github.com/afumu/libc@v0.0.6/musl/src/thread/pthread_cond_timedwait.c (about) 1 #include "pthread_impl.h" 2 3 /* 4 * struct waiter 5 * 6 * Waiter objects have automatic storage on the waiting thread, and 7 * are used in building a linked list representing waiters currently 8 * waiting on the condition variable or a group of waiters woken 9 * together by a broadcast or signal; in the case of signal, this is a 10 * degenerate list of one member. 11 * 12 * Waiter lists attached to the condition variable itself are 13 * protected by the lock on the cv. Detached waiter lists are never 14 * modified again, but can only be traversed in reverse order, and are 15 * protected by the "barrier" locks in each node, which are unlocked 16 * in turn to control wake order. 17 * 18 * Since process-shared cond var semantics do not necessarily allow 19 * one thread to see another's automatic storage (they may be in 20 * different processes), the waiter list is not used for the 21 * process-shared case, but the structure is still used to store data 22 * needed by the cancellation cleanup handler. 23 */ 24 25 struct waiter { 26 struct waiter *prev, *next; 27 volatile int state, barrier; 28 volatile int *notify; 29 }; 30 31 /* Self-synchronized-destruction-safe lock functions */ 32 33 static inline void lock(volatile int *l) 34 { 35 if (a_cas(l, 0, 1)) { 36 a_cas(l, 1, 2); 37 do __wait(l, 0, 2, 1); 38 while (a_cas(l, 0, 2)); 39 } 40 } 41 42 static inline void unlock(volatile int *l) 43 { 44 if (a_swap(l, 0)==2) 45 __wake(l, 1, 1); 46 } 47 48 static inline void unlock_requeue(volatile int *l, volatile int *r, int w) 49 { 50 a_store(l, 0); 51 if (w) __wake(l, 1, 1); 52 else __syscall(SYS_futex, l, FUTEX_REQUEUE|FUTEX_PRIVATE, 0, 1, r) != -ENOSYS 53 || __syscall(SYS_futex, l, FUTEX_REQUEUE, 0, 1, r); 54 } 55 56 enum { 57 WAITING, 58 SIGNALED, 59 LEAVING, 60 }; 61 62 int __pthread_cond_timedwait(pthread_cond_t *restrict c, pthread_mutex_t *restrict m, const struct timespec *restrict ts) 63 { 64 struct waiter node = { 0 }; 65 int e, seq, clock = c->_c_clock, cs, shared=0, oldstate, tmp; 66 volatile int *fut; 67 68 if ((m->_m_type&15) && (m->_m_lock&INT_MAX) != __pthread_self()->tid) 69 return EPERM; 70 71 if (ts && ts->tv_nsec >= 1000000000UL) 72 return EINVAL; 73 74 __pthread_testcancel(); 75 76 if (c->_c_shared) { 77 shared = 1; 78 fut = &c->_c_seq; 79 seq = c->_c_seq; 80 a_inc(&c->_c_waiters); 81 } else { 82 lock(&c->_c_lock); 83 84 seq = node.barrier = 2; 85 fut = &node.barrier; 86 node.state = WAITING; 87 node.next = c->_c_head; 88 c->_c_head = &node; 89 if (!c->_c_tail) c->_c_tail = &node; 90 else node.next->prev = &node; 91 92 unlock(&c->_c_lock); 93 } 94 95 __pthread_mutex_unlock(m); 96 97 __pthread_setcancelstate(PTHREAD_CANCEL_MASKED, &cs); 98 if (cs == PTHREAD_CANCEL_DISABLE) __pthread_setcancelstate(cs, 0); 99 100 do e = __timedwait_cp(fut, seq, clock, ts, !shared); 101 while (*fut==seq && (!e || e==EINTR)); 102 if (e == EINTR) e = 0; 103 104 if (shared) { 105 /* Suppress cancellation if a signal was potentially 106 * consumed; this is a legitimate form of spurious 107 * wake even if not. */ 108 if (e == ECANCELED && c->_c_seq != seq) e = 0; 109 if (a_fetch_add(&c->_c_waiters, -1) == -0x7fffffff) 110 __wake(&c->_c_waiters, 1, 0); 111 oldstate = WAITING; 112 goto relock; 113 } 114 115 oldstate = a_cas(&node.state, WAITING, LEAVING); 116 117 if (oldstate == WAITING) { 118 /* Access to cv object is valid because this waiter was not 119 * yet signaled and a new signal/broadcast cannot return 120 * after seeing a LEAVING waiter without getting notified 121 * via the futex notify below. */ 122 123 lock(&c->_c_lock); 124 125 if (c->_c_head == &node) c->_c_head = node.next; 126 else if (node.prev) node.prev->next = node.next; 127 if (c->_c_tail == &node) c->_c_tail = node.prev; 128 else if (node.next) node.next->prev = node.prev; 129 130 unlock(&c->_c_lock); 131 132 if (node.notify) { 133 if (a_fetch_add(node.notify, -1)==1) 134 __wake(node.notify, 1, 1); 135 } 136 } else { 137 /* Lock barrier first to control wake order. */ 138 lock(&node.barrier); 139 } 140 141 relock: 142 /* Errors locking the mutex override any existing error or 143 * cancellation, since the caller must see them to know the 144 * state of the mutex. */ 145 if ((tmp = pthread_mutex_lock(m))) e = tmp; 146 147 if (oldstate == WAITING) goto done; 148 149 if (!node.next) a_inc(&m->_m_waiters); 150 151 /* Unlock the barrier that's holding back the next waiter, and 152 * either wake it or requeue it to the mutex. */ 153 if (node.prev) 154 unlock_requeue(&node.prev->barrier, &m->_m_lock, m->_m_type & 128); 155 else 156 a_dec(&m->_m_waiters); 157 158 /* Since a signal was consumed, cancellation is not permitted. */ 159 if (e == ECANCELED) e = 0; 160 161 done: 162 __pthread_setcancelstate(cs, 0); 163 164 if (e == ECANCELED) { 165 __pthread_testcancel(); 166 __pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, 0); 167 } 168 169 return e; 170 } 171 172 int __private_cond_signal(pthread_cond_t *c, int n) 173 { 174 struct waiter *p, *first=0; 175 volatile int ref = 0; 176 int cur; 177 178 lock(&c->_c_lock); 179 for (p=c->_c_tail; n && p; p=p->prev) { 180 if (a_cas(&p->state, WAITING, SIGNALED) != WAITING) { 181 ref++; 182 p->notify = &ref; 183 } else { 184 n--; 185 if (!first) first=p; 186 } 187 } 188 /* Split the list, leaving any remainder on the cv. */ 189 if (p) { 190 if (p->next) p->next->prev = 0; 191 p->next = 0; 192 } else { 193 c->_c_head = 0; 194 } 195 c->_c_tail = p; 196 unlock(&c->_c_lock); 197 198 /* Wait for any waiters in the LEAVING state to remove 199 * themselves from the list before returning or allowing 200 * signaled threads to proceed. */ 201 while ((cur = ref)) __wait(&ref, 0, cur, 1); 202 203 /* Allow first signaled waiter, if any, to proceed. */ 204 if (first) unlock(&first->barrier); 205 206 return 0; 207 } 208 209 weak_alias(__pthread_cond_timedwait, pthread_cond_timedwait);