github.com/afumu/libc@v0.0.6/musl/src/math/powf.c (about)

     1  /*
     2   * Copyright (c) 2017-2018, Arm Limited.
     3   * SPDX-License-Identifier: MIT
     4   */
     5  
     6  #include <math.h>
     7  #include <stdint.h>
     8  #include "libm.h"
     9  #include "exp2f_data.h"
    10  #include "powf_data.h"
    11  
    12  /*
    13  POWF_LOG2_POLY_ORDER = 5
    14  EXP2F_TABLE_BITS = 5
    15  
    16  ULP error: 0.82 (~ 0.5 + relerr*2^24)
    17  relerr: 1.27 * 2^-26 (Relative error ~= 128*Ln2*relerr_log2 + relerr_exp2)
    18  relerr_log2: 1.83 * 2^-33 (Relative error of logx.)
    19  relerr_exp2: 1.69 * 2^-34 (Relative error of exp2(ylogx).)
    20  */
    21  
    22  #define N (1 << POWF_LOG2_TABLE_BITS)
    23  #define T __powf_log2_data.tab
    24  #define A __powf_log2_data.poly
    25  #define OFF 0x3f330000
    26  
    27  /* Subnormal input is normalized so ix has negative biased exponent.
    28     Output is multiplied by N (POWF_SCALE) if TOINT_INTRINICS is set.  */
    29  static inline double_t log2_inline(uint32_t ix)
    30  {
    31  	double_t z, r, r2, r4, p, q, y, y0, invc, logc;
    32  	uint32_t iz, top, tmp;
    33  	int k, i;
    34  
    35  	/* x = 2^k z; where z is in range [OFF,2*OFF] and exact.
    36  	   The range is split into N subintervals.
    37  	   The ith subinterval contains z and c is near its center.  */
    38  	tmp = ix - OFF;
    39  	i = (tmp >> (23 - POWF_LOG2_TABLE_BITS)) % N;
    40  	top = tmp & 0xff800000;
    41  	iz = ix - top;
    42  	k = (int32_t)top >> (23 - POWF_SCALE_BITS); /* arithmetic shift */
    43  	invc = T[i].invc;
    44  	logc = T[i].logc;
    45  	z = (double_t)asfloat(iz);
    46  
    47  	/* log2(x) = log1p(z/c-1)/ln2 + log2(c) + k */
    48  	r = z * invc - 1;
    49  	y0 = logc + (double_t)k;
    50  
    51  	/* Pipelined polynomial evaluation to approximate log1p(r)/ln2.  */
    52  	r2 = r * r;
    53  	y = A[0] * r + A[1];
    54  	p = A[2] * r + A[3];
    55  	r4 = r2 * r2;
    56  	q = A[4] * r + y0;
    57  	q = p * r2 + q;
    58  	y = y * r4 + q;
    59  	return y;
    60  }
    61  
    62  #undef N
    63  #undef T
    64  #define N (1 << EXP2F_TABLE_BITS)
    65  #define T __exp2f_data.tab
    66  #define SIGN_BIAS (1 << (EXP2F_TABLE_BITS + 11))
    67  
    68  /* The output of log2 and thus the input of exp2 is either scaled by N
    69     (in case of fast toint intrinsics) or not.  The unscaled xd must be
    70     in [-1021,1023], sign_bias sets the sign of the result.  */
    71  static inline float exp2_inline(double_t xd, uint32_t sign_bias)
    72  {
    73  	uint64_t ki, ski, t;
    74  	double_t kd, z, r, r2, y, s;
    75  
    76  #if TOINT_INTRINSICS
    77  #define C __exp2f_data.poly_scaled
    78  	/* N*x = k + r with r in [-1/2, 1/2] */
    79  	kd = roundtoint(xd); /* k */
    80  	ki = converttoint(xd);
    81  #else
    82  #define C __exp2f_data.poly
    83  #define SHIFT __exp2f_data.shift_scaled
    84  	/* x = k/N + r with r in [-1/(2N), 1/(2N)] */
    85  	kd = eval_as_double(xd + SHIFT);
    86  	ki = asuint64(kd);
    87  	kd -= SHIFT; /* k/N */
    88  #endif
    89  	r = xd - kd;
    90  
    91  	/* exp2(x) = 2^(k/N) * 2^r ~= s * (C0*r^3 + C1*r^2 + C2*r + 1) */
    92  	t = T[ki % N];
    93  	ski = ki + sign_bias;
    94  	t += ski << (52 - EXP2F_TABLE_BITS);
    95  	s = asdouble(t);
    96  	z = C[0] * r + C[1];
    97  	r2 = r * r;
    98  	y = C[2] * r + 1;
    99  	y = z * r2 + y;
   100  	y = y * s;
   101  	return eval_as_float(y);
   102  }
   103  
   104  /* Returns 0 if not int, 1 if odd int, 2 if even int.  The argument is
   105     the bit representation of a non-zero finite floating-point value.  */
   106  static inline int checkint(uint32_t iy)
   107  {
   108  	int e = iy >> 23 & 0xff;
   109  	if (e < 0x7f)
   110  		return 0;
   111  	if (e > 0x7f + 23)
   112  		return 2;
   113  	if (iy & ((1 << (0x7f + 23 - e)) - 1))
   114  		return 0;
   115  	if (iy & (1 << (0x7f + 23 - e)))
   116  		return 1;
   117  	return 2;
   118  }
   119  
   120  static inline int zeroinfnan(uint32_t ix)
   121  {
   122  	return 2 * ix - 1 >= 2u * 0x7f800000 - 1;
   123  }
   124  
   125  float powf(float x, float y)
   126  {
   127  	uint32_t sign_bias = 0;
   128  	uint32_t ix, iy;
   129  
   130  	ix = asuint(x);
   131  	iy = asuint(y);
   132  	if (predict_false(ix - 0x00800000 >= 0x7f800000 - 0x00800000 ||
   133  			  zeroinfnan(iy))) {
   134  		/* Either (x < 0x1p-126 or inf or nan) or (y is 0 or inf or nan).  */
   135  		if (predict_false(zeroinfnan(iy))) {
   136  			if (2 * iy == 0)
   137  				return issignalingf_inline(x) ? x + y : 1.0f;
   138  			if (ix == 0x3f800000)
   139  				return issignalingf_inline(y) ? x + y : 1.0f;
   140  			if (2 * ix > 2u * 0x7f800000 ||
   141  			    2 * iy > 2u * 0x7f800000)
   142  				return x + y;
   143  			if (2 * ix == 2 * 0x3f800000)
   144  				return 1.0f;
   145  			if ((2 * ix < 2 * 0x3f800000) == !(iy & 0x80000000))
   146  				return 0.0f; /* |x|<1 && y==inf or |x|>1 && y==-inf.  */
   147  			return y * y;
   148  		}
   149  		if (predict_false(zeroinfnan(ix))) {
   150  			float_t x2 = x * x;
   151  			if (ix & 0x80000000 && checkint(iy) == 1)
   152  				x2 = -x2;
   153  			/* Without the barrier some versions of clang hoist the 1/x2 and
   154  			   thus division by zero exception can be signaled spuriously.  */
   155  			return iy & 0x80000000 ? fp_barrierf(1 / x2) : x2;
   156  		}
   157  		/* x and y are non-zero finite.  */
   158  		if (ix & 0x80000000) {
   159  			/* Finite x < 0.  */
   160  			int yint = checkint(iy);
   161  			if (yint == 0)
   162  				return __math_invalidf(x);
   163  			if (yint == 1)
   164  				sign_bias = SIGN_BIAS;
   165  			ix &= 0x7fffffff;
   166  		}
   167  		if (ix < 0x00800000) {
   168  			/* Normalize subnormal x so exponent becomes negative.  */
   169  			ix = asuint(x * 0x1p23f);
   170  			ix &= 0x7fffffff;
   171  			ix -= 23 << 23;
   172  		}
   173  	}
   174  	double_t logx = log2_inline(ix);
   175  	double_t ylogx = y * logx; /* cannot overflow, y is single prec.  */
   176  	if (predict_false((asuint64(ylogx) >> 47 & 0xffff) >=
   177  			  asuint64(126.0 * POWF_SCALE) >> 47)) {
   178  		/* |y*log(x)| >= 126.  */
   179  		if (ylogx > 0x1.fffffffd1d571p+6 * POWF_SCALE)
   180  			return __math_oflowf(sign_bias);
   181  		if (ylogx <= -150.0 * POWF_SCALE)
   182  			return __math_uflowf(sign_bias);
   183  	}
   184  	return exp2_inline(ylogx, sign_bias);
   185  }