - A[0]*r*r.  */
    95  	p = (ar3 * (A[1] + r * A[2] +
    96  		    ar2 * (A[3] + r * A[4] + ar2 * (A[5] + r * A[6]))));
    97  	lo = lo1 + lo2 + lo3 + lo4 + p;
    98  	y = hi + lo;
    99  	*tail = hi - y + lo;
   100  	return y;
   101  }
   102  
   103  #undef N
   104  #undef T
   105  #define N (1 << EXP_TABLE_BITS)
   106  #define InvLn2N __exp_data.invln2N
   107  #define NegLn2hiN __exp_data.negln2hiN
   108  #define NegLn2loN __exp_data.negln2loN
   109  #define Shift __exp_data.shift
   110  #define T __exp_data.tab
   111  #define C2 __exp_data.poly[5 - EXP_POLY_ORDER]
   112  #define C3 __exp_data.poly[6 - EXP_POLY_ORDER]
   113  #define C4 __exp_data.poly[7 - EXP_POLY_ORDER]
   114  #define C5 __exp_data.poly[8 - EXP_POLY_ORDER]
   115  #define C6 __exp_data.poly[9 - EXP_POLY_ORDER]
   116  
   117  /* Handle cases that may overflow or underflow when computing the result that
   118     is scale*(1+TMP) without intermediate rounding.  The bit representation of
   119     scale is in SBITS, however it has a computed exponent that may have
   120     overflown into the sign bit so that needs to be adjusted before using it as
   121     a double.  (int32_t)KI is the k used in the argument reduction and exponent
   122     adjustment of scale, positive k here means the result may overflow and
   123     negative k means the result may underflow.  */
   124  static inline double specialcase(double_t tmp, uint64_t sbits, uint64_t ki)
   125  {
   126  	double_t scale, y;
   127  
   128  	if ((ki & 0x80000000) == 0) {
   129  		/* k > 0, the exponent of scale might have overflowed by <= 460.  */
   130  		sbits -= 1009ull << 52;
   131  		scale = asdouble(sbits);
   132  		y = 0x1p1009 * (scale + scale * tmp);
   133  		return eval_as_double(y);
   134  	}
   135  	/* k < 0, need special care in the subnormal range.  */
   136  	sbits += 1022ull << 52;
   137  	/* Note: sbits is signed scale.  */
   138  	scale = asdouble(sbits);
   139  	y = scale + scale * tmp;
   140  	if (fabs(y) < 1.0) {
   141  		/* Round y to the right precision before scaling it into the subnormal
   142  		   range to avoid double rounding that can cause 0.5+E/2 ulp error where
   143  		   E is the worst-case ulp error outside the subnormal range.  So this
   144  		   is only useful if the goal is better than 1 ulp worst-case error.  */
   145  		double_t hi, lo, one = 1.0;
   146  		if (y < 0.0)
   147  			one = -1.0;
   148  		lo = scale - y + scale * tmp;
   149  		hi = one + y;
   150  		lo = one - hi + y + lo;
   151  		y = eval_as_double(hi + lo) - one;
   152  		/* Fix the sign of 0.  */
   153  		if (y == 0.0)
   154  			y = asdouble(sbits & 0x8000000000000000);
   155  		/* The underflow exception needs to be signaled explicitly.  */
   156  		fp_force_eval(fp_barrier(0x1p-1022) * 0x1p-1022);
   157  	}
   158  	y = 0x1p-1022 * y;
   159  	return eval_as_double(y);
   160  }
   161  
   162  #define SIGN_BIAS (0x800 << EXP_TABLE_BITS)
   163  
   164  /* Computes sign*exp(x+xtail) where |xtail| < 2^-8/N and |xtail| <= |x|.
   165     The sign_bias argument is SIGN_BIAS or 0 and sets the sign to -1 or 1.  */
   166  static inline double exp_inline(double_t x, double_t xtail, uint32_t sign_bias)
   167  {
   168  	uint32_t abstop;
   169  	uint64_t ki, idx, top, sbits;
   170  	/* double_t for better performance on targets with FLT_EVAL_METHOD==2.  */
   171  	double_t kd, z, r, r2, scale, tail, tmp;
   172  
   173  	abstop = top12(x) & 0x7ff;
   174  	if (predict_false(abstop - top12(0x1p-54) >=
   175  			  top12(512.0) - top12(0x1p-54))) {
   176  		if (abstop - top12(0x1p-54) >= 0x80000000) {
   177  			/* Avoid spurious underflow for tiny x.  */
   178  			/* Note: 0 is common input.  */
   179  			double_t one = WANT_ROUNDING ? 1.0 + x : 1.0;
   180  			return sign_bias ? -one : one;
   181  		}
   182  		if (abstop >= top12(1024.0)) {
   183  			/* Note: inf and nan are already handled.  */
   184  			if (asuint64(x) >> 63)
   185  				return __math_uflow(sign_bias);
   186  			else
   187  				return __math_oflow(sign_bias);
   188  		}
   189  		/* Large x is special cased below.  */
   190  		abstop = 0;
   191  	}
   192  
   193  	/* exp(x) = 2^(k/N) * exp(r), with exp(r) in [2^(-1/2N),2^(1/2N)].  */
   194  	/* x = ln2/N*k + r, with int k and r in [-ln2/2N, ln2/2N].  */
   195  	z = InvLn2N * x;
   196  #if TOINT_INTRINSICS
   197  	kd = roundtoint(z);
   198  	ki = converttoint(z);
   199  #elif EXP_USE_TOINT_NARROW
   200  	/* z - kd is in [-0.5-2^-16, 0.5] in all rounding modes.  */
   201  	kd = eval_as_double(z + Shift);
   202  	ki = asuint64(kd) >> 16;
   203  	kd = (double_t)(int32_t)ki;
   204  #else
   205  	/* z - kd is in [-1, 1] in non-nearest rounding modes.  */
   206  	kd = eval_as_double(z + Shift);
   207  	ki = asuint64(kd);
   208  	kd -= Shift;
   209  #endif
   210  	r = x + kd * NegLn2hiN + kd * NegLn2loN;
   211  	/* The code assumes 2^-200 < |xtail| < 2^-8/N.  */
   212  	r += xtail;
   213  	/* 2^(k/N) ~= scale * (1 + tail).  */
   214  	idx = 2 * (ki % N);
   215  	top = (ki + sign_bias) << (52 - EXP_TABLE_BITS);
   216  	tail = asdouble(T[idx]);
   217  	/* This is only a valid scale when -1023*N < k < 1024*N.  */
   218  	sbits = T[idx + 1] + top;
   219  	/* exp(x) = 2^(k/N) * exp(r) ~= scale + scale * (tail + exp(r) - 1).  */
   220  	/* Evaluation is optimized assuming superscalar pipelined execution.  */
   221  	r2 = r * r;
   222  	/* Without fma the worst case error is 0.25/N ulp larger.  */
   223  	/* Worst case error is less than 0.5+1.11/N+(abs poly error * 2^53) ulp.  */
   224  	tmp = tail + r + r2 * (C2 + r * C3) + r2 * r2 * (C4 + r * C5);
   225  	if (predict_false(abstop == 0))
   226  		return specialcase(tmp, sbits, ki);
   227  	scale = asdouble(sbits);
   228  	/* Note: tmp == 0 or |tmp| > 2^-200 and scale > 2^-739, so there
   229  	   is no spurious underflow here even without fma.  */
   230  	return eval_as_double(scale + scale * tmp);
   231  }
   232  
   233  /* Returns 0 if not int, 1 if odd int, 2 if even int.  The argument is
   234     the bit representation of a non-zero finite floating-point value.  */
   235  static inline int checkint(uint64_t iy)
   236  {
   237  	int e = iy >> 52 & 0x7ff;
   238  	if (e < 0x3ff)
   239  		return 0;
   240  	if (e > 0x3ff + 52)
   241  		return 2;
   242  	if (iy & ((1ULL << (0x3ff + 52 - e)) - 1))
   243  		return 0;
   244  	if (iy & (1ULL << (0x3ff + 52 - e)))
   245  		return 1;
   246  	return 2;
   247  }
   248  
   249  /* Returns 1 if input is the bit representation of 0, infinity or nan.  */
   250  static inline int zeroinfnan(uint64_t i)
   251  {
   252  	return 2 * i - 1 >= 2 * asuint64(INFINITY) - 1;
   253  }
   254  
   255  double pow(double x, double y)
   256  {
   257  	uint32_t sign_bias = 0;
   258  	uint64_t ix, iy;
   259  	uint32_t topx, topy;
   260  
   261  	ix = asuint64(x);
   262  	iy = asuint64(y);
   263  	topx = top12(x);
   264  	topy = top12(y);
   265  	if (predict_false(topx - 0x001 >= 0x7ff - 0x001 ||
   266  			  (topy & 0x7ff) - 0x3be >= 0x43e - 0x3be)) {
   267  		/* Note: if |y| > 1075 * ln2 * 2^53 ~= 0x1.749p62 then pow(x,y) = inf/0
   268  		   and if |y| < 2^-54 / 1075 ~= 0x1.e7b6p-65 then pow(x,y) = +-1.  */
   269  		/* Special cases: (x < 0x1p-126 or inf or nan) or
   270  		   (|y| < 0x1p-65 or |y| >= 0x1p63 or nan).  */
   271  		if (predict_false(zeroinfnan(iy))) {
   272  			if (2 * iy == 0)
   273  				return issignaling_inline(x) ? x + y : 1.0;
   274  			if (ix == asuint64(1.0))
   275  				return issignaling_inline(y) ? x + y : 1.0;
   276  			if (2 * ix > 2 * asuint64(INFINITY) ||
   277  			    2 * iy > 2 * asuint64(INFINITY))
   278  				return x + y;
   279  			if (2 * ix == 2 * asuint64(1.0))
   280  				return 1.0;
   281  			if ((2 * ix < 2 * asuint64(1.0)) == !(iy >> 63))
   282  				return 0.0; /* |x|<1 && y==inf or |x|>1 && y==-inf.  */
   283  			return y * y;
   284  		}
   285  		if (predict_false(zeroinfnan(ix))) {
   286  			double_t x2 = x * x;
   287  			if (ix >> 63 && checkint(iy) == 1)
   288  				x2 = -x2;
   289  			/* Without the barrier some versions of clang hoist the 1/x2 and
   290  			   thus division by zero exception can be signaled spuriously.  */
   291  			return iy >> 63 ? fp_barrier(1 / x2) : x2;
   292  		}
   293  		/* Here x and y are non-zero finite.  */
   294  		if (ix >> 63) {
   295  			/* Finite x < 0.  */
   296  			int yint = checkint(iy);
   297  			if (yint == 0)
   298  				return __math_invalid(x);
   299  			if (yint == 1)
   300  				sign_bias = SIGN_BIAS;
   301  			ix &= 0x7fffffffffffffff;
   302  			topx &= 0x7ff;
   303  		}
   304  		if ((topy & 0x7ff) - 0x3be >= 0x43e - 0x3be) {
   305  			/* Note: sign_bias == 0 here because y is not odd.  */
   306  			if (ix == asuint64(1.0))
   307  				return 1.0;
   308  			if ((topy & 0x7ff) < 0x3be) {
   309  				/* |y| < 2^-65, x^y ~= 1 + y*log(x).  */
   310  				if (WANT_ROUNDING)
   311  					return ix > asuint64(1.0) ? 1.0 + y :
   312  								    1.0 - y;
   313  				else
   314  					return 1.0;
   315  			}
   316  			return (ix > asuint64(1.0)) == (topy < 0x800) ?
   317  				       __math_oflow(0) :
   318  				       __math_uflow(0);
   319  		}
   320  		if (topx == 0) {
   321  			/* Normalize subnormal x so exponent becomes negative.  */
   322  			ix = asuint64(x * 0x1p52);
   323  			ix &= 0x7fffffffffffffff;
   324  			ix -= 52ULL << 52;
   325  		}
   326  	}
   327  
   328  	double_t lo;
   329  	double_t hi = log_inline(ix, &lo);
   330  	double_t ehi, elo;
   331  #if __FP_FAST_FMA
   332  	ehi = y * hi;
   333  	elo = y * lo + __builtin_fma(y, hi, -ehi);
   334  #else
   335  	double_t yhi = asdouble(iy & -1ULL << 27);
   336  	double_t ylo = y - yhi;
   337  	double_t lhi = asdouble(asuint64(hi) & -1ULL << 27);
   338  	double_t llo = hi - lhi + lo;
   339  	ehi = yhi * lhi;
   340  	elo = ylo * lhi + y * llo; /* |elo| < |ehi| * 2^-25.  */
   341  #endif
   342  	return exp_inline(ehi, elo, sign_bias);
   343  }