github.com/aidoskuneen/adk-node@v0.0.0-20220315131952-2e32567cb7f4/common/prque/lazyqueue.go (about)

     1  // Copyright 2021 The adkgo Authors
     2  // This file is part of the adkgo library (adapted for adkgo from go--ethereum v1.10.8).
     3  //
     4  // the adkgo library is free software: you can redistribute it and/or modify
     5  // it under the terms of the GNU Lesser General Public License as published by
     6  // the Free Software Foundation, either version 3 of the License, or
     7  // (at your option) any later version.
     8  //
     9  // the adkgo library is distributed in the hope that it will be useful,
    10  // but WITHOUT ANY WARRANTY; without even the implied warranty of
    11  // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
    12  // GNU Lesser General Public License for more details.
    13  //
    14  // You should have received a copy of the GNU Lesser General Public License
    15  // along with the adkgo library. If not, see <http://www.gnu.org/licenses/>.
    16  
    17  package prque
    18  
    19  import (
    20  	"container/heap"
    21  	"time"
    22  
    23  	"github.com/aidoskuneen/adk-node/common/mclock"
    24  )
    25  
    26  // LazyQueue is a priority queue data structure where priorities can change over
    27  // time and are only evaluated on demand.
    28  // Two callbacks are required:
    29  // - priority evaluates the actual priority of an item
    30  // - maxPriority gives an upper estimate for the priority in any moment between
    31  //   now and the given absolute time
    32  // If the upper estimate is exceeded then Update should be called for that item.
    33  // A global Refresh function should also be called periodically.
    34  type LazyQueue struct {
    35  	clock mclock.Clock
    36  	// Items are stored in one of two internal queues ordered by estimated max
    37  	// priority until the next and the next-after-next refresh. Update and Refresh
    38  	// always places items in queue[1].
    39  	queue                      [2]*sstack
    40  	popQueue                   *sstack
    41  	period                     time.Duration
    42  	maxUntil                   mclock.AbsTime
    43  	indexOffset                int
    44  	setIndex                   SetIndexCallback
    45  	priority                   PriorityCallback
    46  	maxPriority                MaxPriorityCallback
    47  	lastRefresh1, lastRefresh2 mclock.AbsTime
    48  }
    49  
    50  type (
    51  	PriorityCallback    func(data interface{}) int64                       // actual priority callback
    52  	MaxPriorityCallback func(data interface{}, until mclock.AbsTime) int64 // estimated maximum priority callback
    53  )
    54  
    55  // NewLazyQueue creates a new lazy queue
    56  func NewLazyQueue(setIndex SetIndexCallback, priority PriorityCallback, maxPriority MaxPriorityCallback, clock mclock.Clock, refreshPeriod time.Duration) *LazyQueue {
    57  	q := &LazyQueue{
    58  		popQueue:     newSstack(nil, false),
    59  		setIndex:     setIndex,
    60  		priority:     priority,
    61  		maxPriority:  maxPriority,
    62  		clock:        clock,
    63  		period:       refreshPeriod,
    64  		lastRefresh1: clock.Now(),
    65  		lastRefresh2: clock.Now(),
    66  	}
    67  	q.Reset()
    68  	q.refresh(clock.Now())
    69  	return q
    70  }
    71  
    72  // Reset clears the contents of the queue
    73  func (q *LazyQueue) Reset() {
    74  	q.queue[0] = newSstack(q.setIndex0, false)
    75  	q.queue[1] = newSstack(q.setIndex1, false)
    76  }
    77  
    78  // Refresh performs queue re-evaluation if necessary
    79  func (q *LazyQueue) Refresh() {
    80  	now := q.clock.Now()
    81  	for time.Duration(now-q.lastRefresh2) >= q.period*2 {
    82  		q.refresh(now)
    83  		q.lastRefresh2 = q.lastRefresh1
    84  		q.lastRefresh1 = now
    85  	}
    86  }
    87  
    88  // refresh re-evaluates items in the older queue and swaps the two queues
    89  func (q *LazyQueue) refresh(now mclock.AbsTime) {
    90  	q.maxUntil = now + mclock.AbsTime(q.period)
    91  	for q.queue[0].Len() != 0 {
    92  		q.Push(heap.Pop(q.queue[0]).(*item).value)
    93  	}
    94  	q.queue[0], q.queue[1] = q.queue[1], q.queue[0]
    95  	q.indexOffset = 1 - q.indexOffset
    96  	q.maxUntil += mclock.AbsTime(q.period)
    97  }
    98  
    99  // Push adds an item to the queue
   100  func (q *LazyQueue) Push(data interface{}) {
   101  	heap.Push(q.queue[1], &item{data, q.maxPriority(data, q.maxUntil)})
   102  }
   103  
   104  // Update updates the upper priority estimate for the item with the given queue index
   105  func (q *LazyQueue) Update(index int) {
   106  	q.Push(q.Remove(index))
   107  }
   108  
   109  // Pop removes and returns the item with the greatest actual priority
   110  func (q *LazyQueue) Pop() (interface{}, int64) {
   111  	var (
   112  		resData interface{}
   113  		resPri  int64
   114  	)
   115  	q.MultiPop(func(data interface{}, priority int64) bool {
   116  		resData = data
   117  		resPri = priority
   118  		return false
   119  	})
   120  	return resData, resPri
   121  }
   122  
   123  // peekIndex returns the index of the internal queue where the item with the
   124  // highest estimated priority is or -1 if both are empty
   125  func (q *LazyQueue) peekIndex() int {
   126  	if q.queue[0].Len() != 0 {
   127  		if q.queue[1].Len() != 0 && q.queue[1].blocks[0][0].priority > q.queue[0].blocks[0][0].priority {
   128  			return 1
   129  		}
   130  		return 0
   131  	}
   132  	if q.queue[1].Len() != 0 {
   133  		return 1
   134  	}
   135  	return -1
   136  }
   137  
   138  // MultiPop pops multiple items from the queue and is more efficient than calling
   139  // Pop multiple times. Popped items are passed to the callback. MultiPop returns
   140  // when the callback returns false or there are no more items to pop.
   141  func (q *LazyQueue) MultiPop(callback func(data interface{}, priority int64) bool) {
   142  	nextIndex := q.peekIndex()
   143  	for nextIndex != -1 {
   144  		data := heap.Pop(q.queue[nextIndex]).(*item).value
   145  		heap.Push(q.popQueue, &item{data, q.priority(data)})
   146  		nextIndex = q.peekIndex()
   147  		for q.popQueue.Len() != 0 && (nextIndex == -1 || q.queue[nextIndex].blocks[0][0].priority < q.popQueue.blocks[0][0].priority) {
   148  			i := heap.Pop(q.popQueue).(*item)
   149  			if !callback(i.value, i.priority) {
   150  				for q.popQueue.Len() != 0 {
   151  					q.Push(heap.Pop(q.popQueue).(*item).value)
   152  				}
   153  				return
   154  			}
   155  			nextIndex = q.peekIndex() // re-check because callback is allowed to push items back
   156  		}
   157  	}
   158  }
   159  
   160  // PopItem pops the item from the queue only, dropping the associated priority value.
   161  func (q *LazyQueue) PopItem() interface{} {
   162  	i, _ := q.Pop()
   163  	return i
   164  }
   165  
   166  // Remove removes removes the item with the given index.
   167  func (q *LazyQueue) Remove(index int) interface{} {
   168  	if index < 0 {
   169  		return nil
   170  	}
   171  	return heap.Remove(q.queue[index&1^q.indexOffset], index>>1).(*item).value
   172  }
   173  
   174  // Empty checks whether the priority queue is empty.
   175  func (q *LazyQueue) Empty() bool {
   176  	return q.queue[0].Len() == 0 && q.queue[1].Len() == 0
   177  }
   178  
   179  // Size returns the number of items in the priority queue.
   180  func (q *LazyQueue) Size() int {
   181  	return q.queue[0].Len() + q.queue[1].Len()
   182  }
   183  
   184  // setIndex0 translates internal queue item index to the virtual index space of LazyQueue
   185  func (q *LazyQueue) setIndex0(data interface{}, index int) {
   186  	if index == -1 {
   187  		q.setIndex(data, -1)
   188  	} else {
   189  		q.setIndex(data, index+index)
   190  	}
   191  }
   192  
   193  // setIndex1 translates internal queue item index to the virtual index space of LazyQueue
   194  func (q *LazyQueue) setIndex1(data interface{}, index int) {
   195  	q.setIndex(data, index+index+1)
   196  }