github.com/afumu/libc@v0.0.6/musl/src/math/tgammal.c (about)

     1  /* origin: OpenBSD /usr/src/lib/libm/src/ld80/e_tgammal.c */
     2  /*
     3   * Copyright (c) 2008 Stephen L. Moshier <steve@moshier.net>
     4   *
     5   * Permission to use, copy, modify, and distribute this software for any
     6   * purpose with or without fee is hereby granted, provided that the above
     7   * copyright notice and this permission notice appear in all copies.
     8   *
     9   * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
    10   * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
    11   * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
    12   * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
    13   * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
    14   * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
    15   * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
    16   */
    17  /*
    18   *      Gamma function
    19   *
    20   *
    21   * SYNOPSIS:
    22   *
    23   * long double x, y, tgammal();
    24   *
    25   * y = tgammal( x );
    26   *
    27   *
    28   * DESCRIPTION:
    29   *
    30   * Returns gamma function of the argument.  The result is
    31   * correctly signed.
    32   *
    33   * Arguments |x| <= 13 are reduced by recurrence and the function
    34   * approximated by a rational function of degree 7/8 in the
    35   * interval (2,3).  Large arguments are handled by Stirling's
    36   * formula. Large negative arguments are made positive using
    37   * a reflection formula.
    38   *
    39   *
    40   * ACCURACY:
    41   *
    42   *                      Relative error:
    43   * arithmetic   domain     # trials      peak         rms
    44   *    IEEE     -40,+40      10000       3.6e-19     7.9e-20
    45   *    IEEE    -1755,+1755   10000       4.8e-18     6.5e-19
    46   *
    47   * Accuracy for large arguments is dominated by error in powl().
    48   *
    49   */
    50  
    51  #include "libm.h"
    52  
    53  #if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
    54  long double tgammal(long double x)
    55  {
    56  	return tgamma(x);
    57  }
    58  #elif LDBL_MANT_DIG == 64 && LDBL_MAX_EXP == 16384
    59  /*
    60  tgamma(x+2) = tgamma(x+2) P(x)/Q(x)
    61  0 <= x <= 1
    62  Relative error
    63  n=7, d=8
    64  Peak error =  1.83e-20
    65  Relative error spread =  8.4e-23
    66  */
    67  static const long double P[8] = {
    68   4.212760487471622013093E-5L,
    69   4.542931960608009155600E-4L,
    70   4.092666828394035500949E-3L,
    71   2.385363243461108252554E-2L,
    72   1.113062816019361559013E-1L,
    73   3.629515436640239168939E-1L,
    74   8.378004301573126728826E-1L,
    75   1.000000000000000000009E0L,
    76  };
    77  static const long double Q[9] = {
    78  -1.397148517476170440917E-5L,
    79   2.346584059160635244282E-4L,
    80  -1.237799246653152231188E-3L,
    81  -7.955933682494738320586E-4L,
    82   2.773706565840072979165E-2L,
    83  -4.633887671244534213831E-2L,
    84  -2.243510905670329164562E-1L,
    85   4.150160950588455434583E-1L,
    86   9.999999999999999999908E-1L,
    87  };
    88  
    89  /*
    90  static const long double P[] = {
    91  -3.01525602666895735709e0L,
    92  -3.25157411956062339893e1L,
    93  -2.92929976820724030353e2L,
    94  -1.70730828800510297666e3L,
    95  -7.96667499622741999770e3L,
    96  -2.59780216007146401957e4L,
    97  -5.99650230220855581642e4L,
    98  -7.15743521530849602425e4L
    99  };
   100  static const long double Q[] = {
   101   1.00000000000000000000e0L,
   102  -1.67955233807178858919e1L,
   103   8.85946791747759881659e1L,
   104   5.69440799097468430177e1L,
   105  -1.98526250512761318471e3L,
   106   3.31667508019495079814e3L,
   107   1.60577839621734713377e4L,
   108  -2.97045081369399940529e4L,
   109  -7.15743521530849602412e4L
   110  };
   111  */
   112  #define MAXGAML 1755.455L
   113  /*static const long double LOGPI = 1.14472988584940017414L;*/
   114  
   115  /* Stirling's formula for the gamma function
   116  tgamma(x) = sqrt(2 pi) x^(x-.5) exp(-x) (1 + 1/x P(1/x))
   117  z(x) = x
   118  13 <= x <= 1024
   119  Relative error
   120  n=8, d=0
   121  Peak error =  9.44e-21
   122  Relative error spread =  8.8e-4
   123  */
   124  static const long double STIR[9] = {
   125   7.147391378143610789273E-4L,
   126  -2.363848809501759061727E-5L,
   127  -5.950237554056330156018E-4L,
   128   6.989332260623193171870E-5L,
   129   7.840334842744753003862E-4L,
   130  -2.294719747873185405699E-4L,
   131  -2.681327161876304418288E-3L,
   132   3.472222222230075327854E-3L,
   133   8.333333333333331800504E-2L,
   134  };
   135  
   136  #define MAXSTIR 1024.0L
   137  static const long double SQTPI = 2.50662827463100050242E0L;
   138  
   139  /* 1/tgamma(x) = z P(z)
   140   * z(x) = 1/x
   141   * 0 < x < 0.03125
   142   * Peak relative error 4.2e-23
   143   */
   144  static const long double S[9] = {
   145  -1.193945051381510095614E-3L,
   146   7.220599478036909672331E-3L,
   147  -9.622023360406271645744E-3L,
   148  -4.219773360705915470089E-2L,
   149   1.665386113720805206758E-1L,
   150  -4.200263503403344054473E-2L,
   151  -6.558780715202540684668E-1L,
   152   5.772156649015328608253E-1L,
   153   1.000000000000000000000E0L,
   154  };
   155  
   156  /* 1/tgamma(-x) = z P(z)
   157   * z(x) = 1/x
   158   * 0 < x < 0.03125
   159   * Peak relative error 5.16e-23
   160   * Relative error spread =  2.5e-24
   161   */
   162  static const long double SN[9] = {
   163   1.133374167243894382010E-3L,
   164   7.220837261893170325704E-3L,
   165   9.621911155035976733706E-3L,
   166  -4.219773343731191721664E-2L,
   167  -1.665386113944413519335E-1L,
   168  -4.200263503402112910504E-2L,
   169   6.558780715202536547116E-1L,
   170   5.772156649015328608727E-1L,
   171  -1.000000000000000000000E0L,
   172  };
   173  
   174  static const long double PIL = 3.1415926535897932384626L;
   175  
   176  /* Gamma function computed by Stirling's formula.
   177   */
   178  static long double stirf(long double x)
   179  {
   180  	long double y, w, v;
   181  
   182  	w = 1.0/x;
   183  	/* For large x, use rational coefficients from the analytical expansion.  */
   184  	if (x > 1024.0)
   185  		w = (((((6.97281375836585777429E-5L * w
   186  		 + 7.84039221720066627474E-4L) * w
   187  		 - 2.29472093621399176955E-4L) * w
   188  		 - 2.68132716049382716049E-3L) * w
   189  		 + 3.47222222222222222222E-3L) * w
   190  		 + 8.33333333333333333333E-2L) * w
   191  		 + 1.0;
   192  	else
   193  		w = 1.0 + w * __polevll(w, STIR, 8);
   194  	y = expl(x);
   195  	if (x > MAXSTIR) { /* Avoid overflow in pow() */
   196  		v = powl(x, 0.5L * x - 0.25L);
   197  		y = v * (v / y);
   198  	} else {
   199  		y = powl(x, x - 0.5L) / y;
   200  	}
   201  	y = SQTPI * y * w;
   202  	return y;
   203  }
   204  
   205  long double tgammal(long double x)
   206  {
   207  	long double p, q, z;
   208  
   209  	if (!isfinite(x))
   210  		return x + INFINITY;
   211  
   212  	q = fabsl(x);
   213  	if (q > 13.0) {
   214  		if (x < 0.0) {
   215  			p = floorl(q);
   216  			z = q - p;
   217  			if (z == 0)
   218  				return 0 / z;
   219  			if (q > MAXGAML) {
   220  				z = 0;
   221  			} else {
   222  				if (z > 0.5) {
   223  					p += 1.0;
   224  					z = q - p;
   225  				}
   226  				z = q * sinl(PIL * z);
   227  				z = fabsl(z) * stirf(q);
   228  				z = PIL/z;
   229  			}
   230  			if (0.5 * p == floorl(q * 0.5))
   231  				z = -z;
   232  		} else if (x > MAXGAML) {
   233  			z = x * 0x1p16383L;
   234  		} else {
   235  			z = stirf(x);
   236  		}
   237  		return z;
   238  	}
   239  
   240  	z = 1.0;
   241  	while (x >= 3.0) {
   242  		x -= 1.0;
   243  		z *= x;
   244  	}
   245  	while (x < -0.03125L) {
   246  		z /= x;
   247  		x += 1.0;
   248  	}
   249  	if (x <= 0.03125L)
   250  		goto small;
   251  	while (x < 2.0) {
   252  		z /= x;
   253  		x += 1.0;
   254  	}
   255  	if (x == 2.0)
   256  		return z;
   257  
   258  	x -= 2.0;
   259  	p = __polevll(x, P, 7);
   260  	q = __polevll(x, Q, 8);
   261  	z = z * p / q;
   262  	return z;
   263  
   264  small:
   265  	/* z==1 if x was originally +-0 */
   266  	if (x == 0 && z != 1)
   267  		return x / x;
   268  	if (x < 0.0) {
   269  		x = -x;
   270  		q = z / (x * __polevll(x, SN, 8));
   271  	} else
   272  		q = z / (x * __polevll(x, S, 8));
   273  	return q;
   274  }
   275  #elif LDBL_MANT_DIG == 113 && LDBL_MAX_EXP == 16384
   276  // TODO: broken implementation to make things compile
   277  long double tgammal(long double x)
   278  {
   279  	return tgamma(x);
   280  }
   281  #endif